Citation: | WANG Yidan, YU Fusheng, LIU Zhina, WANG Yuheng, WANG Yiqun. Two-dimensional discrete element simulation of plate subduction deformation process: An insight into the genesis of East China Sea Shelf Basin[J]. Marine Geology & Quaternary Geology, 2019, 39(5): 163-173. DOI: 10.16562/j.cnki.0256-1492.2019070306 |
[1] |
Cundall P A. A computer model for simulating progressive large scale movements in blocky rock systems[C]//Proceedings of International Proceedings Symposium on Rock Fracture. Nancy, France, 1971: 128-132.
|
[2] |
蔡申阳, 尹宏伟, 李长圣, 等. 基于离散元数值模拟的应变分析和裂缝预测技术[J]. 高校地质学报, 2016, 22(1):183-193. [CAI Shenyang, YIN Hongwei, LI Changsheng, et al. Technology of strain analysis and fracture prediction based on DEM numerical simulation [J]. Geological Journal of China Universities, 2016, 22(1): 183-193.
|
[3] |
Iwashita K, Oda M. Micro-deformation mechanism of shear banding process based on modified distinct element method [J]. Powder Technology, 2000, 109(1-3): 192-205. doi: 10.1016/S0032-5910(99)00236-3
|
[4] |
Strayer L M, Suppe J. Out-of-plane motion of a thrust sheet during along-strike propagation of a thrust ramp: a distinct-element approach [J]. Journal of Structural Geology, 2002, 24(4): 637-650. doi: 10.1016/S0191-8141(01)00115-8
|
[5] |
Finch E, Hardy S, Gawthorpe R. Discrete element modelling of contractional fault-propagation folding above rigid basement fault blocks [J]. Journal of Structural Geology, 2003, 25(4): 515-528. doi: 10.1016/S0191-8141(02)00053-6
|
[6] |
Strayer L M, Erickson S G, Suppe J. Influence of Growth Strata on the Evolution of Fault-Related Folds—Distinct-Element Models[M]//McClay K R. Thrust Tectonics and Hydrocarbon Systems. American Association of Petroleum Geologists, 2004: 413-437.
|
[7] |
Hardy S, Finch E. Discrete-element modelling of detachment folding [J]. Basin Research, 2005, 17(4): 507-520. doi: 10.1111/j.1365-2117.2005.00280.x
|
[8] |
González G, Gerbault M, Martinod J, et al. Crack formation on top of propagating reverse faults of the Chuculay Fault System, northern Chile: insights from field data and numerical modelling [J]. Journal of Structural Geology, 2008, 30(6): 791-808. doi: 10.1016/j.jsg.2008.02.008
|
[9] |
张洁, 尹宏伟, 徐士进. 用离散元方法讨论岩石强度对主动底辟盐构造断层分布模式的影响[J]. 南京大学学报: 自然科学, 2008, 44(6):642-652. [ZHANG Jie, YIN Hongwei, XU Shijin. Influence of rock strength on fault patterns above active salt domes: insights from 2D discrete element simulations [J]. Journal of Nanjing University: Natural Sciences, 2008, 44(6): 642-652.
|
[10] |
Abe S, Van Gent H, Urai J L. DEM simulation of normal faults in cohesive materials [J]. Tectonophysics, 2011, 512(1-4): 12-21. doi: 10.1016/j.tecto.2011.09.008
|
[11] |
Egholm D L, Sandiford M, Clausen O R, et al. A new strategy for discrete element numerical models: 2. Sandbox applications [J]. Journal of Geophysical Research: Solid Earth, 2007, 112(B5): B05204.
|
[12] |
Hardy S. The Devil truly is in the detail. A cautionary note on computational determinism: Implications for structural geology numerical codes and interpretation of their results [J]. Interpretation, 2015, 3(4): SAA29-SAA35. doi: 10.1190/INT-2015-0052.1
|
[13] |
Botter C, Cardozo N, Hardy S, et al. Seismic characterisation of fault damage in 3D using mechanical and seismic modelling [J]. Marine and Petroleum Geology, 2016, 77: 973-990. doi: 10.1016/j.marpetgeo.2016.08.002
|
[14] |
De Franco R, Govers R, Wortel R. Nature of the plate contact and subduction zones diversity [J]. Earth and Planetary Science Letters, 2008, 271(1-4): 245-253. doi: 10.1016/j.jpgl.2008.04.019
|
[15] |
Lallemand S, Heuret A, Boutelier D. On the relationships between slab dip, back-arc stress, upper plate absolute motion, and crustal nature in subduction zones [J]. Geochemistry, Geophysics, Geosystems, 2005, 6(9).
|
[16] |
Billen M I, Hirth G. Rheologic controls on slab dynamics [J]. Geochemistry, Geophysics, Geosystems, 2007, 8(8): Q08012.
|
[17] |
Hardy S, McClay K, Muñoz J A. Deformation and fault activity in space and time in high-resolution numerical models of doubly vergent thrust wedges [J]. Marine and Petroleum Geology, 2009, 26(2): 232-248. doi: 10.1016/j.marpetgeo.2007.12.003
|
[18] |
Burbidge D R, Braun J. Numerical models of the evolution of accretionary wedges and fold-and-thrust belts using the distinct-element method [J]. Geophysical Journal International, 2002, 148(3): 542-561. doi: 10.1046/j.1365-246x.2002.01579.x
|
[19] |
Naylor M, Sinclair H D, Willett S, et al. A discrete element model for orogenesis and accretionary wedge growth [J]. Journal of Geophysical Research: Solid Earth, 2005, 110(B12): B12403. doi: 10.1029/2003JB002940
|
[20] |
Egholm D L. A new strategy for discrete element numerical models: 1. Theory [J]. Journal of Geophysical Research: Solid Earth, 2007, 112(B5): B05203.
|
[21] |
Liu Z N, Koyi H A. The impact of a weak horizon on kinematics and internal deformation of a failure mass using discrete element method [J]. Tectonophysics, 2013, 586: 95-111. doi: 10.1016/j.tecto.2012.11.009
|
[22] |
Okamura Y, Nishizawa A, Oikawa M, et al. Differential subsidence of the forearc wedge of the Ryukyu (Nansei-Shoto) Arc caused by subduction of ridges on the Philippine Sea Plate [J]. Tectonophysics, 2017, 717: 399-412. doi: 10.1016/j.tecto.2017.08.025
|
[23] |
Nishizawa A, Kaneda K, Oikawa M, et al. Variations in seismic velocity distribution along the Ryukyu (Nansei-Shoto) Trench subduction zone at the northwestern end of the Philippine Sea plate [J]. Earth, Planets and Space, 2017, 69(1): 86. doi: 10.1186/s40623-017-0674-7
|
[24] |
Lallemand S, Heuret A, Boutelier D. On the relationships between slab dip, back‐arc stress, upper plate absolute motion, and crustal nature in subduction zones [J]. Geochemistry, Geophysics, Geosystems, 2015, 6(9): Q09006.
|
[25] |
Skinner S M, Clayton R W. An evaluation of proposed mechanisms of slab flattening in central Mexico [J]. Pure and Applied Geophysics, 2011, 168(8-9): 1461-1474. doi: 10.1007/s00024-010-0200-3
|
[26] |
皇甫鹏鹏, 王岳军, 范蔚茗, 等. 大洋平板俯冲的数值模拟再现: 洋–陆汇聚速率影响[J]. 大地构造与成矿学, 2016, 40(3):429-445. [HUANGFU Pengpeng, WANG Yuejun, FAN Weiming, et al. Numerical modeling of flat subduction: constraints from the ocean-continent convergence velocity [J]. Geotectonica et Metallogenia, 2016, 40(3): 429-445.
|
[27] |
Yang C Q, Yang Y Q, Li G, et al. The Mesozoic basin-mountain coupling process of the southern East China Sea shelf basin and its adjacent land area [J]. Acta Geologica Sinica - English Edition, 2016, 90(3): 1051-1052. doi: 10.1111/1755-6724.12748
|
[28] |
侯方辉, 张训华, 李刚, 等. 从被动陆缘到主动陆缘——东海陆架盆地中生代构造体制转换的盆地记录[J]. 石油地球物理勘探, 2015, 50(5):980-990. [HOU Fanghui, ZHANG Xunhua, LI Gang, et al. From passive continental margin to active continental margin: basin recordings of Mesozoic tectonic regime transition of the East China Sea Shelf Basin [J]. Oil Geophysical Prospecting, 2015, 50(5): 980-990.
|
[29] |
Shang L N, Zhang X H, Jia Y G, et al. Late Cenozoic evolution of the East China continental margin: Insights from seismic, gravity, and magnetic analyses [J]. Tectonophysics, 2017, 698: 1-15. doi: 10.1016/j.tecto.2017.01.003
|
[30] |
杨长清, 杨传胜, 李刚, 等. 东海陆架盆地南部中生代构造演化与原型盆地性质[J]. 海洋地质与第四纪地质, 2012, 32(3):105-111. [YANG Changqing, YANG Chuansheng, LI Gang, et al. Mesozoic tectonic evolution and prototype basin characters in the southern East China Sea Shelf Basin [J]. Marine Geology & Quaternary Geology, 2012, 32(3): 105-111.
|
[31] |
崔幸, 王亮亮, 罗洪明, 等. 东海陆架盆地南部中生代盆地性质与演化: 砂箱物理模拟检验[J]. 海洋地质与第四纪地质, 2017, 37(4):181-192. [CUI Xing, WANG Liangliang, LUO Hongming, et al. Sandbox modeling test for Mesozoic basins in southern East China Sea Shelf Basin [J]. Marine Geology & Quaternary Geology, 2017, 37(4): 181-192.
|
[32] |
Cui X, Dai L M, Li S D, et al. Control of strike‐slip and pull‐apart processes to tectonic transition of the southern East China Sea Shelf Basin [J]. Geological Journal, 2019, 54(2): 850-561. doi: 10.1002/gj.3363
|
[33] |
Liu Z, Dai L M, Li S Z, et al. Mesozoic magmatic activity and tectonic evolution in the southern East China Sea Continental Shelf Basin: thermo‐mechanical modelling [J]. Geological Journal, 2018, 53(S1): 240-251.
|
[34] |
Hu M Y, Li S Z, Dai L M, et al. Dynamic mechanism of tectonic inversion and implications for oil–gas accumulation in the Xihu Sag, East China Sea Shelf basin: insights from numerical modelling [J]. Geological Journal, 2018, 53(S1): 225-239.
|
[35] |
Abedi M, Bahroudi A. A geophysical potential field study to image the Makran subduction zone in SE of Iran [J]. Tectonophysics, 2016, 688: 119-134. doi: 10.1016/j.tecto.2016.09.025
|
[36] |
Kopp C, Fruehn J, Flueh E R, et al. Structure of the makran subduction zone from wide-angle and reflection seismic data [J]. Tectonophysics, 2000, 329(1-4): 171-191. doi: 10.1016/S0040-1951(00)00195-5
|
[37] |
Grando G, McClay K. Morphotectonics domains and structural styles in the Makran accretionary prism, offshore Iran [J]. Sedimentary Geology, 2007, 196(1-4): 157-179. doi: 10.1016/j.sedgeo.2006.05.030
|