ZHU Wenjun,DU Xuexin,SHANG Luning,et al. Spatiotemporal heterogeneity of the conjugate continental margin evolution in the South China Sea and future ocean drilling wells[J]. Marine Geology & Quaternary Geology,2022,42(5):110-123. DOI: 10.16562/j.cnki.0256-1492.2022062001
Citation: ZHU Wenjun,DU Xuexin,SHANG Luning,et al. Spatiotemporal heterogeneity of the conjugate continental margin evolution in the South China Sea and future ocean drilling wells[J]. Marine Geology & Quaternary Geology,2022,42(5):110-123. DOI: 10.16562/j.cnki.0256-1492.2022062001

Spatiotemporal heterogeneity of the conjugate continental margin evolution in the South China Sea and future ocean drilling wells

More Information
  • Received Date: June 19, 2022
  • Revised Date: August 09, 2022
  • Available Online: October 24, 2022
  • The South China Sea is one of the largest marginal seas in the Western Pacific. It is located at the transition and junction of the Eurasian Plate, the Philippine Sea Plate and the Indo-Australian Plate and contains a wealth of cutting-edge geoscience issues.Based on the previous ocean drilling expeditions (ODP184, IODP349, IODP367, IODP368, and IODP368X) in the South China Sea, the important progresses were summarized systematically since the Mesozoic, including the basin rifting, seafloor spreading, climate change, and sedimentary evolution respectively. Focusing on the Spatiotemporal heterogeneity during the evolutionary process of the conjugate continental margin, four scientific themes are proposed, such as the extension and thinning process of the continental margin, the rift process of the ocean-continent transition zone, the dynamic mechanism of magmatic activity. Most of the previous oceanic drilling expeditions are constrained to the middle part of the northern continental margin of the South China Sea, and have limited control on the entire South China Sea. In order to solve the above scientific problems, 9 drilling sites are proposed in the northeast sub-basin, southwest sub-basin and northwest sub-basin of the South China Sea through the detailed interpretation of the relevant data. Thus, a comprehensive, complete and specific evolution process of the South China Sea will be revealled. Adhering to the principle of combining the depth and the shallow, and the combination of difficulty and ease, the proposed sites will be carried out for the implementation of the South China Sea ocean drilling in the future, which not only has the practical needs to support the future drilling and mining of natural gas hydrate in the South China Sea, but also has important scientific significance for depicting the complete life history of the South China Sea.
  • [1]
    石耀霖, 王其允. 俯冲带的后撤与弧后扩张[J]. 地球物理学报, 1993, 36(1):37-43 doi: 10.3321/j.issn:0001-5733.1993.01.005

    SHI Yaolin, WANG Qiyun. Roll-back subduction and back-arc opening [J]. Acta Geophysica Sinica, 1993, 36(1): 37-43. doi: 10.3321/j.issn:0001-5733.1993.01.005
    [2]
    方念乔. “海南陆缘弧”体系的构建与“特提斯南海”的识别: 一个关于“古南海”演化新模式的探讨[J]. 地学前缘, 2016, 23(6):107-119

    FANG Nianqiao. A new model on the Mesozoic "South China Sea"(SCS): reconstructing the Hainan marginal arc and recognizing the Tethyan SCS [J]. Earth Science Frontiers, 2016, 23(6): 107-119.
    [3]
    李三忠, 李涛, 赵淑娟, 等. 东亚原特提斯洋(Ⅴ): 北界西段陆缘属性及微陆块拼合[J]. 岩石学报, 2017, 33(6):1633-1652

    LI Sanzhong, LI Tao, ZHAO Shujuan, et al. Proto-Tethys ocean in East Asia (V): attribute of contientnal margin and microcontinental assembly in the west segment of the northern Proto-Tethys Tectonic Domain [J]. Acta Petrologica Sinica, 2017, 33(6): 1633-1652.
    [4]
    Tapponnier P, Peltzer G, Le Dain A Y, et al. Propagating extrusion tectonics in Asia: new insights from simple experiments with plasticine [J]. Geology, 1982, 10(12): 611-616. doi: 10.1130/0091-7613(1982)10<611:PETIAN>2.0.CO;2
    [5]
    Li C F, Zhou Z Y, Li J B, et al. Structures of the northeasternmost South China Sea continental margin and ocean basin: geophysical constraints and tectonic implications [J]. Marine Geophysical Researches, 2007, 28(1): 59-79. doi: 10.1007/s11001-007-9014-9
    [6]
    Li C F, Xu X, Lin J, et al. Ages and magnetic structures of the South China Sea constrained by deep tow magnetic surveys and IODP Expedition 349 [J]. Geochemistry, Geophysics, Geosystems, 2014, 15(12): 4958-4983.
    [7]
    Song T R, Li C F, Wu S G, et al. Extensional styles of the conjugate rifted margins of the South China Sea [J]. Journal of Asian Earth Sciences, 2019, 177: 117-128. doi: 10.1016/j.jseaes.2019.03.008
    [8]
    翦知湣. 进军深海科学前沿: 我国参与大洋钻探的进展[J]. 科学通报, 2018, 63(36):3877-3882 doi: 10.1360/N972018-01159

    JIAN Zhimin. Towards the scientific frontier of deep-sea research: progress of China's participation in ocean drilling [J]. Chinese Science Bulletin, 2018, 63(36): 3877-3882. doi: 10.1360/N972018-01159
    [9]
    Wang P X, Prell W, Blum P. Proceedings of the ocean drilling program, 184 Initial Report[R]. College Station, TX: Ocean Drilling Program, 2000.
    [10]
    Li C F, Lin J, Kulhanek D K, et al. Proceedings of the international ocean discovery program, 349: South China Sea Tectonics[R]. College Station, TX, 2015.
    [11]
    Sun Z, Stock J, Klaus A. Expedition 367 preliminary report: South China Sea rifted margin[R]. International Ocean Discovery Program, 2018.
    [12]
    Jian Z, Larsen H C, Alvarez Zarikian C A. Expedition 368 preliminary report: South China Sea rifted margin[R]. International Ocean Discovery Program, 2018.
    [13]
    Childress L B, Briais A, Deng J M, et al. Expedition 368X preliminary report: South China Sea rifted margin[R]. International Ocean Discovery Program, 2019.
    [14]
    Sun Z, Ding W W, Zhao X X, et al. The latest spreading periods of the South China Sea: new constraints from macrostructure analysis of IODP Expedition 349 cores and geophysical data [J]. Journal of Geophysical Research:Solid Earth, 2019, 124(10): 9980-9998. doi: 10.1029/2019JB017584
    [15]
    Larsen H C, Mohn G, Nirrengarten M, et al. Rapid transition from continental breakup to igneous oceanic crust in the South China Sea [J]. Nature Geoscience, 2018, 11(10): 782-789. doi: 10.1038/s41561-018-0198-1
    [16]
    Gao J W, Wu S G, Mcintosh K, et al. Crustal structure and extension mode in the northwestern margin of the South China Sea [J]. Geochemistry, Geophysics, Geosystems, 2016, 17(6): 2143-2167. doi: 10.1002/2016GC006247
    [17]
    Huang C Y, Wang P X, Yu M M, et al. Potential role of strike-slip faults in opening up the South China Sea [J]. National Science Review, 2019, 6(5): 891-901. doi: 10.1093/nsr/nwz119
    [18]
    Zhao F, Alves T M, Wu S G, et al. Prolonged post-rift magmatism on highly extended crust of divergent continental margins (Baiyun Sag, South China Sea) [J]. Earth and Planetary Science Letters, 2016, 445: 79-91. doi: 10.1016/j.jpgl.2016.04.001
    [19]
    汪品先. 低纬过程的轨道驱动[J]. 第四纪研究, 2006, 26(5):694-701 doi: 10.3321/j.issn:1001-7410.2006.05.003

    WANG Pinxian. Orbital forcing of the low-latitude processes [J]. Quaternary Sciences, 2006, 26(5): 694-701. doi: 10.3321/j.issn:1001-7410.2006.05.003
    [20]
    Li X H, Li J B, Yu X, et al. 40Ar/39Ar ages of seamount trachytes from the South China Sea and implications for the evolution of the northwestern sub-basin [J]. Geoscience Frontiers, 2015, 6(4): 571-577. doi: 10.1016/j.gsf.2014.08.003
    [21]
    张也, 黄宝春. 特提斯喜马拉雅地块白垩纪古纬度变化对印欧碰撞模式的制约[J]. 中国科学:地球科学, 2017, 60(6):1057-1066 doi: 10.1007/s11430-016-9042-7

    ZHANG Ye, HUANG Baochun. The influence of Cretaceous paleolatitude variation of the Tethyan Himalaya on the India-Asia collision pattern [J]. Science China Earth Sciences, 2017, 60(6): 1057-1066. doi: 10.1007/s11430-016-9042-7
    [22]
    Franke D, Barckhausen U, Baristeas N, et al. The continent-ocean transition at the southeastern margin of the South China Sea [J]. Marine and Petroleum Geology, 2011, 28(6): 1187-1204. doi: 10.1016/j.marpetgeo.2011.01.004
    [23]
    丁巍伟, 李家彪. 南海南部陆缘构造变形特征及伸展作用: 来自两条973多道地震测线的证据[J]. 地球物理学报, 2011, 54(12):3038-3056 doi: 10.3969/j.issn.0001-5733.2011.12.006

    DING Weiwei, LI Jiabiao. Seismic stratigraphy, tectonic structure and extension factors across the southern margin of the South China Sea: evidence from two regional multi-channel seismic profiles [J]. Chinese Journal of Geophysics, 2011, 54(12): 3038-3056. doi: 10.3969/j.issn.0001-5733.2011.12.006
    [24]
    邱宁, 姚永坚, 张江阳, 等. 南海东南部陆缘地壳结构特征及其构造意义[J]. 地球物理学报, 2019, 62(7):2607-2621 doi: 10.6038/cjg2019M0103

    QIU Ning, YAO Yongjian, ZHANG Jiangyang, et al. Characteristics of the crustal structure and its tectonic significance of the continental margin of SE South China Sea [J]. Chinese Journal of Geophysics, 2019, 62(7): 2607-2621. doi: 10.6038/cjg2019M0103
    [25]
    张云帆, 孙珍, 周蒂, 等. 南海北部陆缘新生代地壳减薄特征及其动力学意义[J]. 中国科学 D辑:地球科学, 2007, 37(12):1609-1616

    ZHANG Yunfan, SUN Zhen, ZHOU Di, et al. Charateristics of Cenozoic crustal thinning in the northern continental margin of the South China Sea and its dynamic significance [J]. Science in China (Series D:Earth Sciences), 2007, 37(12): 1609-1616.
    [26]
    雷超, 任建业, 佟殿君. 南海北部洋陆转换带盆地发育动力学机制[J]. 地球物理学报, 2013, 56(4):1287-1299 doi: 10.6038/cjg20130423

    LEI Chao, REN Jianye, TONG Dianjun. Geodynamics of the ocean-continent transition zone, northern margin of the South China Sea: implications for the opening of the South China Sea [J]. Chinese Journal of Geophysics, 2013, 56(4): 1287-1299. doi: 10.6038/cjg20130423
    [27]
    佟殿君, 任建业, 雷超, 等. 琼东南盆地深水区岩石圈伸展模式及其对裂后期沉降的控制[J]. 地球科学——中国地质大学学报, 2009, 34(6):963-974 doi: 10.3799/dqkx.2009.110

    TONG Dianjun, REN Jianye, LEI Chao, et al. Lithosphere stretching model of deep water in Qiongdongnan Basin, northern continental margin of South China Sea, and controlling of the post-rift subsidence [J]. Earth Science-Journal of China University of Geosciences, 2009, 34(6): 963-974. doi: 10.3799/dqkx.2009.110
    [28]
    Li C F, Li J B, Ding W W, et al. Seismic stratigraphy of the central South China Sea basin and implications for neotectonics [J]. Journal of Geophysical Research:Solid Earth, 2015, 120(3): 1377-1399. doi: 10.1002/2014JB011686
    [29]
    Mcintosh K, Lavier L, van Avendonk H, et al. Crustal structure and inferred rifting processes in the northeast South China Sea [J]. Marine and Petroleum Geology, 2014, 58: 612-626. doi: 10.1016/j.marpetgeo.2014.03.012
    [30]
    Li C F, Zhou Z Y, Hao H J, et al. Late Mesozoic tectonic structure and evolution along the present-day northeastern South China Sea continental margin [J]. Journal of Asian Earth Sciences, 2008, 31(4-6): 546-561. doi: 10.1016/j.jseaes.2007.09.004
    [31]
    Barckhausen U, Engels M, Franke D, et al. Evolution of the South China Sea: revised ages for breakup and seafloor spreading [J]. Marine and Petroleum Geology, 2014, 58: 599-611. doi: 10.1016/j.marpetgeo.2014.02.022
    [32]
    Song X X, Li C F, Yao Y J, et al. Magmatism in the evolution of the South China Sea: geophysical characterization [J]. Marine Geology, 2017, 394: 4-15. doi: 10.1016/j.margeo.2017.07.021
    [33]
    Wan X L, Li C F, Zhao M H, et al. Seismic velocity structure of the magnetic quiet zone and continent-ocean boundary in the northeastern South China Sea [J]. Journal of Geophysical Research:Solid Earth, 2019, 124(11): 11866-11899. doi: 10.1029/2019JB017785
    [34]
    Hou W A, Li C F, Wan X L, et al. Crustal S‐wave velocity structure across the northeastern South China Sea continental margin: implications for lithology and mantle exhumation [J]. Earth and Planetary Physics, 2019, 3(4): 314-329. doi: 10.26464/epp2019033
    [35]
    Cameselle A L, Ranero C R, Franke D, et al. The continent-ocean transition on the northwestern South China Sea [J]. Basin Research, 2017, 29(S1): 73-95.
    [36]
    Braitenberg C, Wienecke S, Wang Y. Basement structures from satellite-derived gravity field: South China Sea ridge [J]. Journal of Geophysical Research:Solid Earth, 2006, 111(B5): B05407.
    [37]
    Sun Z, Zhong Z H, Keep M, et al. 3D analogue modeling of the South China Sea: a discussion on breakup pattern [J]. Journal of Asian Earth Sciences, 2009, 34(4): 544-556. doi: 10.1016/j.jseaes.2008.09.002
    [38]
    Franke D, Savva D, Pubellier M, et al. The final rifting evolution in the South China Sea [J]. Marine and Petroleum Geology, 2014, 58: 704-720. doi: 10.1016/j.marpetgeo.2013.11.020
    [39]
    丘学林, 赵明辉, 敖威, 等. 南海西南次海盆与南沙地块的OBS探测和地壳结构[J]. 地球物理学报, 2011, 54(12):3117-3128 doi: 10.3969/j.issn.0001-5733.2011.12.012

    QIU Xuelin, ZHAO Minghui, AO Wei, et al. OBS survey and crustal structure of the Southwest Sub-basin and Nansha Block, South China Sea [J]. Chinese Journal of Geophysics, 2011, 54(12): 3117-3128. doi: 10.3969/j.issn.0001-5733.2011.12.012
    [40]
    Fan C Y, Xia S H, Zhao F, et al. New insights into the magmatism in the northern margin of the South China Sea: spatial features and volume of intraplate seamounts [J]. Geochemistry, Geophysics, Geosystems, 2017, 18(6): 2216-2239.
    [41]
    Zhang Y X, Xia S H, Cao J H, et al. Extensional tectonics and post-rift magmatism in the southern South China Sea: new constraints from multi-channel seismic data [J]. Marine and Petroleum Geology, 2020, 117: 104396. doi: 10.1016/j.marpetgeo.2020.104396
    [42]
    Jiang Y L, Hu H J, Gluyas J, et al. Distribution characteristics and accumulation model for the coal-formed gas generated from permo-carboniferous coal measures in Bohai Bay Basin, China: a review [J]. Acta geologica Sinica - English Edition, 2019, 93(6): 1869-1884. doi: 10.1111/1755-6724.14290
    [43]
    Zhao M H, He E Y, Sibuet J C, et al. Postseafloor spreading volcanism in the central east South China Sea and its formation through an extremely thin oceanic crust [J]. Geochemistry, Geophysics, Geosystems, 2018, 19(3): 621-641. doi: 10.1002/2017GC007034
    [44]
    欧阳青, 吴振利, 卫小冬, 等. 南海海盆残留扩张中心地壳速度结构对比及构造意义[J]. 科学通报, 2017, 62(21):2380-2391 doi: 10.1360/N972017-00079

    OUYANG Qing, WU Zhenli, WEI Xiaodong, et al. Comparison of crustal structures in the fossil spreading center of South China Sea basins and the tectonic significance [J]. Chinese Science Bulletin, 2017, 62(21): 2380-2391. doi: 10.1360/N972017-00079
    [45]
    Chang J H, Lee T Y, Hsu H H, et al. Comment on Barckhausen et al., 2014 – Evolution of the South China Sea: revised ages for breakup and seafloor spreading [J]. Marine and Petroleum Geology, 2015, 59: 676-678. doi: 10.1016/j.marpetgeo.2014.09.003
    [46]
    吴招才, 高金耀, 丁巍伟, 等. 南海海盆三维重力约束反演莫霍面深度及其特征[J]. 地球物理学报, 2017, 60(7):2599-2613 doi: 10.6038/cjg20170709

    WU Zhaocai, GAO Jinyao, DING Weiwei, et al. Moho depth of the South China Sea basin from three-dimensional gravity inversion with constraint points [J]. Chinese Journal of Geophysics, 2017, 60(7): 2599-2613. doi: 10.6038/cjg20170709
    [47]
    Li C F, Song T R. Magnetic recording of the Cenozoic oceanic crustal accretion and evolution of the South China Sea basin [J]. Chinese Science Bulletin, 2012, 57(24): 3165-3181. doi: 10.1007/s11434-012-5063-9
    [48]
    Ding W W, Sun Z, Mohn G, et al. Lateral evolution of the rift-to-drift transition in the South China Sea: evidence from multi-channel seismic data and IODP Expeditions 367&368 drilling results [J]. Earth and Planetary Science Letters, 2020, 531: 115932. doi: 10.1016/j.jpgl.2019.115932
    [49]
    Fan C Y, Xia S H, Cao J H, et al. Lateral crustal variation and post-rift magmatism in the northeastern South China Sea determined by wide-angle seismic data [J]. Marine Geology, 2019, 410: 70-87. doi: 10.1016/j.margeo.2018.12.007
    [50]
    Zhang J, Li J B, Ruan A G, et al. The velocity structure of a fossil spreading centre in the Southwest Sub-basin, South China Sea [J]. Geological Journal, 2016, 51(S1): 548-561.
    [51]
    Yu J H, Yan P, Wang Y L, et al. Seismic evidence for tectonically dominated seafloor spreading in the Southwest Sub-basin of the South China Sea [J]. Geochemistry, Geophysics, Geosystems, 2018, 19(9): 3459-3477.
  • Cited by

    Periodical cited type(9)

    1. 吴能友,李彦龙,蒋宇静,孙金声,谢文卫,胡高伟,王韧,于彦江,王金堂,陈强,申凯翔,孙志文,陈明涛. 海洋天然气水合物工程地质学的提出、学科内涵与展望. 地学前缘. 2025(02): 216-229 .
    2. 蒋宇静,颜鹏,栾恒杰,刘明康,梁伟,杜晓宇,马先壮,史一辰. 不同降压速率下天然气水合物垂直井分段降压开采特性试验研究. 岩土力学. 2024(09): 2682-2694 .
    3. 纪云开,王佳贤,邱晓倩,孟庆国,张永超,胡高伟,蔡峰,刘昌岭. 盐度影响下松散沉积物中甲烷水合物生成特征研究. 海洋地质与第四纪地质. 2024(06): 71-81 . 本站查看
    4. 崔玉东,陆程,关子越,罗万静,滕柏路,孟凡璞,彭越. 南海海域天然气水合物降压开采储层蠕变对气井产能影响. 油气藏评价与开发. 2023(06): 809-818 .
    5. 李辉,张旭辉,陆程,谢鹏飞,鲁晓兵. 压缩加载条件下含水合物沉积物蠕变特性分析. 海洋地质与第四纪地质. 2023(06): 217-225 . 本站查看
    6. Xu-wen Qin,Cheng Lu,Ping-kang Wang,Qian-yong Liang. Hydrate phase transition and seepage mechanism during natural gas hydrates production tests in the South China Sea: A review and prospect. China Geology. 2022(02): 201-217 .
    7. 董刚,蔡峰,孙治雷,闫桂京,梁杰,李清,孙运宝,李昂,骆迪,翟滨,郭建卫,窦振亚. 海洋浅表层天然气水合物地质取样技术及样品现场处置方法. 海洋地质前沿. 2022(07): 1-9 .
    8. 秦绪文,陆程,王平康,梁前勇. 中国南海天然气水合物开采储层水合物相变与渗流机理:综述与展望. 中国地质. 2022(03): 749-769 .
    9. 刘乐乐,李彦龙,张旭辉,罗大双,刘昌岭. 降压开采导致天然气水合物系统状态演化模拟实验. 工程地质学报. 2021(06): 1916-1925 .

    Other cited types(5)

Catalog

    Article views (984) PDF downloads (91) Cited by(14)

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return