Citation: | ZHANG Guoliang, ZHAN Mingjun. Carbon cycle and deep carbon storage during subduction and magamatic processes[J]. Marine Geology & Quaternary Geology, 2019, 39(5): 36-45. DOI: 10.16562/j.cnki.0256-1492.2019092201 |
[1] |
Sleep N H, Zahnle K. Carbon dioxide cycling and implications for climate on ancient Earth [J]. Journal of Geophysical Research: Planets, 2001, 106(E1): 1373-1399. doi: 10.1029/2000JE001247
|
[2] |
Kelemen P B, Manning C E. Reevaluating carbon fluxes in subduction zones, what goes down, mostly comes up [J]. Proceedings of the National Academy of Sciences of the United States of America, 2015, 112(30): E3997-E4006. doi: 10.1073/pnas.1507889112
|
[3] |
Van Der Meer D G, Zeebe R E, Van Hinsbergen D J J, et al. Plate tectonic controls on atmospheric CO2 levels since the Triassic [J]. Proceedings of the National Academy of Sciences of the United States of America, 2014, 111(12): 4380-4385. doi: 10.1073/pnas.1315657111
|
[4] |
Dasgupta R, Walker D. Carbon solubility in core melts in a shallow magma ocean environment and distribution of carbon between the Earth’s core and the mantle [J]. Geochimica et Cosmochimica Acta, 2008, 72(18): 4627-4641. doi: 10.1016/j.gca.2008.06.023
|
[5] |
Marty B, Tolstikhin I N. CO2 fluxes from mid-ocean ridges, arcs and plumes [J]. Chemical Geology, 1998, 145(3-4): 233-248. doi: 10.1016/S0009-2541(97)00145-9
|
[6] |
Dasgupta R, Hirschmann M M, Smith N D. Water follows carbon: CO2 incites deep silicate melting and dehydration beneath mid-ocean ridges [J]. Geology, 2007, 35(2): 135-138. doi: 10.1130/G22856A.1
|
[7] |
Dalou C, Koga K T, Hammouda T, et al. Trace element partitioning between carbonatitic melts and mantle transition zone minerals: implications for the source of carbonatites [J]. Geochimica et Cosmochimica Acta, 2009, 73(1): 239-255. doi: 10.1016/j.gca.2008.09.020
|
[8] |
Kono Y, Kenney-Benson C, Hummer D, et al. Ultralow viscosity of carbonate melts at high pressures [J]. Nature Communications, 2014, 5(1): 5091. doi: 10.1038/ncomms6091
|
[9] |
Dasgupta R, Hirschmann M M. The deep carbon cycle and melting in Earth's interior [J]. Earth and Planetary Science Letters, 2010, 298(1-2): 1-13. doi: 10.1016/j.jpgl.2010.06.039
|
[10] |
Giuliani A, Kamenetsky V S, Phillips D, et al. Nature of alkali-carbonate fluids in the sub-continental lithospheric mantle [J]. Geology, 2012, 40(11): 967-970. doi: 10.1130/G33221.1
|
[11] |
Hoernle K, Tilton G, Le Bas M J, et al. Geochemistry of oceanic carbonatites compared with continental carbonatites: mantle recycling of oceanic crustal carbonate [J]. Contributions to Mineralogy and Petrology, 2002, 142(5): 520-542. doi: 10.1007/s004100100308
|
[12] |
宋文磊, 许成, 刘琼, 等. 火成碳酸岩的实验岩石学研究及对地球深部碳循环的意义[J]. 地质论评, 2012, 58(4):726-744. [SONG Wenlei, XU Cheng, LIU Qiong, et al. Experimental petrological study of carbonatite and its significances on the earth deep carbon cycle [J]. Geological Review, 2012, 58(4): 726-744. doi: 10.3969/j.issn.0371-5736.2012.04.014
|
[13] |
Dasgupta R, Hirschmann M M, Smith N D. Partial melting experiments of peridotite + CO2 at 3 GPa and genesis of Alkalic Ocean Island basalts [J]. Journal of Petrology, 2007, 48(11): 2093-2124. doi: 10.1093/petrology/egm053
|
[14] |
Zhang G L, Chen L H, Jackson M G, et al. Evolution of carbonated melt to alkali basalt in the South China Sea [J]. Nature Geoscience, 2017, 10(3): 229-235. doi: 10.1038/ngeo2877
|
[15] |
Liu S A, Wang Z Z, Li S G, et al. Zinc isotope evidence for a large-scale carbonated mantle beneath eastern China [J]. Earth and Planetary Science Letters, 2016, 444: 169-178. doi: 10.1016/j.jpgl.2016.03.051
|
[16] |
Li S G, Yang W, Ke S, et al. Deep carbon cycles constrained by a large-scale mantle Mg isotope anomaly in eastern China [J]. National Science Review, 2017, 4(1): 111-120.
|
[17] |
Thomson A R, Walter M J, Kohn S C, et al. Slab melting as a barrier to deep carbon subduction [J]. Nature, 2016, 529(7584): 76-79. doi: 10.1038/nature16174
|
[18] |
Foley S F, Fischer T P. An essential role for continental rifts and lithosphere in the deep carbon cycle [J]. Nature Geoscience, 2017, 10(12): 897-902. doi: 10.1038/s41561-017-0002-7
|
[19] |
Michael P J, Graham D W. The behavior and concentration of CO2 in the suboceanic mantle: inferences from undegassed ocean ridge and ocean island basalts [J]. Lithos, 2015, 236-237: 338-351. doi: 10.1016/j.lithos.2015.08.020
|
[20] |
Le Voyer M, Kelley K A, Cottrell E, et al. Heterogeneity in mantle carbon content from CO2-undersaturated basalts [J]. Nature Communications, 2017, 8(1): 14062. doi: 10.1038/ncomms14062
|
[21] |
Miller W G R, Maclennan J, Shorttle O, et al. Estimating the carbon content of the deep mantle with Icelandic melt inclusions [J]. Earth and Planetary Science Letters, 2019, 523: 115699. doi: 10.1016/j.jpgl.2019.07.002
|
[22] |
Cartigny P, Pineau F, Aubaud C, et al. Towards a consistent mantle carbon flux estimate: Insights from volatile systematics (H2O/Ce, δD, CO2/Nb) in the North Atlantic mantle (14°N and 34°N) [J]. Earth and Planetary Science Letters, 2008, 265(3-4): 672-685. doi: 10.1016/j.jpgl.2007.11.011
|
[23] |
Hauri E H, Maclennan J, McKenzie D, et al. CO2 content beneath northern Iceland and the variability of mantle carbon [J]. Geology, 2017, 46(1): 55-58.
|
[24] |
Helo C, Longpré M A, Shimizu N, et al. Explosive eruptions at mid-ocean ridges driven by CO2-rich magmas [J]. Nature Geoscience, 2011, 4(4): 260-263. doi: 10.1038/ngeo1104
|
[25] |
Koleszar A M, Saal A E, Hauri E H, et al. The volatile contents of the Galapagos plume; evidence for H2O and F open system behavior in melt inclusions [J]. Earth and Planetary Science Letters, 2009, 287(3-4): 442-452. doi: 10.1016/j.jpgl.2009.08.029
|
[26] |
Anderson K R, Poland M P. Abundant carbon in the mantle beneath Hawaii [J]. Nature Geoscience, 2017, 10(9): 704-708. doi: 10.1038/ngeo3007
|
[27] |
Wanless V D, Shaw A M. Lower crustal crystallization and melt evolution at mid-ocean ridges [J]. Nature Geoscience, 2012, 5(9): 651-655. doi: 10.1038/ngeo1552
|
[28] |
Shaw A M, Behn M D, Humphris S E, et al. Deep pooling of low degree melts and volatile fluxes at the 85°E segment of the Gakkel Ridge: evidence from olivine-hosted melt inclusions and glasses [J]. Earth and Planetary Science Letters, 2010, 289(3-4): 311-322. doi: 10.1016/j.jpgl.2009.11.018
|
[29] |
Wanless V D, Shaw A M, Behn M D, et al. Magmatic plumbing at Lucky Strike volcano based on olivine‐hosted melt inclusion compositions [J]. Geochemistry, Geophysics, Geosystems, 2015, 16(1): 126-147. doi: 10.1002/2014GC005517
|
[30] |
Tucker J M, Hauri E H, Pietruszka A J, et al. A high carbon content of the Hawaiian mantle from olivine-hosted melt inclusions [J]. Geochimica et Cosmochimica Acta, 2019, 254: 156-172. doi: 10.1016/j.gca.2019.04.001
|
[31] |
Métrich N, Zanon V, Créon L, et al. Is the ‘Azores hotspot’ a wetspot? Insights from the geochemistry of fluid and melt inclusions in olivine of Pico basalts [J]. Journal of Petrology, 2014, 55(2): 377-393. doi: 10.1093/petrology/egt071
|
[32] |
Huang J L, Zhao D P. High‐resolution mantle tomography of China and surrounding regions [J]. Journal of Geophysical Research: Solid Earth, 2006, 111(B9): B09305.
|
[33] |
Zhao D P, Tian Y, Lei J S, et al. Seismic image and origin of the Changbai intraplate volcano in East Asia: role of big mantle wedge above the stagnant Pacific slab [J]. Physics of the Earth and Planetary Interiors, 2009, 173(3-4): 197-206. doi: 10.1016/j.pepi.2008.11.009
|
[34] |
Rohrbach A, Schmidt M W. Redox freezing and melting in the Earth’s deep mantle resulting from carbon–iron redox coupling [J]. Nature, 2011, 472(7342): 209-212. doi: 10.1038/nature09899
|
[35] |
Sun W D, Hawkesworth C J, Yao C, et al. Carbonated mantle domains at the base of the Earth's transition zone [J]. Chemical Geology, 2018, 478: 69-75. doi: 10.1016/j.chemgeo.2017.08.001
|
[36] |
Zeng G, Chen L H, Xu X S, et al. Carbonated mantle sources for Cenozoic intra-plate alkaline basalts in Shandong, North China [J]. Chemical Geology, 2010, 273(1-2): 35-45. doi: 10.1016/j.chemgeo.2010.02.009
|
[37] |
Ray J S, Pande K, Bhutani R, et al. Age and geochemistry of the Newania dolomite carbonatites, India: implications for the source of primary carbonatite magma [J]. Contributions to Mineralogy and Petrology, 2013, 166(6): 1613-1632. doi: 10.1007/s00410-013-0945-7
|
[38] |
Dalton J A, Wood B J. The compositions of primary carbonate melts and their evolution through wallrock reaction in the mantle [J]. Earth and Planetary Science Letters, 1993, 119(4): 511-525. doi: 10.1016/0012-821X(93)90059-I
|
[39] |
Russell J K, Porritt L A, Lavallée Y, et al. Kimberlite ascent by assimilation-fuelled buoyancy [J]. Nature, 2012, 481(7381): 352-356. doi: 10.1038/nature10740
|
[40] |
Lee H, Muirhead J D, Fischer T P, et al. Massive and prolonged deep carbon emissions associated with continental rifting [J]. Nature Geoscience, 2016, 9(2): 145-149. doi: 10.1038/ngeo2622
|
[41] |
Stachel T, Luth R W. Diamond formation—Where, when and how? [J]. Lithos, 2015, 220-223: 200-220. doi: 10.1016/j.lithos.2015.01.028
|
[42] |
Eggler D H, Baker D R. Reduced volatiles in the system C–O–H: implications to mantle melting, fluid formation, and diamond genesis[M]//Akimoto S, Manghnani M H. High-Pressure Research in Geophysics[M]. Tokyo: Center for Academic Publications, 1982: 237-250.
|
[43] |
Luth R W. Diamonds, eclogites, and the oxidation state of the Earth's mantle [J]. Science, 1993, 261(5117): 66-68. doi: 10.1126/science.261.5117.66
|
[44] |
Dorfman S M, Badro J, Nabiei F, et al. Carbonate stability in the reduced lower mantle [J]. Earth and Planetary Science Letters, 2018, 489: 84-91. doi: 10.1016/j.jpgl.2018.02.035
|
[45] |
Raffone N, Chazot G, Pin C, et al. Metasomatism in the lithospheric mantle beneath Middle Atlas (Morocco) and the origin of Fe-and Mg-rich wehrlites [J]. Journal of Petrology, 2009, 50(2): 197-249. doi: 10.1093/petrology/egn069
|
[46] |
Weidendorfer D, Schmidt M W, Mattsson H B. Fractional crystallization of Si-undersaturated alkaline magmas leading to unmixing of carbonatites on Brava Island (Cape Verde) and a general model of carbonatite genesis in alkaline magma suites [J]. Contributions to Mineralogy and Petrology, 2016, 171(5): 43. doi: 10.1007/s00410-016-1249-5
|
[47] |
Clague D A, Dalrymple G B. Age and petrology of alkalic postshield and rejuvenated-stage lava from Kauai, Hawaii [J]. Contributions to Mineralogy and Petrology, 1988, 99(2): 202-218. doi: 10.1007/BF00371461
|
[48] |
Phillips E H, Sims K W W, Sherrod D R, et al. Isotopic constraints on the genesis and evolution of basanitic lavas at Haleakala, Island of Maui, Hawaii [J]. Geochimica et Cosmochimica Acta, 2016, 195: 201-225. doi: 10.1016/j.gca.2016.08.017
|
[49] |
Jackson M G, Price A A, Blichert-Toft J, et al. Geochemistry of lavas from the Caroline hotspot, Micronesia: evidence for primitive and recycled components in the mantle sources of lavas with moderately elevated 3He/4He [J]. Chemical Geology, 2017, 455: 385-400. doi: 10.1016/j.chemgeo.2016.10.038
|
[50] |
Andersen T, Neumann E R. Fluid inclusions in mantle xenoliths [J]. Lithos, 2001, 55(1-4): 301-320. doi: 10.1016/S0024-4937(00)00049-9
|
[51] |
Neumann E R, Wulff-Pedersen E, Pearson N J, et al. Mantle xenoliths from Tenerife (Canary Islands): evidence for reactions between mantle peridotites and silicic carbonatite melts inducing Ca metasomatism [J]. Journal of Petrology, 2002, 43(5): 825-857. doi: 10.1093/petrology/43.5.825
|
[52] |
Sobolev A V, Hofmann A W, Kuzmin D V, et al. The amount of recycled crust in sources of mantle-derived melts [J]. Science, 2007, 316(5823): 412-417. doi: 10.1126/science.1138113
|
[53] |
Hofmann A W, White W M. Mantle plumes from ancient oceanic crust [J]. Earth and Planetary Science Letters, 1982, 57(2): 421-436. doi: 10.1016/0012-821X(82)90161-3
|
[54] |
Zhang G L, Smith‐Duque C. Seafloor basalt alteration and chemical change in the ultra thinly sedimented South Pacific [J]. Geochemistry, Geophysics, Geosystems, 2014, 15(7): 3066-3080. doi: 10.1002/2013GC005141
|
[55] |
Alt J C, Teagle D A H. The uptake of carbon during alteration of ocean crust [J]. Geochimica et Cosmochimica Acta, 1999, 63(10): 1527-1535. doi: 10.1016/S0016-7037(99)00123-4
|
[56] |
Kawamoto T, Yoshikawa M, Kumagai Y, et al. Mantle wedge infiltrated with saline fluids from dehydration and decarbonation of subducting slab [J]. Proceedings of the National Academy of Sciences of the United States of America, 2013, 110(24): 9663-9668. doi: 10.1073/pnas.1302040110
|
[57] |
Gorman P J, Kerrick D M, Connolly J A D. Modeling open system metamorphic decarbonation of subducting slabs [J]. Geochemistry, Geophysics, Geosystems, 2006, 7(4): Q04007.
|
[58] |
Matsumoto R, Iijima A. Origin and diagenetic evolution of Ca–Mg–Fe carbonates in some coalfields of Japan [J]. Sedimentology, 1981, 28(2): 239-259. doi: 10.1111/j.1365-3091.1981.tb01678.x
|
[59] |
Pedersen T F, Price N B. The geochemistry of manganese carbonate in Panama Basin sediments [J]. Geochimica et Cosmochimica Acta, 1982, 46(1): 59-68. doi: 10.1016/0016-7037(82)90290-3
|
[60] |
Galvez M E, Beyssac O, Martinez I, et al. Graphite formation by carbonate reduction during subduction [J]. Nature Geoscience, 2013, 6(6): 473-477. doi: 10.1038/ngeo1827
|
[61] |
Dasgupta R. Ingassing, storage, and outgassing of terrestrial carbon through geologic time [J]. Reviews in Mineralogy and Geochemistry, 2013, 75(1): 183-229. doi: 10.2138/rmg.2013.75.7
|
[1] | WANG Youkun, ZHOU Zhiyuan, LIN Jian, ZHANG Fan. Subduction plate boundary thrust system and dynamic characteristics in the Western Pacific[J]. Marine Geology & Quaternary Geology, 2023, 43(5): 173-180. DOI: 10.16562/j.cnki.0256-1492.2023082502 |
[2] | MA Fangfang, LOU Da, DAI Liming, LI Sanzhong, DONG Hao, TAO Jianli, LI Fakun, WANG Liangliang, LIU Ze. Numerical simulation of subduction-induced molten plume: Destruction of overriding plate and its dynamic topographic responses[J]. Marine Geology & Quaternary Geology, 2019, 39(5): 186-196. DOI: 10.16562/j.cnki.0256-1492.2019040102 |
[3] | WANG Yidan, YU Fusheng, LIU Zhina, WANG Yuheng, WANG Yiqun. Two-dimensional discrete element simulation of plate subduction deformation process: An insight into the genesis of East China Sea Shelf Basin[J]. Marine Geology & Quaternary Geology, 2019, 39(5): 163-173. DOI: 10.16562/j.cnki.0256-1492.2019070306 |
[4] | GONG Wei, JIANG Xiaodian, XING Junhui, LI Deyong, XU Chong. Subduction dynamics of the New-Guinea-Solomon arc system: Constraints from the subduction initiation of the plate[J]. Marine Geology & Quaternary Geology, 2019, 39(5): 115-130. DOI: 10.16562/j.cnki.0256-1492.2019062801 |
[5] | DING Weiwei, LI Jiabiao. Seismic detection of deep structure for Southern Kyueshu-Palau Ridge and its possible implications for subduction initiation[J]. Marine Geology & Quaternary Geology, 2019, 39(5): 98-103. DOI: 10.16562/j.cnki.0256-1492.2019071601 |
[6] | LI Chunfeng, LI Gang, LI Zilong, LIU Wenxiao, ZHANG Lulu, LU Zhezhe, CHEN Xuegang, YAO Zewei. Study of the Caroline plate: Initial subduction, initial spreading and fluid-solid interaction[J]. Marine Geology & Quaternary Geology, 2019, 39(5): 87-97. DOI: 10.16562/j.cnki.0256-1492.2019031501 |
[7] | ZHANG Zhengyi, DONG Dongdong, ZHANG Guangxu, ZHANG Guoliang. TOPOGRAPHIC CONSTRAINTS ON THE SUBDUCTION EROSION OF THE YAP ARC, WESTERN PACIFIC[J]. Marine Geology & Quaternary Geology, 2017, 37(1): 41-50. DOI: 10.16562/j.cnki.0256-1492.2017.01.005 |
[8] | LI Sanzhong, YU Shan, ZHAO Shujuan, ZHANG Guowei, LIU Xin, CAO Huahua, XU Liqing, DAI Liming, LI Tao. PERSPECTIVES OF SUPERCONTINENT CYCLE AND GLOBAL PLATE RECONSTRUCTION[J]. Marine Geology & Quaternary Geology, 2015, 35(1): 51-60. DOI: 10.3724/SP.J.1140.2015.01051 |
[9] | CHEN Ping, ZHENG Yanpeng, LIU Baohua. GEOPHYSICAL FEATURES OF THE NANKAI TROUGH SUBDUCTION ZONE AND THEIR DYNAMIC SIGNIFICANCE[J]. Marine Geology & Quaternary Geology, 2014, 34(6): 153-160. DOI: 10.3724/SP.J.1140.2014.06153 |
[10] | LI Sanzhong, YU Shan, ZHAO Shujuan, ZHANG Guowei, LIU Xin, CAO Huahua, XU Liqing, DAI Liming, LI Tao. SCHOOLS OF THOUGHT ON SUPERCONTINENT AND GLOBAL PLATE RECONSTRUCTION[J]. Marine Geology & Quaternary Geology, 2014, 34(6): 97-117. DOI: 10.3724/SP.J.1140.2014.06097 |
1. |
彭文睿,邢磊,李倩倩,王旭. CO_2海底咸水层封存波及范围地震监测方法研究:以Sleipner CCS项目为例. 海洋地质与第四纪地质. 2025(01): 210-224 .
![]() | |
2. |
李海勇,张锦昌,胡静远,叶俊民. 俯冲和岩浆过程中的地球深部碳循环. 科技导报. 2023(02): 80-88 .
![]() | |
3. |
王国建,凌明星,许德如,夏菲,魏颖,陈加杰,高成,薛硕. 地球深部碳循环与碳酸岩成因研究进展. 大地构造与成矿学. 2023(04): 824-838 .
![]() | |
4. |
郑昕雨,丘志力,邓小芹,马瑛,陆太进. 超深金刚石包裹体:对深部地幔物理化学环境的指示. 地球科学进展. 2020(05): 452-464 .
![]() |