Citation: | LV Taiheng,SUN Zhilei,GENG Wei,et al. Progress in in-situ observation of methane flux at sediment-water interface in cold seep[J]. Marine Geology & Quaternary Geology,2023,43(4):167-180. DOI: 10.16562/j.cnki.0256-1492.2022081901 |
[1] |
王亚, 周卫健, 程鹏. 碳同位素方法在水体溶解有机碳来源解析中的应用[J]. 地球环境学报, 2020, 11(4):435-446 doi: 10.7515/JEE192050
WANG Ya, ZHOU Weijian, CHENG Peng. Sources analysis of dissolved organic carbon in water using carbon isotope method [J]. Journal of Earth Environment, 2020, 11(4): 435-446. doi: 10.7515/JEE192050
|
[2] |
Levin L A. Ecology of cold seep sediments: interactions of fauna with flow, chemistry and microbes[M]//Gibson R N, Atkinson R J A, Gordon J D M. Oceanography and Marine Biology: An Annual Review. Boca Raton: CRC Press, 2005, 43: 1-46.
|
[3] |
Levin L A, Baco A R, Bowden D A, et al. Hydrothermal vents and methane seeps: rethinking the sphere of influence [J]. Frontiers in Marine Science, 2016, 3: 72.
|
[4] |
陈多福, 陈先沛, 陈光谦. 冷泉流体沉积碳酸盐岩的地质地球化学特征[J]. 沉积学报, 2002, 20(1):34-40 doi: 10.3969/j.issn.1000-0550.2002.01.007
CHEN Duofu, CHEN Xianpei, CHEN Guangqian. Geology and geochemistry of cold seepage and venting-related carbonates [J]. Acta Sedimentologica Sinica, 2002, 20(1): 34-40. doi: 10.3969/j.issn.1000-0550.2002.01.007
|
[5] |
张艳平. 南海几个典型冷泉区浅层沉积物中有机质、甲烷和溶解无机碳循环估算及甲烷渗漏模式[D]. 中国科学院大学(中国科学院广州地球化学研究所)博士学位论文, 2020
ZHANG Yanping. An assessment of subseafloor organic matter, methane, and dissolved inorganic carbon cycling in several typical cold seeps, South China Sea and methane seepage pattern[D]. Doctor Dissertation of Guangzhou Institute of Geochemistry, Chinese Academy of Sciences, 2020.
|
[6] |
孙治雷, 魏合龙, 王利波, 等. 海底冷泉系统的碳循环问题及探测[J]. 应用海洋学学报, 2016, 35(3):442-450
SUN Zhilei, WEI Helong, WANG Libo, et al. Focus issues of carbon cycle and detecting technologies in seafloor cold seepages [J]. Journal of Applied Oceanography, 2016, 35(3): 442-450.
|
[7] |
李学刚, 宋金明. 海洋沉积物中碳的来源、迁移和转化[J]. 海洋科学集刊, 2004(46): 106-117
LI Xuegang, SONG Jinming. Sources, removal and transformation of carbon in marine sediments[J]. Studia Marina Sinica, 2004(46): 106-117. ]
|
[8] |
Paull C K, Ussler Iii W. History and Significance of Gas Sampling During DSDP and ODP Drilling Associated with Gas Hydrates[M]. 2001, 53-65.
|
[9] |
Xu S N, Sun Z L, Geng W, et al. Advance in numerical simulation research of marine methane processes [J]. Frontiers in Earth Science, 2022, 10: 891393. doi: 10.3389/feart.2022.891393
|
[10] |
Reeburgh W S. Oceanic methane biogeochemistry [J]. Chemical Reviews, 2007, 107(2): 486-513. doi: 10.1021/cr050362v
|
[11] |
Tryon M, Brown K, Dorman L, et al. A new benthic aqueous flux meter for very low to moderate discharge rates [J]. Deep Sea Research Part I:Oceanographic Research Papers, 2001, 48(9): 2121-2146. doi: 10.1016/S0967-0637(01)00002-4
|
[12] |
Sommer S, Türk M, Kriwanek S, et al. Gas exchange system for extended in situ benthic chamber flux measurements under controlled oxygen conditions: first application - Sea bed methane emission measurements at Captain Arutyunov mud volcano [J]. Limnology and Oceanography:Methods, 2008, 6(1): 23-33. doi: 10.4319/lom.2008.6.23
|
[13] |
Linke P, Sommer S, Rovelli L, et al. Physical limitations of dissolved methane fluxes: the role of bottom-boundary layer processes [J]. Marine Geology, 2010, 272(1-4): 209-222. doi: 10.1016/j.margeo.2009.03.020
|
[14] |
Boetius A, Wenzhöfer F. Seafloor oxygen consumption fuelled by methane from cold seeps [J]. Nature Geoscience, 2013, 6(9): 725-734. doi: 10.1038/ngeo1926
|
[15] |
Alperin M, Hoehler T. The ongoing mystery of sea-floor methane [J]. Science, 2010, 329(5989): 288-289. doi: 10.1126/science.1189966
|
[16] |
赵广涛, 徐翠玲, 张晓东, 等. 海底沉积物-水界面溶解甲烷渗漏通量原位观测研究进展[J]. 中国海洋大学学报, 2014, 44(12):73-81
ZHAO Guangtao, XU Cuiling, ZHANG Xiaodong, et al. Research progress in in-situ observations of dissolved methane seepage fluxed across the water-sediment interface [J]. Periodical of Ocean University of China, 2014, 44(12): 73-81.
|
[17] |
Leifer I, Boles J. Turbine tent measurements of marine hydrocarbon seeps on subhourly timescales [J]. Journal of Geophysical Research:Oceans, 2005, 110(C1): C01006.
|
[18] |
邸鹏飞, 冯东, 高立宝, 等. 海底冷泉流体渗漏的原位观测技术及冷泉活动特征[J]. 地球物理学进展, 2008, 23(5):1592-1602
DI Pengfei, FENG Dong, GAO Libao, et al. In situ measurement of fluid flow and signatures of seep activity at marine seep sites [J]. Progress in Geophysics, 2008, 23(5): 1592-1602.
|
[19] |
于新生, 李丽娜, 胡亚丽, 等. 海洋中溶解甲烷的原位检测技术研究进展[J]. 地球科学进展, 2011, 26(10):1030-1037
YU Xinsheng, LI Lina, HU Yali, et al. The development of in situ sensors for dissolved methane measurement in the sea [J]. Advances in Earth Science, 2011, 26(10): 1030-1037.
|
[20] |
Aleksanyan M S. Methane sensor based on SnO2/In2O3/TiO2 nanostructure [J]. Journal of Contemporary Physics (Armenian Academy of Sciences), 2010, 45(2): 77-80. doi: 10.3103/S1068337210020052
|
[21] |
Garcia M L, Masson M. Environmental and geologic application of solid-state methane sensors [J]. Environmental Geology, 2004, 46(8): 1059-1063. doi: 10.1007/s00254-004-1093-1
|
[22] |
Boulart C, Connelly D P, Mowlem M C. Sensors and technologies for in situ dissolved methane measurements and their evaluation using Technology Readiness Levels [J]. TrAC Trends in Analytical Chemistry, 2010, 29(2): 186-195. doi: 10.1016/j.trac.2009.12.001
|
[23] |
Camilli R, Duryea A N. Characterizing spatial and temporal variability of dissolved gases in aquatic environments with in situ mass spectrometry [J]. Environmental Science & Technology, 2009, 43(13): 5014-5021.
|
[24] |
Camilli R, Duryea A. Characterizing marine hydrocarbons with in-situ mass spectrometry[C]//Proceedings of the OCEANS 2007. Vancouver, Canada: IEEE, 2007: 1-7.
|
[25] |
Camilli R, Hemond H F. NEREUS/Kemonaut, a mobile autonomous underwater mass spectrometer [J]. TrAC Trends in Analytical Chemistry, 2004, 23(4): 307-313. doi: 10.1016/S0165-9936(04)00408-X
|
[26] |
Bell R J, Savidge W B, Toler S K, et al. In situ determination of porewater gases by underwater flow-through membrane inlet mass spectrometry [J]. Limnology and Oceanography:Methods, 2012, 10(3): 117-128.
|
[27] |
Brewer P G, Malby G, Pasteris J D, et al. Development of a laser Raman spectrometer for deep-ocean science [J]. Deep Sea Research Part I:Oceanographic Research Papers, 2004, 51(5): 739-753. doi: 10.1016/j.dsr.2003.11.005
|
[28] |
Du Z F, Li Y, Chen J, et al. Feasibility investigation on deep ocean compact autonomous Raman spectrometer developed for in-situ detection of acid radical ions [J]. Chinese Journal of Oceanology and Limnology, 2015, 33(2): 545-550. doi: 10.1007/s00343-015-4096-8
|
[29] |
Thornton B, Takahashi T, Sato T, et al. Development of a deep-sea laser-induced breakdown spectrometer for in situ multi-element chemical analysis [J]. Deep Sea Research Part I:Oceanographic Research Papers, 2015, 95: 20-36. doi: 10.1016/j.dsr.2014.10.006
|
[30] |
Zhang X, Du Z F, Luan Z D, et al. In situ Raman detection of gas hydrates exposed on the seafloor of the South China Sea [J]. Geochemistry, Geophysics, Geosystems, 2017, 18(10): 3700-3713. doi: 10.1002/2017GC006987
|
[31] |
Chou I M, Wang A L. Application of laser Raman micro-analyses to Earth and planetary materials [J]. Journal of Asian Earth Sciences, 2017, 145: 309-333. doi: 10.1016/j.jseaes.2017.06.032
|
[32] |
Long D A. Raman Spectroscopy[M]. Maidenhead: McGraw-Hill, 1977.
|
[33] |
McMillan P F, Hofmeister A M. Chapter 4. Infrared and Raman spectroscopy[M]//Hawthorne F C. Spectroscopic Methods in Mineralogy and Geology. Washington: Mineralogical Society of America, 1988: 99-160.
|
[34] |
Rull F. The Raman effect and the vibrational dynamics of molecules and crystalline solids[M]//Dubessy J, Caumon M C, Rull F. Raman Spectroscopy Applied to Earth Sciences and Cultural Heritage. EMU, 2012, 12: 1-60.
|
[35] |
Schmidt C, Seward T M. Raman spectroscopic quantification of sulfur species in aqueous fluids: ratios of relative molar scattering factors of Raman bands of H2S, HS-, SO2, HSO4-, SO42-, S2O32-, S3- and H2O at ambient conditions and information on changes with pressure and temperature [J]. Chemical Geology, 2017, 467: 64-75. doi: 10.1016/j.chemgeo.2017.07.022
|
[36] |
Qiu Y, Wang X L, Liu X, et al. In situ Raman spectroscopic quantification of CH4-CO2 mixture: application to fluid inclusions hosted in quartz veins from the Longmaxi Formation shales in Sichuan Basin, southwestern China [J]. Petroleum Science, 2020, 17(1): 23-35. doi: 10.1007/s12182-019-00395-z
|
[37] |
Zhang X, Walz P M, Kirkwood W J, et al. Development and deployment of a deep-sea Raman probe for measurement of pore water geochemistry [J]. Deep Sea Research Part I:Oceanographic Research Papers, 2010, 57(2): 297-306. doi: 10.1016/j.dsr.2009.11.004
|
[38] |
Zhang X, Du Z F, Zheng R E, et al. Development of a new deep-sea hybrid Raman insertion probe and its application to the geochemistry of hydrothermal vent and cold seep fluids [J]. Deep Sea Research Part I:Oceanographic Research Papers, 2017, 123: 1-12. doi: 10.1016/j.dsr.2017.02.005
|
[39] |
Zhang X, Hester K C, Ussler W, et al. In situ Raman-based measurements of high dissolved methane concentrations in hydrate-rich ocean sediments [J]. Geophysical Research Letters, 2011, 38(8): L08605.
|
[40] |
Du Z F, Zhang X, Luan Z D, et al. In situ Raman quantitative detection of the cold seep vents and fluids in the chemosynthetic communities in the South China Sea [J]. Geochemistry, Geophysics, Geosystems, 2018, 19(7): 2049-2061. doi: 10.1029/2018GC007496
|
[41] |
Nikolovska A, Sahling H, Bohrmann G. Hydroacoustic methodology for detection, localization, and quantification of gas bubbles rising from the seafloor at gas seeps from the eastern Black Sea [J]. Geochemistry, Geophysics, Geosystems, 2008, 9(10): Q10010.
|
[42] |
Weber T C, De Robertis A, Greenaway S F, et al. Estimating oil concentration and flow rate with calibrated vessel-mounted acoustic echo sounders [J]. Proceedings of the National Academy of Sciences of the United States of America, 2012, 109(50): 20240-20245. doi: 10.1073/pnas.1108771108
|
[43] |
Weber T C, Mayer L, Jerram K, et al. Acoustic estimates of methane gas flux from the seabed in a 6000 km2 region in the Northern Gulf of Mexico [J]. Geochemistry, Geophysics, Geosystems, 2014, 15(5): 1911-1925. doi: 10.1002/2014GC005271
|
[44] |
Loranger S, Bassett C, Cole J P, et al. Acoustically relevant properties of four crude oils at oceanographic temperatures and pressures [J]. The Journal of the Acoustical Society of America, 2018, 144(5): 2926-2936. doi: 10.1121/1.5078606
|
[45] |
Medwin H, Breitz N D. Ambient and transient bubble spectral densities in quiescent seas and under spilling breakers [J]. Journal of Geophysical Research:Oceans, 1989, 94(C9): 12751-12759. doi: 10.1029/JC094iC09p12751
|
[46] |
Vagle S, Farmer D M. The measurement of bubble-size distributions by acoustical backscatter [J]. Journal of Atmospheric and Oceanic Technology, 1992, 9(5): 630-644. doi: 10.1175/1520-0426(1992)009<0630:TMOBSD>2.0.CO;2
|
[47] |
Greinert J, McGinnis D F, Naudts L, et al. Atmospheric methane flux from bubbling seeps: spatially extrapolated quantification from a Black Sea shelf area [J]. Journal of Geophysical Research:Oceans, 2010, 115(C1): C01002.
|
[48] |
Römer M, Sahling H, Pape T, et al. Geological control and magnitude of methane ebullition from a high-flux seep area in the Black Sea-the Kerch seep area [J]. Marine Geology, 2012, 319-322: 57-74. doi: 10.1016/j.margeo.2012.07.005
|
[49] |
Römer M, Sahling H, Pape T, et al. Quantification of gas bubble emissions from submarine hydrocarbon seeps at the Makran continental margin (offshore Pakistan) [J]. Journal of Geophysical Research: Oceans, 2012, 117(C10): C10015.
|
[50] |
Wang B B, Socolofsky S A, Breier J A, et al. Observations of bubbles in natural seep flares at MC 118 and GC 600 using in situ quantitative imaging [J]. Journal of Geophysical Research:Oceans, 2016, 121(4): 2203-2230. doi: 10.1002/2015JC011452
|
[51] |
Hornafius J S, Quigley D, Luyendyk B P. The world's most spectacular marine hydrocarbon seeps (Coal Oil Point, Santa Barbara Channel, California): quantification of emissions [J]. Journal of Geophysical Research:Oceans, 1999, 104(C9): 20703-20711. doi: 10.1029/1999JC900148
|
[52] |
Quigley D C, Hornafius J S, Luyendyk B P, et al. Decrease in natural marine hydrocarbon seepage near Coal Oil Point, California, associated with offshore oil production [J]. Geology, 1999, 27(11): 1047-1050. doi: 10.1130/0091-7613(1999)027<1047:DINMHS>2.3.CO;2
|
[53] |
Padilla A M, Loranger S, Kinnaman F S, et al. Modern assessment of natural hydrocarbon gas flux at the coal oil point seep field, Santa Barbara, California [J]. Journal of Geophysical Research:Oceans, 2019, 124(4): 2472-2484. doi: 10.1029/2018JC014573
|
[54] |
Di P F, Chen Q H, Chen D F. Quantification of methane fluxes from hydrocarbon seeps to the ocean and atmosphere: development of an in situ and online gas flux measuring system [J]. Journal of Ocean University of China, 2017, 16(3): 447-454. doi: 10.1007/s11802-017-3061-x
|
[55] |
Di P F, Feng D, Chen D F. In-situ and on-line measurement of gas flux at a hydrocarbon seep from the northern South China Sea [J]. Continental Shelf Research, 2014, 81: 80-87. doi: 10.1016/j.csr.2014.04.001
|
[56] |
Johansen C, Todd A C, MacDonald I R. Time series video analysis of bubble release processes at natural hydrocarbon seeps in the Northern Gulf of Mexico [J]. Marine and Petroleum Geology, 2017, 82: 21-34. doi: 10.1016/j.marpetgeo.2017.01.014
|
[57] |
Di P F, Feng D, Tao J, et al. Using time-series videos to quantify methane bubbles flux from natural cold seeps in the South China Sea [J]. Minerals, 2020, 10(3): 216. doi: 10.3390/min10030216
|
[58] |
Kennicutt II M C, Brooks J M, Bidigare R R, et al. Gulf of Mexico hydrocarbon seep communities-I. Regional distribution of hydrocarbon seepage and associated fauna [J]. Deep Sea Research Part A. Oceanographic Research Papers, 1988, 35(9): 1639-1651. doi: 10.1016/0198-0149(88)90107-0
|
[59] |
Wankel S D, Joye S B, Samarkin V A, et al. New constraints on methane fluxes and rates of anaerobic methane oxidation in a Gulf of Mexico brine pool via in situ mass spectrometry [J]. Deep Sea Research Part II:Topical Studies in Oceanography, 2010, 57(21-23): 2022-2029. doi: 10.1016/j.dsr2.2010.05.009
|
[60] |
Lapham L L, Alperin M, Chanton J, et al. Upward advection rates and methane fluxes, oxidation, and sources at two Gulf of Mexico brine seeps [J]. Marine Chemistry, 2008, 112(1-2): 65-71. doi: 10.1016/j.marchem.2008.06.001
|
[61] |
Solomon E A, Kastner M, Jannasch H, et al. Dynamic fluid flow and chemical fluxes associated with a seafloor gas hydrate deposit on the northern Gulf of Mexico slope [J]. Earth and Planetary Science Letters, 2008, 270(1-2): 95-105. doi: 10.1016/j.jpgl.2008.03.024
|
[62] |
Martens C S, Mendlovitz H P, Seim H, et al. Sustained in situ measurements of dissolved oxygen, methane and water transport processes in the benthic boundary layer at MC118, northern Gulf of Mexico [J]. Deep Sea Research Part II:Topical Studies in Oceanography, 2016, 129: 41-52. doi: 10.1016/j.dsr2.2015.11.012
|
[63] |
Johansen C, Macelloni L, Natter M, et al. Hydrocarbon migration pathway and methane budget for a Gulf of Mexico natural seep site: green Canyon 600 [J]. Earth and Planetary Science Letters, 2020, 545: 116411. doi: 10.1016/j.jpgl.2020.116411
|
[64] |
Lapham L, Wilson R, Riedel M, et al. Temporal variability of in situ methane concentrations in gas hydrate-bearing sediments near Bullseye Vent, Northern Cascadia Margin [J]. Geochemistry, Geophysics, Geosystems, 2013, 14(7): 2445-2459. doi: 10.1002/ggge.20167
|
[65] |
Thomsen L, Barnes C, Best M, et al. Ocean circulation promotes methane release from gas hydrate outcrops at the NEPTUNE Canada Barkley Canyon node [J]. Geophysical Research Letters, 2012, 39(16): L16605.
|
[66] |
Marcon Y, Römer M, Scherwath M, et al. Variability of marine methane bubble emissions on the Clayoquot slope, offshore Vancouver Island, between 2017 and 2021 [J]. Frontiers in Earth Science, 2022, 10: 864809. doi: 10.3389/feart.2022.864809
|
1. |
胡广,黄建宇,杨胜雄,李沅衡,田冬梅,曹荆亚,周军明,邓雨恬. 琼东南海域冷泉微地震响应特征初探——以“海马”冷泉为例. 海洋地质与第四纪地质. 2024(06): 12-24 .
![]() |