Citation: | WANG Youkun,ZHOU Zhiyuan,LIN Jian,et al. Subduction plate boundary thrust system and dynamic characteristics in the Western Pacific[J]. Marine Geology & Quaternary Geology,2023,43(5):173-180. DOI: 10.16562/j.cnki.0256-1492.2023082502 |
[1] |
de Bremaecker J C. Is the oceanic lithosphere elastic or viscous?[J]. Journal of Geophysical Research, 1977, 82(14):2001-2004. doi: 10.1029/JB082i014p02001
|
[2] |
Hilde T W C. Sediment subduction versus accretion around the pacific[J]. Tectonophysics, 1983, 99(2-4):381-397. doi: 10.1016/0040-1951(83)90114-2
|
[3] |
Melosh H J. Dynamic support of the outer rise[J]. Geophysical Research Letters, 1978, 5(5):321-324. doi: 10.1029/GL005i005p00321
|
[4] |
Parsons B, Molnar P. The origin of outer topographic rises associated with trenches[J]. Geophysical Journal International, 1976, 45(3):707-712. doi: 10.1111/j.1365-246X.1976.tb06919.x
|
[5] |
Watts A B, Taiwani M. Gravity anomalies seaward of deep‐sea trenches and their tectonic implications[J]. Geophysical Journal International, 1974, 36(1):57-90. doi: 10.1111/j.1365-246X.1974.tb03626.x
|
[6] |
Beavan J, Wang X, Holden C, et al. Near-simultaneous great earthquakes at Tongan megathrust and outer rise in September 2009[J]. Nature, 2010, 466(7309):959-963. doi: 10.1038/nature09292
|
[7] |
Christensen D H, Ruff L J. Outer-rise earthquakes and seismic coupling[J]. Geophysical Research Letters, 1983, 10(8):697-700. doi: 10.1029/GL010i008p00697
|
[8] |
Kanamori H. Seismological evidence for a lithospheric normal faulting—the Sanriku earthquake of 1933[J]. Physics of the Earth and Planetary Interiors, 1971, 4(4):289-300. doi: 10.1016/0031-9201(71)90013-6
|
[9] |
Lay T, Ammon C J, Kanamori H, et al. The 2009 Samoa-Tonga great earthquake triggered doublet[J]. Nature, 2010, 466(7309):964-968. doi: 10.1038/nature09214
|
[10] |
Kao H, Chen W P. Seismicity in the outer rise-forearc region and configuration of the subducting lithosphere with special reference to the Japan Trench[J]. Journal of Geophysical Research:Solid Earth, 1996, 101(B12):27811-27831. doi: 10.1029/96JB01760
|
[11] |
Lefeldt M, Ranero C R, Grevemeyer I. Seismic evidence of tectonic control on the depth of water influx into incoming oceanic plates at subduction trenches[J]. Geochemistry, Geophysics, Geosystems, 2012, 13(5):Q05013.
|
[12] |
Kobayashi K, Nakanishi M, Tamaki K, et al. Outer slope faulting associated with the western Kuril and Japan trenches[J]. Geophysical Journal International, 1998, 134(2):356-372. doi: 10.1046/j.1365-246x.1998.00569.x
|
[13] |
Turcotte D L, McAdoo D C, Caldwell J G. An elastic-perfectly plastic analysis of the bending of the lithosphere at a trench[J]. Tectonophysics, 1978, 47(3-4):193-205. doi: 10.1016/0040-1951(78)90030-6
|
[14] |
Ivandic M, Grevemeyer I, Berhorst A, et al. Impact of bending related faulting on the seismic properties of the incoming oceanic plate offshore of Nicaragua[J]. Journal of Geophysical Research:Solid Earth, 2008, 113(B5):B05410.
|
[15] |
Zhou Z Y, Lin J, Zhang F. Modeling of normal faulting in the subducting plates of the Tonga, Japan, Izu-Bonin and Mariana Trenches: implications for near-trench plate weakening[J]. Acta Oceanologica Sinica, 2018, 37(11):53-60. doi: 10.1007/s13131-018-1146-z
|
[16] |
Zhou Z Y, Lin J, Behn M D, et al. Mechanism for normal faulting in the subducting plate at the Mariana Trench[J]. Geophysical Research Letters, 2015, 42(11):4309-4317. doi: 10.1002/2015GL063917
|
[17] |
Ranero C R, Morgan J P, McIntosh K, et al. Bending-related faulting and mantle serpentinization at the Middle America trench[J]. Nature, 2003, 425(6956):367-373. doi: 10.1038/nature01961
|
[18] |
Ranero C R, Sallarès V. Geophysical evidence for hydration of the crust and mantle of the Nazca plate during bending at the North Chile Trench[J]. Geology, 2004, 32(7):549-552. doi: 10.1130/G20379.1
|
[19] |
Zhang F, Lin J, Zhou Z Y, et al. Intra- and intertrench variations in flexural bending of the Manila, Mariana and global trenches: implications on plate weakening in controlling trench dynamics[J]. Geophysical Journal International, 2018, 212(2):1429-1449. doi: 10.1093/gji/ggx488
|
[20] |
Tilmann F J, Grevemeyer I, Flueh E R, et al. Seismicity in the outer rise offshore southern Chile: indication of fluid effects in crust and mantle[J]. Earth and Planetary Science Letters, 2008, 269(1-2):41-55. doi: 10.1016/j.jpgl.2008.01.044
|
[21] |
Wessel P, Smith W H F. New, improved version of generic mapping tools released[J]. Eos, Transactions American Geophysical Union, 1998, 79(47):579-579. doi: 10.1029/98EO00426
|
[22] |
Zhang F, Lin J, Zhan W H. Variations in oceanic plate bending along the Mariana Trench[J]. Earth and Planetary Science Letters, 2014, 401:206-214. doi: 10.1016/j.jpgl.2014.05.032
|
[23] |
Masson D G. Fault patterns at outer trench walls[J]. Marine Geophysical Researches, 1991, 13(3):209-225. doi: 10.1007/BF00369150
|
[24] |
Ranero C R, Villaseñor A, Morgan J P, et al. Relationship between bend-faulting at trenches and intermediate-depth seismicity[J]. Geochemistry, Geophysics, Geosystems, 2005, 6(12):Q12002.
|
[25] |
Zhou Z Y, Lin J. Elasto-plastic deformation and plate weakening due to normal faulting in the subducting plate along the Mariana Trench[J]. Tectonophysics, 2018, 734-735:59-68. doi: 10.1016/j.tecto.2018.04.008
|
[26] |
林间, 孙珍, 李家彪, 等. 南海成因: 岩石圈破裂与俯冲带相互作用新认识[J]. 科技导报, 2020, 38(18):35-39
LIN Jian, SUN Zhen, LI Jiabiao, et al. South China Seabasin opening: Lithospheric rifting and interactionwith surroundingsubduction zones[J]. Science & Technology Review, 2020, 38(18):35-39.
|
[27] |
林间, 李家彪, 徐义刚, 等. 南海大洋钻探及海洋地质与地球物理前沿研究新突破[J]. 海洋学报, 2019, 41(10):125-140
LIN Jian, LI Jiabiao, XU Yigang, et al. Ocean drilling and major advances in marine geological and geophysical research of the South China Sea[J]. Haiyang Xuebao, 2019, 41(10):125-140.
|
[28] |
Lin J, Xu Y G, Sun Z, et al. Mantle upwelling beneath the South China Sea and links to surrounding subduction systems[J]. National Science Review, 2019, 6(5):877-881. doi: 10.1093/nsr/nwz123
|
[29] |
Sun Z, Lin J, Qiu N, et al. The role of magmatism in the thinning and breakup of the South China Sea continental margin: special topic: the South China Sea Ocean Drilling[J]. National Science Review, 2019, 6(5):871-876. doi: 10.1093/nsr/nwz116
|
[30] |
汪品先, 翦知湣. 探索南海深部的回顾与展望[J]. 中国科学: 地球科学, 2019, 49(10): 1590-1606
WANG Pinxian, JIAN Zhimin. Exploring the deep South China Sea: retrospects and prospects[J]. Science China Earth Sciences, 2019, 62(10): 1473-1488.
|
[31] |
徐敏, 狄会哲, 周志远, 等. 俯冲带水圈-岩石圈相互作用研究进展与启示[J]. 海洋地质与第四纪地质, 2019, 39(5):58-70
XU Min, DI Huizhe, ZHOU Zhiyuan, et al. Interaction between hydrosphere and lithosphere in subduction zones[J]. Marine Geology & Quaternary Geology, 2019, 39(5):58-70.
|
[32] |
Han S S, Carbotte S M, Canales J P, et al. Seismic reflection imaging of the Juan de Fuca plate from ridge to trench: new constraints on the distribution of faulting and evolution of the crust prior to subduction[J]. Journal of Geophysical Research:Solid Earth, 2016, 121(3):1849-1872. doi: 10.1002/2015JB012416
|
[33] |
Zhu G H, Wiens D A, Yang H F, et al. Upper mantle hydration indicated by decreased shear velocity near the southern Mariana Trench from Rayleigh wave tomography[J]. Geophysical Research Letters, 2021, 48(15):e2021GL093309. doi: 10.1029/2021GL093309
|
[34] |
Zhang J Y, Zhang F, Lin J, et al. Yield failure of the subducting plate at the Mariana Trench[J]. Tectonophysics, 2021, 814:228944. doi: 10.1016/j.tecto.2021.228944
|
[35] |
张江阳, 林间, 张帆, 等. 西太平洋俯冲带岩石圈变形研究[J]. 科技导报, 2023, 41(2):29-34
ZHANG Jiangyang, LIN Jian, ZHANG Fan, et al. Lithospheric deformation in western Pacific subduction zones[J]. Science & Technology Review, 2023, 41(2):29-34.
|