Citation: | YANG Shouye,JIA Qi,XU Xinning,et al. Submarine reverse weathering and its effect on oceanic elements cycling[J]. Marine Geology & Quaternary Geology,2023,43(3):26-34. DOI: 10.16562/j.cnki.0256-1492.2023052901 |
[1] |
Mackenzie F T, Garrels R M. Chemical balance between rivers and oceans [J]. American Journal of Science, 1966, 264(7): 507-525. doi: 10.2475/ajs.264.7.507
|
[2] |
Mackenzie F T, Kump L R. Reverse Weathering, Clay Mineral Formation, and Oceanic Element Cycles [J]. Science, 1995, 270(5236): 586-587. doi: 10.1126/science.270.5236.586
|
[3] |
Ristvet B L. Reverse Weathering Reactions within Recent Nearshore Marine Sediments, Kaneohe Bay, Oahu[D]. Honolulu, University of Hawaii, 1978.
|
[4] |
Von Damm K L, Edmond J M. Reverse weathering in the closed-basin lakes of the Ethiopian Rift [J]. American Journal of Science, 1984, 284: 835-862. doi: 10.2475/ajs.284.7.835
|
[5] |
Goldschmidt V M. Grundlagen der quantitativen Geochemie. Fortschritte der Mineralogie, Kristallographie und Petrographie[J]. 1933, 17: 112-156.
|
[6] |
Garrels R M. Silica: role in the buffering of natural waters [J]. Science, 1965, 148(3666): 69. doi: 10.1126/science.148.3666.69
|
[7] |
Sillén L G. The physical chemistry of seawater[M]//Sears M. Oceanography. Washington: AAAS Publisher, 1961: 549-82.
|
[8] |
Sillén L G. The ocean as a chemical system [J]. Science, 1967, 156(3779): 1189-1197. doi: 10.1126/science.156.3779.1189
|
[9] |
Corliss J B, Dymond J, Gordon L, et al. Submarine thermal springs on the Galapagos Rift [J]. Science, 1979, 203(4385): 1073-1083. doi: 10.1126/science.203.4385.1073
|
[10] |
Rona P A. New evidence for seabed resources from global tectonics [J]. Ocean Management, 1973, 1: 145-159. doi: 10.1016/0302-184X(73)90009-7
|
[11] |
Scott R B, Rona P A, Mcgregor B A. The TAG hydrothermal field [J]. Nature, 1974, 251(5473): 301-302. doi: 10.1038/251301a0
|
[12] |
Michalopoulos P, Aller R C. Rapid Clay Mineral Formation in Amazon Delta Sediments: Reverse Weathering and Oceanic Elemental Cycles [J]. Science, 1995, 270(5236): 614-617. doi: 10.1126/science.270.5236.614
|
[13] |
Michalopoulos P, Aller R C. Conversion of diatoms to clays during early diagenesis in tropical, continental shelf muds [J]. Geology, 2000, 28(12): 1095-1098. doi: 10.1130/0091-7613(2000)28<1095:CODTCD>2.0.CO;2
|
[14] |
Michalopoulos P, Aller R C. Early diagenesis of biogenic silica in the Amazon delta: alteration, authigenic clay formation, and storage [J]. Geochimica et Cosmochimica Acta, 2004, 68(5): 1061-1085. doi: 10.1016/j.gca.2003.07.018
|
[15] |
Misra S, Froelich P N. Lithium Isotope History of Cenozoic Seawater: Changes in Silicate Weathering and Reverse Weathering [J]. Science, 2012, 335(6070): 818-823. doi: 10.1126/science.1214697
|
[16] |
Dunlea A G, Murray RW, Santiago Ramos D P, et al. Cenozoic global cooling and increased seawater Mg/Ca via reduced reverse weathering [J]. Nature Communications, 2017, 8(1): 844. doi: 10.1038/s41467-017-00853-5
|
[17] |
Isson T T, Planavsky N J. Reverse weathering as a long-term stabilizer of marine pH and planetary climate [J]. Nature, 2018, 560(7719): 471-475. doi: 10.1038/s41586-018-0408-4
|
[18] |
Isson T T, Planavsky N J, Coogan L A, et al. Evolution of the global carbon cycle and climate regulation on earth [J]. Global Biogeochemical Cycles, 2020, 34(2): e2018GB006061.
|
[19] |
Zhang X, Gaillardet J, Barrier L, et al. Li and Si isotopes reveal authigenic clay formation in a palaeo-delta [J]. Earth and Planetary Science Letters, 2022, 578: 117339. doi: 10.1016/j.jpgl.2021.117339
|
[20] |
Hilton R G, West A J. Mountains, erosion and the carbon cycle [J]. Nature Reviews Earth & Environment, 2020, 1(6): 284-299.
|
[21] |
Berner R A. Early Diagenesis: A Theoretical Approach[M]. Princeton: Princeton University Press, 1980.
|
[22] |
Church T M. Marine Chemistry in the Coastal Environment: Principles, Perspective and Prospectus [J]. Aquatic Geochemistry, 2016, 22(4): 375-389. doi: 10.1007/s10498-016-9296-0
|
[23] |
Berner E K, Berner R A. Global Environment: Water, Air, and Geochemical Cycles[M]. Princeton: Princeton University Press, 2011.
|
[24] |
Krissansen-Totton J, Catling D C. A coupled carbon-silicon cycle model over Earth history: Reverse weathering as a possible explanation of a warm mid-Proterozoic climate [J]. Earth and Planetary Science Letters, 2020, 537: 116181. doi: 10.1016/j.jpgl.2020.116181
|
[25] |
Cao C, Bataille C P, Song H, et al. Persistent late permian to early triassic warmth linked to enhanced reverse weathering [J]. Nature Geoscience, 2022, 15: 832-838. doi: 10.1038/s41561-022-01009-x
|
[26] |
Geilert S, Frick D A, Garbe-Schönberg D, et al. Coastal El Niño triggers rapid marine silicate alteration on the seafloor [J]. Nature Communications, 2023, 14(1): 1676. doi: 10.1038/s41467-023-37186-5
|
[27] |
Baldermann A, Banerjee S, Czuppon G, et al. Impact of green clay authigenesis on element sequestration in marine settings [J]. Nature Communications, 2022, 13(1): 1527. doi: 10.1038/s41467-022-29223-6
|
[28] |
Loucaides S, Michalopoulos P, Presti M, et al. Seawater-mediated interactions between diatomaceous silica and terrigenous sediments: Results from long-term incubation experiments [J]. Chemical Geology, 2010, 270(1-4): 68-79. doi: 10.1016/j.chemgeo.2009.11.006
|
[29] |
Bennekom A, Gaast S. Possible clay structures in frustules of living diatoms [J]. Geochimica et Cosmochimica Acta, 1976, 40: 1149-1152. doi: 10.1016/0016-7037(76)90150-2
|
[30] |
Baldermann A, Warr L N, Letofsky-Papst I, et al. Substantial iron sequestration during green-clay authigenesis in modern deep-sea sediments [J]. Nature Geoscience, 2015, 8(11): 885-889. doi: 10.1038/ngeo2542
|
[31] |
Scholz F, Severmann S, Mcmanus J, et al. On the isotope composition of reactive iron in marine sediments: Redox shuttle versus early diagenesis [J]. Chemical Geology, 2014, 389: 48-59. doi: 10.1016/j.chemgeo.2014.09.009
|
[32] |
Boning P, Schnetger B, Belz L, et al. Sedimentary iron cycling in the Benguela upwelling system off Namibia [J]. Earth and Planetary Science Letters, 2020, 538: 116212. doi: 10.1016/j.jpgl.2020.116212
|
[33] |
Ehlert C, Doering K, Wallmann K, et al. Stable silicon isotope signatures of marine pore waters: Biogenic opal dissolution versus authigenic clay mineral formation [J]. Geochimica et Cosmochimica Acta, 2016, 191: 102-117. doi: 10.1016/j.gca.2016.07.022
|
[34] |
Li F, Penman D, Planavsky N, et al. Reverse weathering may amplify post-Snowball atmospheric carbon dioxide levels [J]. Precambrian Research, 2021, 364: 106279. doi: 10.1016/j.precamres.2021.106279
|
[35] |
Santiago Ramos D P, Coogan L A, Murphy J G, et al. Low-temperature oceanic crust alteration and the isotopic budgets of potassium and magnesium in seawater [J]. Earth and Planetary Science Letters, 2020, 541: 116290. doi: 10.1016/j.jpgl.2020.116290
|
[36] |
Steefel C I, Appelo C, Arora B, et al. Reactive transport codes for subsurface environmental simulation [J]. Computational Geosciences, 2015, 19(3): 445-478. doi: 10.1007/s10596-014-9443-x
|
[37] |
Wallmann K, Aloisi G, Haeckel M, et al. Silicate weathering in anoxic marine sediments [J]. Geochimica et Cosmochimica Acta, 2008, 72(12): 2895-2918. doi: 10.1016/j.gca.2008.03.026
|
[38] |
Geilert S, Grasse P, Doering K, et al. Impact of ambient conditions on the Si isotope fractionation in marine pore fluids during early diagenesis [J]. Biogeosciences, 2020, 17(7): 1745-1763. doi: 10.5194/bg-17-1745-2020
|
[39] |
Torres M E, Hong W L, Solomon E A, et al. Silicate weathering in anoxic marine sediment as a requirement for authigenic carbonate burial [J]. Earth-Science Reviews, 2020, 200: 102960. doi: 10.1016/j.earscirev.2019.102960
|
[40] |
Li W, Liu X-M, Wang K, et al. Potassium isotope signatures in modern marine sediments: Insights into early diagenesis [J]. Earth and Planetary Science Letters, 2022, 599: 117849. doi: 10.1016/j.jpgl.2022.117849
|
[41] |
Shalev N, Bontognali T, Wheat C G, et al. New isotope constraints on the Mg oceanic budget point to cryptic modern dolomite formation [J]. Nature Communications, 2019, 10(1): 5646. doi: 10.1038/s41467-019-13514-6
|
[42] |
Voigt M, Pearce C R, Fries D M, et al. Magnesium isotope fractionation during hydrothermal seawater–basalt interaction [J]. Geochimica et Cosmochimica Acta, 2019, 272: 21-35.
|
[43] |
Laureijs C T, Coogan L A, Spence J. Regionally variable timing and duration of celadonite formation in the Troodos lavas (Cyprus) from Rb-Sr age distributions [J]. Chemical Geology, 2021, 560(3): 119995.
|
[44] |
Homoky W B, Thomas W, Berelson W M, et al. Quantifying trace element and isotope fluxes at the ocean-sediment boundary: a review [J]. Philosophical Transactions of the Royal Society A:Mathematical, Physical and Engineering Sciences, 2016, 374: 20160246. doi: 10.1098/rsta.2016.0246
|
[45] |
Luo M, Li W, Geilert S, et al. Active Silica Diagenesis in the Deepest Hadal Trench Sediments [J]. Geophysical Research Letters, 2022, 49(14): e2022GL099365.
|
[46] |
Li G, West A J. Evolution of Cenozoic seawater lithium isotopes: Coupling of global denudation regime and shifting seawater sinks [J]. Earth and Planetary Science Letters, 2014, 401: 284-293. doi: 10.1016/j.jpgl.2014.06.011
|
[47] |
Coogan L A, Gillis K M. Temperature dependence of chemical exchange during seafloor weathering: Insights from the Troodos ophiolite [J]. Geochimica et Cosmochimica Acta, 2018, 243: 24-41. doi: 10.1016/j.gca.2018.09.025
|
[48] |
Higgins J A, Schrag D P. The Mg isotopic composition of Cenozoic seawater: evidence for a link between Mg-clays, seawater Mg/Ca, and climate [J]. Earth and Planetary Science Letters, 2015, 416: 73-81. doi: 10.1016/j.jpgl.2015.01.003
|
[49] |
Coggon R M, Teagle D A H, Smith-Duque C E, et al. Reconstructing Past Seawater Mg/Ca and Sr/Ca from Mid-Ocean Ridge Flank Calcium Carbonate Veins [J]. Science, 2010, 327(5969): 1114-1117. doi: 10.1126/science.1182252
|
[50] |
Masuda H. Iron-rich smectite formation in the hydrothermal sediment of Iheya Basin, Okinawa Trough[M]//Sakai H. , Nozaki Y. Biogeochemical Processes and Ocean Flux in the Western Pacific. Tokyo: Terra Scientific Publishing Company, 1995, 509-521.
|
[51] |
Stoffynegli P, Mackenzie F T. Mass balance of dissolved lithium in the oceans [J]. Geochimica et Cosmochimica Acta, 1984, 48(4): 859-872. doi: 10.1016/0016-7037(84)90107-8
|
[52] |
Chan L H, Edmond J M, Thompson G, et al. Lithium isotopic composition of submarine basalts: implications for the lithium cycle in the oceans [J]. Earth and Planetary Science Letters, 1992, 108(1-3): 151-160. doi: 10.1016/0012-821X(92)90067-6
|
[53] |
Huh Y, Chan L H, Zhang L, et al. Lithium and its isotopes in major world rivers: Implications for weathering and the oceanic budget [J]. Geochimica et Cosmochimica Acta, 1998, 62(12): 2039-2051. doi: 10.1016/S0016-7037(98)00126-4
|
[54] |
You C F, Chan L H, Gieskes J M, et al. Seawater intrusion through the oceanic crust and carbonate sediment in the Equatorial Pacific: Lithium abundance and isotopic evidence [J]. Geophysical Research Letters, 2003, 30(21): 1-4.
|
[55] |
Zhang L, Chan L H, Gieskes J M. Lithium isotope geochemistry of pore waters from ocean drilling program Sites 918 and 919, Irminger Basin [J]. Geochimica et Cosmochimica Acta, 1998, 62(14): 2437-2450. doi: 10.1016/S0016-7037(98)00178-1
|
[56] |
Andrews E, Strandmann P, Fantle M S. Exploring the importance of authigenic clay formation in the global Li cycle [J]. Geochimica et Cosmochimica Acta, 2020, 289: 47-68. doi: 10.1016/j.gca.2020.08.018
|
[57] |
Kawagucci S. Fluid geochemistry of high-temperature hydrothermal fields in the Okinawa trough[M]//Ihibashi J I, Okino K, Sunamura M. Subseafloor Biosphere Linked to Hydrothermal Systems: TAIGA Concept. Tokyo: Springer, 2015: 387-403.
|
[58] |
Araoka D, Nishio Y, Gamo T, et al. Lithium isotopic systematics of submarine vent fluids from arc and back-arc hydrothermal systems in the western Pacific [J]. Geochemistry Geophysics Geosystems, 2016, 17(10): 3835-3853. doi: 10.1002/2016GC006355
|
[59] |
Decitre S, Buatier M, James R. Li and Li isotopic composition of hydrothermally altered sediments at Middle Valley, Juan De Fuca[J]. Chemical Geology, 2004, 211(3-4): 363-373.
|
[60] |
Tréguer P J, Sutton J N, Brzezinski M, et al. Reviews and syntheses: The biogeochemical cycle of silicon in the modern ocean [J]. Biogeosciences, 2021, 18(4): 1269-1289. doi: 10.5194/bg-18-1269-2021
|
[61] |
Aller R C. Sedimentary diagenesis, depositional environments, and benthic fluxes[M]//Holland H D, Turekian K K. Treatise on Geochemistry. 2nd ed. Amsterdam: Elsevier, 2014: 293-334.
|
[62] |
Demaster D J. The supply and accumulation of silica in the marine environment [J]. Geochimica et Cosmochimica Acta, 1981, 45(10): 1715-1732. doi: 10.1016/0016-7037(81)90006-5
|
[63] |
Tréguer P J, Nelson D M, Aleido J V B, et al. The silica balance in the world ocean: a reestimate [J]. Science, 1995, 268(5209): 375-379. doi: 10.1126/science.268.5209.375
|
[64] |
Pondaven P, Ragueneau O, Tréguer P J, et al. Resolving the 'opal paradox' in the Southern Ocean [J]. Nature, 2000, 405(6783): 168-172. doi: 10.1038/35012046
|
[65] |
DeMaster D J. The accumulation and cycling of biogenic silica in the Southern Ocean: revisiting the marine silica budget [J]. Deep-Sea Research Part I:Topical Studies in Oceanography, 2002, 49(16): 3155-3167. doi: 10.1016/S0967-0645(02)00076-0
|
[66] |
La Laruelle G G, Roubeix V, Sferratore A, et al. Anthropogenic perturbations of the silicon cycle at the global scale: Key role of the land-ocean transition [J]. Global Biogeochemical Cycles, 2009, 23(4): GB4031.
|
[67] |
Tréguer P J, De La Rocha C L. The world ocean silica cycle [J]. Annual Review of Marine Science, 2013, 5: 477-501. doi: 10.1146/annurev-marine-121211-172346
|
[68] |
Rahman S, Aller R C, Cochran J K. Cosmogenic 32Si as a tracer of biogenic silica burial and diagenesis: Major deltaic sinks in the silica cycle [J]. Geophysical Research Letters, 2016, 43(13): 7124-7132. doi: 10.1002/2016GL069929
|
[69] |
Rahman S, Aller R C, Cochran J K. The Missing Silica Sink: Revisiting the Marine Sedimentary Si Cycle Using Cosmogenic 32Si [J]. Global Biogeochemical Cycles, 2017, 31(10): 1559-1578. doi: 10.1002/2017GB005746
|
[70] |
Lacan F, Jeandel C. Neodymium isotopes as a new tool for quantifying exchange fluxes at the continent-ocean interface [J]. Earth and Planetary Science Letters, 2005, 232(3-4): 245-257. doi: 10.1016/j.jpgl.2005.01.004
|
[71] |
Jeandel C, Oelkers E H. The influence of terrigenous particulate material dissolution on ocean chemistry and global element cycles [J]. Chemical Geology, 2015, 395: 50-66. doi: 10.1016/j.chemgeo.2014.12.001
|
[72] |
杨守业, 韦刚健, 石学法. 地球化学方法示踪东亚大陆边缘源汇沉积过程与环境演变[J]. 矿物岩石地球化学通报, 2015, 34(5):902-910 doi: 10.3969/j.issn.1007-2802.2015.05.003
YANG Shouye, WEI Gangjian, SHI Xuefa. Geochemical approaches of tracing source-to-sink sediment processes and environmental changes at the East Asian continental margin [J]. Bulletin of Mineralogy Petrology and Geochemistry, 2015, 34(5): 902-910. doi: 10.3969/j.issn.1007-2802.2015.05.003
|
[73] |
Yao P, Zhao B, Bianchi T S, et al. Remineralization of sedimentary organic carbon in mud deposits of the Changjiang Estuary and adjacent shelf: Implications for carbon preservation and authigenic mineral formation [J]. Continental Shelf Research, 2014, 91: 1-11. doi: 10.1016/j.csr.2014.08.010
|
[74] |
Zhao B, Yao P, Bianchi T S, et al. Early diagenesis and authigenic mineral formation in mobile muds of the Changjiang Estuary and adjacent shelf [J]. Journal of Marine Systems, 2017, 172: 6.
|
[75] |
赵彬, 姚鹏, 杨作升, 等. 大河影响下的边缘海反风化作用[J]. 地球科学进展, 2018, 33(1):42-51 doi: 10.11867/j.issn.1001-8166.2018.01.0042
ZHAO Bin, YAO Peng, YANG Zuosheng, et al. Reverse weathering in river-dominated marginal seas [J]. Advances in Earth Science, 2018, 33(1): 42-51. doi: 10.11867/j.issn.1001-8166.2018.01.0042
|
[76] |
Mackin J E, Aller R C. Dissolved Al in sediments and waters of the East China Sea: Implications for authigenic mineral formation [J]. Geochimica et Cosmochimica Acta, 1984, 48: 281-297. doi: 10.1016/0016-7037(84)90251-5
|
[77] |
张桂甲, 李从先, 业治铮. 长江口地区自生绿色颗粒的形成和分布[J]. 石油与天然气地质, 1989, 10(2): 145-153
ZHANG Guijia J, LI Congxian, YE Zhizheng. Formation and distribution of green grains in the Yangtse river mouth area[J]. Oil & Gas Geology, 1989, 10(2): 145-153.
|
[78] |
Zhu M X, Hao X C, Shi X N, et al. Speciation and spatial distribution of solid-phase iron in surface sediments of the East China Sea continental shelf [J]. Applied Geochemistry, 2012, 27(4): 892-905. doi: 10.1016/j.apgeochem.2012.01.004
|
[79] |
Zhu M. X, Chen K K, Yang G P, et al. Sulfur and iron diagenesis in temperate unsteady sediments of the East China Sea inner shelf and a comparison with tropical mobile mud belts (MMBs) [J]. Journal of Geophysical Research:Biogeosciences, 2016, 121(11): 2811-2828. doi: 10.1002/2016JG003391
|
[80] |
Fan D J, Neuser R D, Sun X G, et al. Authigenic iron oxide formation in the estuarine mixing zone of the Yangtze River [J]. Geo-Marine Letters, 2008, 28(1): 7-14. doi: 10.1007/s00367-007-0084-0
|
[81] |
Pang Y, Fan D J, Hu Z Z, et al. The properties and spatial distributions of flocs adjacent to the Yangtze Estuary [J]. Continental Shelf Research, 2018, 167: 87-98. doi: 10.1016/j.csr.2018.07.012
|
[82] |
范德江, 陈彬, 王亮, 等. 长江口外悬浮颗粒物中自生纤铁矿和胶黄铁矿[J]. 地球科学(中国地质大学学报), 2014, 39(10):1364-1370
FAN Dejiang, CHEN Bin, WANG Liang, et al. Authigenic lepidocrocite and greigite particles in aquatic environments off the Yangtze River Estuary [J]. Earth Science, 2014, 39(10): 1364-1370.
|
[83] |
胡治洲, 范德江, 刘明, 等. 西太平洋边缘海表层悬浮体自生铁氧化物研究[J]. 海洋科学进展, 2019, 37(3):462-476
HU Zhizhou, FAN Daidu, LIU Ming, et al. Authigenic iron oxide floc in the surface water of the western Pacific marginal seas [J]. Advances in Marine Science, 2019, 37(3): 462-476.
|
[84] |
Wang C, Zhu H G, Wang P F, et al. Early diagenetic alterations of biogenic and reactive silica in the surface sediment of the Yangtze Estuary [J]. Continental Shelf Research, 2015, 99: 1-11. doi: 10.1016/j.csr.2015.03.003
|
[85] |
Presti M, Michalopoulos P. Estimating the contribution of the authigenic mineral component to the long-term reactive silica accumulation on the western shelf of the Mississippi River Delta [J]. Continental Shelf Research, 2008, 28(6): 823-838. doi: 10.1016/j.csr.2007.12.015
|
[86] |
Tivey M K. Generation of seafloor hydrothermal vent fluids and associated mineral deposits [J]. Oceanography, 2007, 20(1): 50-65. doi: 10.5670/oceanog.2007.80
|
[87] |
Ishibashi J I, Tsunogai U, Toki T, et al. Chemical composition of hydrothermal fluids in the central and southern Mariana Trough backarc basin [J]. Deep Sea Research Part II:Topical Studies in Oceanography, 2015, 121: 126-136. doi: 10.1016/j.dsr2.2015.06.003
|
[88] |
Kimura M, Uyeda S, Kato Y, et al. Active hydrothermal mounds in the Okinawa Trough backarc basin, Japan [J]. Tectonophysics, 1988, 145(3-4): 319-324. doi: 10.1016/0040-1951(88)90203-X
|
[89] |
Ueshima M, Tazaki K. Possible Role of Microbial polysaccharides in nontronite formation [J]. Clays and Clay Minerals, 2001, 49: 292-299. doi: 10.1346/CCMN.2001.0490403
|
[90] |
Takai K, Mottl M J, Nielsen S H H. IODP Expedition 331: Strong and Expansive Subseafloor Hydrothermal Activities in the Okinawa Trough [J]. Scientific Drilling, 2012, 13: 19-27. doi: 10.5194/sd-13-19-2012
|