ZHANG Yunshan,JIA Yonggang,WEI Jiangong. A review and prospect of in-situ observation equipment for cold seep[J]. Marine Geology & Quaternary Geology,2022,42(2):200-213. DOI: 10.16562/j.cnki.0256-1492.2021052002
Citation: ZHANG Yunshan,JIA Yonggang,WEI Jiangong. A review and prospect of in-situ observation equipment for cold seep[J]. Marine Geology & Quaternary Geology,2022,42(2):200-213. DOI: 10.16562/j.cnki.0256-1492.2021052002

A review and prospect of in-situ observation equipment for cold seep

More Information
  • Received Date: May 19, 2021
  • Revised Date: July 05, 2021
  • Available Online: September 05, 2021
  • Marine cold seep, mainly formed by the seepage of natural gas hydrate, is a fluid composed mainly of water, hydrocarbons, hydrogen sulfide and or carbon dioxide. It is not only a sign of the existence of seabed gas hydrate, but also a substance closely related to greenhouse effect, marine ecological environment, cold seep biological community and other issues. The measurement of the fluid leakage flux and chemical composition of cold seep is of great significance for understanding the issues mentioned above. Compared with laboratory chemical analysis and numerical simulation, in-situ observation can ensure the reliability and authenticity of data. As a main mean, in-situ observation equipment of cold seep has developed rapidly in the past two decades. In this paper, according to its objectives and principles, the in-situ observation equipment of the cold seep is divided into three types: the in-situ observation equipment for the leakage gas flux of the cold seep, the in-situ observation equipment for the leakage liquid flux of the cold seep and the in-situ observation equipment for the chemical composition of the seepage fluid of the cold seep. The development of in-situ observation equipment for cold seep at home and abroad is summarized in this paper from the aspects of design significance and working principle. And the advantages, limitations and application range of the equipment are discussed. In the end, the future development direction of the in-situ observation equipment for the cold seep is prospected.
  • [1]
    陈忠, 杨华平, 黄奇瑜, 等. 海底甲烷冷泉特征与冷泉生态系统的群落结构[J]. 热带海洋学报, 2007, 26(6):73-82 doi: 10.3969/j.issn.1009-5470.2007.06.013

    CHEN Zhong, YANG Huaping, HUANG Qiyu, et al. Characteristics of cold seeps and structures of chemoauto-synthesis-based communities in seep sediments [J]. Journal of Tropical Oceanography, 2007, 26(6): 73-82. doi: 10.3969/j.issn.1009-5470.2007.06.013
    [2]
    Talukder A R. Review of submarine cold seep plumbing systems: leakage to seepage and venting [J]. Terra Nova, 2012, 24(4): 255-272. doi: 10.1111/j.1365-3121.2012.01066.x
    [3]
    Cao L, Lian C, Zhang X, et al. In situ detection of the fine scale heterogeneity of active cold seep environment of the Formosa Ridge, the South China Sea [J]. Journal of Marine Systems, 2021, 218: 103530. doi: 10.1016/j.jmarsys.2021.103530
    [4]
    Ho S, Cartwright J A, Imbert P. Vertical evolution of fluid venting structures in relation to gas flux, in the Neogene-Quaternary of the Lower Congo Basin, Offshore Angola [J]. Marine Geology, 2012, 322-334: 40-55.
    [5]
    Suess E. Marine cold seeps and their manifestations: geological control, biogeochemical criteria and environmental conditions [J]. International Journal of Earth Sciences, 2014, 103(7): 1889-1916. doi: 10.1007/s00531-014-1010-0
    [6]
    Suess E. Marine cold seeps: background and recent advances[M]//Wilkes H. Hydrocarbons, Oils and Lipids: Diversity, Origin, Chemistry and Fate. Cham: Springer, 2018: 1-21.
    [7]
    席世川, 张鑫, 王冰, 等. 海底冷泉标志与主要冷泉区的分布和比较[J]. 海洋地质前沿, 2017, 33(2):7-18

    XI Shichuan, ZHANG Xin, WANG Bing, et al. The indicators of seabed cold seep and comparison among main distribution areas [J]. Marine Geology Frontiers, 2017, 33(2): 7-18.
    [8]
    Feng D, Chen D F. Authigenic carbonates from an active cold seep of the northern South China Sea: New insights into fluid sources and past seepage activity [J]. Deep Sea Research Part II Topical Studies in Oceanography, 2015, 122: 74-83. doi: 10.1016/j.dsr2.2015.02.003
    [9]
    Wang J L, Wu S G, Kong X, et al. Subsurface fluid flow at an active cold seep area in the Qiongdongnan Basin, northern South China Sea [J]. Journal of Asian Earth Sciences, 2018, 168: 17-26. doi: 10.1016/j.jseaes.2018.06.001
    [10]
    Leifer I, Boles J, Luyendyk A B. Measurement of oil and gas emissions from a marine seep[C]//New Energy Development and Technology (EDT-009) Working Paper January 2007. California: University of California Energy Institute, 2007: 1-22.
    [11]
    Joye S B, Boetius A, Orcutt B N, et al. The anaerobic oxidation of methane and sulfate reduction in sediments from Gulf of Mexico cold seeps [J]. Chemical Geology, 2004, 205(3-4): 219-238. doi: 10.1016/j.chemgeo.2003.12.019
    [12]
    阴家润, 王薇薇. 深海洋底热泉生态系和冷泉生物研究综述[J]. 地质科技情报, 1995, 14(2):31-36

    YIN Jiarun, WANG Weiwei. Hydrothermal vent ecosystem and cold seep community of deep sea [J]. Geological Science and Technology Information, 1995, 14(2): 31-36.
    [13]
    Paull C K, Hecker B, Commeau R, et al. Biological communities at the Florida escarpment resemble hydrothermal vent taxa [J]. Science, 1984, 226(4677): 965-967. doi: 10.1126/science.226.4677.965
    [14]
    耿明会, 关永贤, 宋海斌, 等. 南海北部天然气渗漏系统地球物理初探[J]. 海洋学研究, 2014, 32(2):46-52

    GENG Minghui, GUAN Yongxian, SONG Haibin, et al. Preliminary geophysical studies of the natural gas seepage systems in the northern South China Sea [J]. Journal of Marine Sciences, 2014, 32(2): 46-52.
    [15]
    冯东, 宫尚桂. 海底冷泉系统硫的生物地球化学过程及其沉积记录研究进展[J]. 矿物岩石地球化学通报, 2019, 38(6):1047-1056, 1046

    FENG Dong, GONG Shanggui. Progress on the biogeochemical process of sulfur and its geological record at submarine cold seeps [J]. Bulletin of Mineralogy, Petrology and Geochemistry, 2019, 38(6): 1047-1056, 1046.
    [16]
    程俊, 王淑红, 黄怡, 等. 天然气水合物赋存区甲烷渗漏活动的地球化学响应特征[J]. 海洋科学, 2019, 43(5):110-122 doi: 10.11759/hykx20180426001

    CHENG Jun, WANG Shuhong, HUANG Yi, et al. Geochemical response characteristics of methane seepage activities in gas hydrate zones [J]. Marine Sciences, 2019, 43(5): 110-122. doi: 10.11759/hykx20180426001
    [17]
    王旭东, 黄慧文, 孙跃东, 等. 北印度洋海底冷泉流体活动研究进展[J]. 热带海洋学报, 2017, 36(6):82-89

    WANG Xudong, HUANG Huiwen, SUN Yuedong, et al. Recent progress on submarine cold seep activity of the northern Indian Ocean [J]. Journal of Tropical Oceanography, 2017, 36(6): 82-89.
    [18]
    杨艺萍, 唐灵刚, 向荣, 等. 东沙西南海域表层沉积物底栖有孔虫群落特征及其对冷泉活动的指示意义[J]. 微体古生物学报, 2017, 34(3):237-246

    YANG Yiping, TANG Linggang, XIANG Rong, et al. Benthic foraminiferal assemblage and its implications for cold seepage in the southwestern area off dongsha islands, South China sea, China [J]. Acta Micropalaeontologica Sinica, 2017, 34(3): 237-246.
    [19]
    刘浩东. 南海北部陆坡冷泉和非冷泉沉积物古菌多样性研究[D]. 中国地质大学(北京), 2013.

    LIU Haodong. Study on the archaeal diversity in sediments of cold seeps and none cold seeps from northern slope of South China Sea[D]. Master Dissertation of China University of Geosciences (Beijing), 2013.
    [20]
    Lu R, Gao Z M, Li W L, et al. Asgard archaea in the haima cold seep: Spatial distribution and genomic insights [J]. Deep Sea Research Part I: Oceanographic Research Papers, 2021, 170: 103489. doi: 10.1016/j.dsr.2021.103489
    [21]
    张福凯, 徐龙君. 甲烷对全球气候变暖的影响及减排措施[J]. 矿业安全与环保, 2004, 31(5):6-9, 38 doi: 10.3969/j.issn.1008-4495.2004.05.003

    ZHANG Fukai, XU Longjun. Effect of methane on global warming and mitigating measures [J]. Mining Safety and Environmental Protection, 2004, 31(5): 6-9, 38. doi: 10.3969/j.issn.1008-4495.2004.05.003
    [22]
    陈汉宗, 周蒂. 天然气水合物与全球变化研究[J]. 地球科学进展, 1997, 12(1):38-43

    CHEN Hanzong, ZHOU Di. The study of gas hydrates and its relation with global changes [J]. Advances in Earth Science, 1997, 12(1): 38-43.
    [23]
    孙治雷, 魏合龙, 王利波, 等. 海底冷泉系统的碳循环问题及探测[J]. 应用海洋学学报, 2016, 35(3):442-450 doi: 10.3969/J.ISSN.2095-4972.2016.03.017

    SUN Zhilei, WEI Helong, WANG Libo, et al. Focus issues of carbon cycle and detecting technologies in seafloor cold seepages [J]. Journal of Applied Oceanography, 2016, 35(3): 442-450. doi: 10.3969/J.ISSN.2095-4972.2016.03.017
    [24]
    Judd A G. The global importance and context of methane escape from the seabed [J]. Geo-Marine Letters, 2003, 23(3-4): 147-154. doi: 10.1007/s00367-003-0136-z
    [25]
    Wu J G, Wu T T, Deng X G, et al. Acoustic characteristics of cold-seep methane bubble behavior in the water column and its potential environmental impact [J]. Acta Oceanologica Sinica, 2020, 39(5): 133-144. doi: 10.1007/s13131-019-1489-0
    [26]
    Washburn L, Johnson C, Gotschalk C C, et al. A gas-capture buoy for measuring bubbling gas flux in oceans and lakes [J]. Journal of Atmospheric and Oceanic Technology, 2001, 18(8): 1411-1420. doi: 10.1175/1520-0426(2001)018<1411:AGCBFM>2.0.CO;2
    [27]
    Leifer I, Boles J. Turbine tent measurements of marine hydrocarbon seeps on subhourly timescales [J]. Journal of Geophysical Research: Oceans, 2005, 110(C1): C01006.
    [28]
    Di P F, Chen Q H, Chen D F. In situ on-line measuring device of gas seeping flux at marine seep sites and experimental study [J]. Journal of Tropical Oceanography, 2012, 31(5): 83-87.
    [29]
    Padilla A M, Loranger S, Kinnaman F S, et al. Modern assessment of natural hydrocarbon gas flux at the coal oil point seep field, Santa Barbara, California [J]. Journal of Geophysical Research: Oceans, 2019, 124(4): 2472-2484. doi: 10.1029/2018JC014573
    [30]
    Greinert J, Nützel B. Hydroacoustic experiments to establish a method for the determination of methane bubble fluxes at cold seeps [J]. Geo-Marine Letters, 2004, 24(2): 75-85. doi: 10.1007/s00367-003-0165-7
    [31]
    Greinert J. Monitoring temporal variability of bubble release at seeps: The hydroacoustic swath system GasQuant [J]. Journal of Geophysical Research: Oceans, 2008, 113(C7): C07048.
    [32]
    Lemon D D, Gower J F R, Clarke M R. The acoustic water column profiler: a tool for long-term monitoring of zooplankton populations[C]//MTS/IEEE Oceans 2001. An Ocean Odyssey. Conference Proceedings. Honolulu, HI, USA: IEEE, 2001: 1904-1909.
    [33]
    Salmi M S, Johnson H P, Leifer I, et al. Behavior of methane seep bubbles over a pockmark on the Cascadia continental margin [J]. Geosphere, 2011, 7(6): 1273-1283. doi: 10.1130/GES00648.1
    [34]
    Leifer I, Chernykh D, Shakhova N, et al. Sonar gas flux estimation by bubble insonification: application to methane bubble flux from seep areas in the outer Laptev Sea [J]. The Cryosphere, 2017, 11(3): 1333-1350. doi: 10.5194/tc-11-1333-2017
    [35]
    王冰, 宋永东, 杜增丰, 等. 基于“发现”号ROV的近海底综合声学调查系统及其在台西南冷泉调查中的应用[J]. 海洋与湖沼, 2020, 51(4):889-898 doi: 10.11693/hyhz20200100026

    WANG Bing, SONG Yongdong, DU Zengfeng, et al. An integrated underwater acoustic survey system and its application in the investigation of the cold seep site off southwestern taiwan [J]. Oceanologia et Limnologia Sinica, 2020, 51(4): 889-898. doi: 10.11693/hyhz20200100026
    [36]
    Nikolovska A, Waldmann C. Passive acoustic quantification of underwater gas seepage[C]//OCEANS 2006. Boston, MA, USA: IEEE, 2006: 1-6.
    [37]
    Wiggins S M, Leifer I, Linke P, et al. Long-term acoustic monitoring at North Sea well site 22/4b [J]. Marine and Petroleum Geology, 2015, 68: 776-788. doi: 10.1016/j.marpetgeo.2015.02.011
    [38]
    龙建军, 黄为, 邹大鹏, 等. 海底天然气渗漏流量声学测量方法及初步实验研究[J]. 热带海洋学报, 2012, 31(5):100-105 doi: 10.3969/j.issn.1009-5470.2012.05.015

    LONG Jianjun, HUANG Wei, ZOU Dapeng, et al. Method of measuring bubble flow from cool seeps on seafloor using acoustic transmission and preliminary experiments [J]. Journal of Tropical Oceanography, 2012, 31(5): 100-105. doi: 10.3969/j.issn.1009-5470.2012.05.015
    [39]
    胡柳. 冷泉渗漏声波测量装置主体研制与气泡-水声学特性的实验研究[D]. 广东工业大学, 2014.

    HU Liu. Development of seepage acoustic measuring device and experimental study on bubble-water acoustic properties[D]. Master Dissertation of Guangdong University of Technology, 2014.
    [40]
    张浩. 海底冷泉渗漏气体流量声波测量仪的研究与开发[D]. 广东工业大学, 2015.

    ZHANG Hao. Research and experimental study on acoustic measuring instrument of gas seeping on seafloor[D]. Master Dissertation of Guangdong University of Technology, 2015.
    [41]
    Leifer I, Leeuw G D, Cohen L H. Optical measurement of bubbles: system design and application [J]. Journal of Atmospheric and Oceanic Technology, 2003, 20(9): 1317-1332. doi: 10.1175/1520-0426(2003)020<1317:OMOBSD>2.0.CO;2
    [42]
    Leifer I. Characteristics and scaling of bubble plumes from marine hydrocarbon seepage in the Coal Oil Point seep field [J]. Journal of Geophysical Research: Oceans, 2010, 115(C11): C11014. doi: 10.1029/2009JC005844
    [43]
    Leifer I. Seabed bubble flux estimation by calibrated video survey for a large blowout seep in the North Sea [J]. Marine and Petroleum Geology, 2015, 68: 743-752. doi: 10.1016/j.marpetgeo.2015.08.032
    [44]
    Wang B B, Socolofsky S A, Breier J A, et al. Observations of bubbles in natural seep flares at MC 118 and GC 600 using in situ quantitative imaging [J]. Journal of Geophysical Research: Oceans, 2016, 121(4): 2203-2230. doi: 10.1002/2015JC011452
    [45]
    Di P F, Feng D, Tao J, et al. Using time-series videos to quantify methane bubbles flux from natural cold seeps in the South China Sea [J]. Minerals, 2020, 10(3): 216. doi: 10.3390/min10030216
    [46]
    Cable J E, Burnett W C, Chanton J P, et al. Field evaluation of seepage meters in the coastal marine environment [J]. Estuarine, Coastal and Shelf Science, 1997, 45(3): 367-375. doi: 10.1006/ecss.1996.0191
    [47]
    Lee D R. A device for measuring seepage flux in lakes and estuaries [J]. Limnology and Oceanography, 1977, 22(1): 140-147. doi: 10.4319/lo.1977.22.1.0140
    [48]
    Linke P, Suess E, Torres M, et al. In situ measurement of fluid flow from cold seeps at active continental margins [J]. Deep Sea Research Part I: Oceanographic Research Papers, 1994, 41(4): 721-739. doi: 10.1016/0967-0637(94)90051-5
    [49]
    Labarbera M, Vogel S. An inexpensive thermistor flowmeter for aquatic biology [J]. Limnology and Oceanography, 1976, 21(5): 750-756. doi: 10.4319/lo.1976.21.5.0750
    [50]
    Sommer S, Pfannkuche O, Linke P, et al. Efficiency of the benthic filter: Biological control of the emission of dissolved methane from sediments containing shallow gas hydrates at Hydrate Ridge [J]. Global Biogeochemical Cycles, 2006, 20(2): GB2019.
    [51]
    Tryon M, Brown K, Dorman L, et al. A new benthic aqueous flux meter for very low to moderate discharge rates [J]. Deep Sea Research Part I: Oceanographic Research Papers, 2001, 48(9): 2121-2146. doi: 10.1016/S0967-0637(01)00002-4
    [52]
    Jannasch H W, Wheat C G, Plant J N, et al. Continuous chemical monitoring with osmotically pumped water samplers: OsmoSampler design and applications [J]. Limnology and Oceanography: Methods, 2004, 2(4): 102-113. doi: 10.4319/lom.2004.2.102
    [53]
    Kastner M, Jannasch H, Weinstein Y, et al. A new sampler for monitoring fluid and chemical fluxes in hydrologically active submarine environments[C]//OCEANS 2000 MTS/IEEE Conference and Exhibition. Conference Proceedings. Providence, RI, USA: IEEE, 2000: 109-112.
    [54]
    Solomon E A, Kastner M, Jannasch H, et al. Dynamic fluid flow and chemical fluxes associated with a seafloor gas hydrate deposit on the northern Gulf of Mexico slope [J]. Earth and Planetary Science Letters, 2008, 270(1-2): 95-105. doi: 10.1016/j.jpgl.2008.03.024
    [55]
    Labonte A L, Brown K M, Tryon M D. Monitoring periodic and episodic flow events at Monterey Bay seeps using a new optical flow meter [J]. Journal of Geophysical Research: Solid Earth, 2007, 112(B2): B02105.
    [56]
    田国辉, 陈亚杰, 冯清茂. 拉曼光谱的发展及应用[J]. 化学工程师, 2008, 22(1):34-36 doi: 10.3969/j.issn.1002-1124.2008.01.013

    TIAN Guohui, CHEN Yajie, FENG Qingmao. Development and application of Raman technology [J]. Chemical Engineer, 2008, 22(1): 34-36. doi: 10.3969/j.issn.1002-1124.2008.01.013
    [57]
    伍林, 欧阳兆辉, 曹淑超, 等. 拉曼光谱技术的应用及研究进展[J]. 光散射学报, 2005, 17(2):180-186 doi: 10.3969/j.issn.1004-5929.2005.02.013

    WU Lin, OUYANG Zhaohui, CAO Shucao, et al. Research development and application of Raman scattering technology [J]. Chinese Journal of Light Scattering, 2005, 17(2): 180-186. doi: 10.3969/j.issn.1004-5929.2005.02.013
    [58]
    杜增丰. 基于 DOCARS 和 LCOF-Raman 的酸根离子探测和沉积物孔隙水的光谱分析[D]. 中国海洋大学, 2015.

    DU Zengfeng. Detection of acid radical ions with DOCARS and LCOF-Raman system and spectral analysis of sediment pore water[D]. Doctor Dissertation of Ocean University of China, 2015.
    [59]
    张鑫. 深海环境及深海沉积物拉曼光谱原位定量探测技术研究[D]. 中国海洋大学, 2009.

    ZHANG Xin. Quantitative applications of Raman technique for deep-sea environment and sediment detection new technique for deep-sea sediment pore water and methane hydrates in situ detection[D]. Doctor Dissertation of Ocean University of China, 2009.
    [60]
    杜增丰, 张鑫, 郑荣儿. 拉曼光谱技术在深海原位探测中的研究进展[J]. 大气与环境光学学报, 2020, 15(1):2-12

    DU Zengfeng, ZHANG Xin, ZHENG Ronger. Research progress and prospect of laser Raman spectroscopy for in-situ detection in deep ocean [J]. Journal of Atmospheric and Environmental Optics, 2020, 15(1): 2-12.
    [61]
    赵永柱. 光纤内共振拉曼光谱法探测水中痕量生物分子[D]. 吉林大学, 2004.

    ZHAO Yongzhu. Trace analysis of biological molecules in water by means of the resonance raman spectra in liquid-core optical fiber[D]. Master Dissertation of Jilin University, 2004.
    [62]
    Zhang X, Du Z F, Zheng R E, et al. Development of a new deep-sea hybrid Raman insertion probe and its application to the geochemistry of hydrothermal vent and cold seep fluids [J]. Deep Sea Research Part I: Oceanographic Research Papers, 2017, 123: 1-12. doi: 10.1016/j.dsr.2017.02.005
    [63]
    申正伟. 深海溶解甲烷原位长期探测技术研发及应用研究[D]. 中国地质大学(北京), 2018.

    SHEN Zhengwei. Research and development of in-situ long-term detection technology for deep-sea dissolved methane and its application[D]. Doctor Dissertation of China University of Geosciences (Beijing), 2018.
    [64]
    申正伟, 孙春岩, 贺会策, 等. 深海原位溶解甲烷传感器(METS)的原理及应用研究[J]. 海洋技术学报, 2015, 34(5):19-25

    SHEN Zhengwei, SUN Chunyan, HE Huice, et al. The Principle and Applied Research of In-situ METS for Dissolved Methane Measurement in Deep Sea [J]. Journal of Ocean Technology, 2015, 34(5): 19-25.
    [65]
    于新生, 李丽娜, 胡亚丽, 等. 海洋中溶解甲烷的原位检测技术研究进展[J]. 地球科学进展, 2011, 26(10):1030-1037

    YU Xinsheng, LI Lina, HU Yali, et al. The development of in situ sensors for dissolved methane measurement in the sea [J]. Advances in Earth Sciences, 2011, 26(10): 1030-1037.
    [66]
    赵静, 梁前勇, 尉建功, 等. 南海北部陆坡西部海域“海马”冷泉甲烷渗漏及其海底表征[J]. 地球化学, 2020, 49(1):108-118

    ZHAO Jing, LIANG Qianyong, WEI Jiangong, et al. Seafloor geology and geochemistry characteristic of methane seepage of the “Haima” cold seep, northwestern slope of the South China Sea [J]. Geochimica, 2020, 49(1): 108-118.
    [67]
    Kennett J P, Cannariato K G, Hendy I L, et al. Carbon isotopic evidence for methane hydrate instability during quaternary interstadials [J]. Science, 2000, 288(5463): 128-133. doi: 10.1126/science.288.5463.128
    [68]
    邸鹏飞, 冯东, 高立宝, 等. 海底冷泉流体渗漏的原位观测技术及冷泉活动特征[J]. 地球物理学进展, 2008, 23(5):1592-1602

    DI Pengfei, FENG Dong, GAO Libao, et al. In situ measurement of fluid flow and signatures of seep activity at marine seep sites [J]. Progress in Geophysics, 2008, 23(5): 1592-1602.
    [69]
    Beranzoli L, De Santis A, Etiope A G, et al. GEOSTAR: a geophysical and oceanographic station for abyssal research [J]. Physics of the Earth and Planetary Interiors, 1998, 108(2): 175-183. doi: 10.1016/S0031-9201(98)00094-6
    [70]
    Marinaro G, Etiope G, Gasparoni F, et al. GMM—a gas monitoring module for long-term detection of methane leakage from the seafloor [J]. Environmental Geology, 2004, 46(8): 1053-1058. doi: 10.1007/s00254-004-1092-2
    [71]
    Pfannkuche O, Linke P. GEOMAR landers as long-term deep-sea observatories: applications and developments of lander technology in operational oceanography [J]. Sea Technology, 2003, 44(9): 50-55.
    [72]
    赵广涛, 于新生, 李欣, 等. Benvir: 一个深海海底边界层原位监测装置[J]. 高技术通讯, 2015, 25(1):54-60 doi: 10.3772/j.issn.1002-0470.2015.01.008

    ZHAO Guangtao, YU Xinsheng, LI Xin, et al. Benvir: A in situ Deep-sea observation system for Benthic environmental monitoring [J]. Chinese High Technology Letters, 2015, 25(1): 54-60. doi: 10.3772/j.issn.1002-0470.2015.01.008
    [73]
    徐翠玲. 南海冷泉区甲烷渗漏过程的原位观测研究[D]. 中国海洋大学, 2013.

    XU Cuiling. In situ observation of methane seepage in the South China Sea[D]. Master Dissertation of Ocean University of China, 2013.
  • Cited by

    Periodical cited type(5)

    1. 王超群,李凤杰,王佳. 川东北地区二叠系吴家坪组地球化学特征及其古环境意义. 天然气地球科学. 2025(01): 183-195 .
    2. 蔡倩茹,王金铎,张关龙,宋智华,王圣柱,熊峥嵘,倪胜利. 准噶尔盆地东北缘上石炭统巴山组烃源岩沉积环境分析及物源示踪——来自泥岩地球化学的证据. 石油实验地质. 2024(01): 146-157 .
    3. 苑广尧,李凤杰. 柴达木盆地北缘古近系稀土元素地球化学特征及其地质意义. 天然气地球科学. 2023(08): 1374-1384 .
    4. 常海亮,张宏伟,杜春彦,祝朝辉,段超,侯雪刚. 鹿邑凹陷太原组-山西组泥岩元素地球化学特征及对沉积环境的指示. 科学技术与工程. 2022(25): 10845-10856 .
    5. 马万里,江小青,李璇,曾亮,杨平,马锦龙. 柴达木盆地西北缘上干柴沟组泥岩地球化学特征与古环境古气候意义. 矿物岩石地球化学通报. 2021(05): 1166-1180 .

    Other cited types(2)

Catalog

    Article views (2577) PDF downloads (81) Cited by(7)

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return