ZHANG Rui, HUANG Jianping, LI Zhenchun, WANG Wei, YUAN Shuangqi, ZHUANG Subin. A controlled beam migration for anisotropic media and its application to marine data[J]. Marine Geology & Quaternary Geology, 2020, 40(1): 184-197. DOI: 10.16562/j.cnki.0256-1492.2018120101
Citation: ZHANG Rui, HUANG Jianping, LI Zhenchun, WANG Wei, YUAN Shuangqi, ZHUANG Subin. A controlled beam migration for anisotropic media and its application to marine data[J]. Marine Geology & Quaternary Geology, 2020, 40(1): 184-197. DOI: 10.16562/j.cnki.0256-1492.2018120101

A controlled beam migration for anisotropic media and its application to marine data

More Information
  • Received Date: November 30, 2018
  • Revised Date: June 07, 2019
  • Available Online: January 14, 2020
  • As exploration areas move from the land to the sea, research targets get more complicated, and the high-precision imaging method becomes critical for marine oil and gas exploration. Gaussian beam migration (GBM) is a robust imaging method with high computational efficiency and flexibility. A high-precision GBM method, suitable for marine observation systems, has been developed by the authors in this paper, which contains the transformation between common-shot and common-offset domains and the data-driven framework. On one hand, considering the anisotropy of the subsurface media, an anisotropic ray tracing equation is introduced. On the other hand, based on the semblance difference between signal and disturbance in the τ-p domain, we develop the semblance threshold filtering method to eliminate disturbance during GBM procedure, thereby reducing migration noise. Numerical tests on anisotropic sag model, modified SEG/Hess VTI model and marine data suggest that (1) anisotropic parameters can improve the imaging quality significantly for the large offset data, (2) the proposed method can more accurately recover the complex structure, and (3) the new method may improve the signal-to-noise ratio (S/N) of the migration profile to a certain extent.
  • [1]
    吴国忱. 各向异性介质地震波传播与成像[M]. 东营: 中国石油大学出版社, 2006.

    WU Guochen. Seismic Wave Propagation and Imaging in Anisotropic Media[M]. Dongying: China University of Petroleum Press, 2006.
    [2]
    Babich V M, Popov M M. Gaussian summation method (review) [J]. Radiophysics and Quantum Electronics, 1989, 32(12): 1063-1081. doi: 10.1007/BF01038632
    [3]
    Popov M M. A new method of computation of wave fields using Gaussian beams [J]. Wave Motion, 1982, 4(1): 85-97. doi: 10.1016/0165-2125(82)90016-6
    [4]
    Popov M M. Ray theory and Gaussian beam method for geophysicists[Z]. EDUFBA, 2002.
    [5]
    Bleistein N. Hagedoorn told us how to do Kirchhoff migration and inversion [J]. The Leading Edge, 1999, 18(8): 918-927. doi: 10.1190/1.1438407
    [6]
    Hill N R. Prestack Gaussian-beam depth migration [J]. Geophysics, 2001, 66(4): 1240-1250. doi: 10.1190/1.1487071
    [7]
    Gray S H, Notfors C, Bleistein N. Imaging using multi-arrivals: Gaussian beams or multi-arrival Kirchhoff?[C]//2002 SEG Annual Meeting. Salt Lake City, Utah: SEG, 2002: 1117-1120.
    [8]
    Liu J, Palacharla G. Multiarrival Kirchhoff beam migration [J]. Geophysics, 2011, 76(5): WB109-WB118. doi: 10.1190/geo2010-0403.1
    [9]
    Kachalov A P, Popov M M. Application of the method of summation of Gaussian beams for calculation of high-frequency wave fields [J]. Soviet Physics Doklady, 1981, 26: 604-606.
    [10]
    Červený V, Popov M M, Pšenčík I. Computation of wave fields in inhomogeneous media-Gaussian beam approach [J]. Geophysical Journal International, 1982, 70(1): 109-128. doi: 10.1111/j.1365-246X.1982.tb06394.x
    [11]
    Červený V. Synthetic body wave seismograms for laterally varying layered structures by the Gaussian beam method [J]. Geophysical Journal International, 1983, 73(2): 389-426. doi: 10.1111/j.1365-246X.1983.tb03322.x
    [12]
    Červený V, Pšenčík I. Gaussian beams in two-dimensional elastic inhomogeneous media [J]. Geophysical Journal International, 1983, 72(2): 417-433. doi: 10.1111/j.1365-246X.1983.tb03793.x
    [13]
    Červený V, Pšenčík I. Gaussian beams in elastic 2-D laterally varying layered structures [J]. Geophysical Journal International, 1984, 78(1): 65-91. doi: 10.1111/j.1365-246X.1984.tb06472.x
    [14]
    Hill N R. Gaussian beam migration [J]. Geophysics, 1990, 55(11): 1416-1428. doi: 10.1190/1.1442788
    [15]
    Alkhalifah T. Gaussian beam depth migration for anisotropic media [J]. Geophysics, 1995, 60(5): 1474-1484. doi: 10.1190/1.1443881
    [16]
    Zhu T F, Gray S H, Wang D L. Prestack Gaussian-beam depth migration in anisotropic media [J]. Geophysics, 2007, 72(3): S133-S138. doi: 10.1190/1.2711423
    [17]
    段鹏飞, 程玖兵, 陈爱萍, 等. TI介质局部角度域高斯束叠前深度偏移成像[J]. 地球物理学报, 2013, 56(12):4206-4214. [DUAN Pengfei, CHENG Jiubing, CHEN Aiping, et al. Local angle-domain Gaussian beam prestack depth migration in a TI medium [J]. Chinese Journal of Geophysics, 2013, 56(12): 4206-4214. doi: 10.6038/cjg20131223
    [18]
    Protasov M I. 2-D Gaussian beam imaging of multicomponent seismic data in anisotropic media [J]. Geophysical Journal International, 2015, 203(3): 2021-2031. doi: 10.1093/gji/ggv408
    [19]
    张凯, 段新意, 李振春, 等. 角度域各向异性高斯束逆时偏移[J]. 石油地球物理勘探, 2015, 50(5):912-918. [ZHANG Kai, DUAN Xinyi, LI Zhenchun, et al. Angle domain reverse time migration with Gaussian beams in anisotropic media [J]. Oil Geophysical Prospecting, 2015, 50(5): 912-918.
    [20]
    李振春, 刘强, 韩文功, 等. VTI介质角度域转换波高斯束偏移成像方法研究[J]. 地球物理学报, 2018, 61(4):1471-1481. [LI Zhenchun, LIU Qiang, HAN Wengong, et al. Angle domain converted wave Gaussian beam migration in VTI media [J]. Chinese Journal of Geophysics, 2018, 61(4): 1471-1481.
    [21]
    Popov M M, Semtchenok N M, Popov P M, et al. Depth migration by the Gaussian beam summation method [J]. Geophysics, 2010, 75(2): S81-S93. doi: 10.1190/1.3361651
    [22]
    黄建平, 张晴, 张凯, 等. 格林函数高斯束逆时偏移[J]. 石油地球物理勘探, 2014, 49(1):101-106. [HUANG Jianping, ZHANG Qing, ZHANG Kai, et al. Reverse time migration with Gaussian beams based on the Green function [J]. Oil Geophysical Prospecting, 2014, 49(1): 101-106.
    [23]
    Huang J P, Yuan M L, Zhang Q, et al. Reverse time migration with elastodynamic Gaussian beams [J]. Journal of Earth Science, 2017, 28(4): 695-702. doi: 10.1007/s12583-015-0609-9
    [24]
    Gray S H, Bleistein N. True-amplitude Gaussian-beam migration [J]. Geophysics, 2009, 74(2): S11-S23. doi: 10.1190/1.3052116
    [25]
    Protasov M I, Tcheverda V A. True amplitude elastic Gaussian beam imaging of multicomponent walkaway vertical seismic profiling data [J]. Geophysical Prospecting, 2012, 60(6): 1030-1042. doi: 10.1111/j.1365-2478.2012.01068.x
    [26]
    黄建平, 杨继东, 李振春, 等. 基于有效邻域波场近似的起伏地表保幅高斯束偏移[J]. 地球物理学报, 2016, 59(6):2245-2256. [HUANG Jianping, YANG Jidong, LI Zhenchun, et al. An amplitude-preserved Gaussian beam migration based on wave field approximation in effective vicinity under irregular topographical conditions [J]. Chinese Journal of Geophysics, 2016, 59(6): 2245-2256. doi: 10.6038/cjg20160627
    [27]
    Hu H, Liu Y K, Zheng Y C, et al. Least-squares Gaussian beam migration [J]. Geophysics, 2016, 81(3): S87-S100. doi: 10.1190/geo2015-0328.1
    [28]
    Yuan M L, Huang J P, Liao W Y, et al. Least-squares Gaussian beam migration [J]. Journal of Geophysics and Engineering, 2017, 14(1): 184-196. doi: 10.1088/1742-2140/14/1/184
    [29]
    Yang J D, Zhu H J, McMechan G, et al. Time-domain least-squares migration using the Gaussian beam summation method [J]. Geophysical Journal International, 2018, 214(1): 548-572. doi: 10.1093/gji/ggy142
    [30]
    黄建平, 袁茂林, 李振春, 等. 双复杂条件下非倾斜叠加精确束偏移方法及应用Ⅰ——声波方程[J]. 地球物理学报, 2015, 58(1):267-276. [HUANG Jianping, YUAN Maolin, LI Zhenchun, et al. The accurate beam migration method without slant stack under dual-complexity conditions and its application (I): Acoustic equation [J]. Chinese Journal of Geophysics, 2015, 58(1): 267-276.
    [31]
    张瑞, 黄建平, 崔超, 等. 莺歌海盆地二维剖面高斯束高精度叠前深度偏移[J]. 海洋地质与第四纪地质, 2017, 37(1):168-175. [ZHANG Rui, HUANG Jianping, CUI Chao, et al. High precision Gaussian beam pre-stack depth migration for Yinggehai basin 2D seismic profiles [J]. Marine Geology and Quaternary Geology, 2017, 37(1): 168-175.
    [32]
    Yang J D, Zhu H J. A practical data-driven optimization strategy for Gaussian beam migration [J]. Geophysics, 2018, 83(1): S81-S92. doi: 10.1190/geo2017-0314.1
    [33]
    Vinje V, Roberts G A, Taylor R. Controlled beam migration: a versatile structural imaging tool [J]. First Break, 2008, 26(9): 109-113.
    [34]
    Zhou B, Zhou J, Wang Z L, et al. Anisotropic depth imaging with high fidelity controlled beam migration: A case study in Bohai, offshore China[C]//2011 SEG Annual Meeting. San Antonio, Texas: SEG, 2011: 217-221.
    [35]
    Casasanta L, Gray S, Grion S. Converted-wave controlled beam migration with sparse sources or receivers[C]//75th EAGE Conference & Exhibition. London, UK: EAGE, 2013.
    [36]
    黄建平, 吴建文, 杨继东, 等. 一种τ-p域二维控制束成像方法[J]. 石油地球物理勘探, 2016, 51(2):342-349. [HUANG Jianping, WU Jianwen, YANG Jidong, et al. A 2D control beam migration in the τ-p domain [J]. Oil Geophysical Prospecting, 2016, 51(2): 342-349.
    [37]
    Červený V. Seismic rays and ray intensities in inhomogeneous anisotropic media [J]. Geophysical Journal International, 1972, 29(1): 1-13. doi: 10.1111/j.1365-246X.1972.tb06147.x
    [38]
    Hanyga A. Gaussian beams in anisotropic elastic media [J]. Geophysical Journal International, 1986, 85(3): 473-504. doi: 10.1111/j.1365-246X.1986.tb04528.x
    [39]
    Zhang Y, Xu S, Bleistein N, et al. True-amplitude, angle-domain, common-image gathers from one-way wave-equation migrations [J]. Geophysics, 2007, 72(1): S49-S58. doi: 10.1190/1.2399371
    [40]
    高成, 孙建国, 齐鹏, 等. 2D共炮时间域高斯波束偏移[J]. 地球物理学报, 2015, 58(4):1333-1340. [GAO Cheng, SUN Jianguo, QI Peng, et al. 2-D Gaussian-beam migration of common-shot records in time domain [J]. Chinese Journal of Geophysics, 2015, 58(4): 1333-1340.
    [41]
    Hale D. Migration by the Kirchhoff, slant stack, and Gaussian beam methods[Z]. Center for Wave Phenomena, Colorado School of Mines, 1992.
    [42]
    孙夕平, 杜世通. 相干体技术算法研究及其在地震资料解释中的应用[J]. 石油大学学报: 自然科学版, 2003, 27(2):32-35, 40. [SUN Xiping, DU Shitong. Development and application of algorithm of coherency cub technique to seismic interpretation [J]. Journal of China University of Petroleum, China: Edition of Natural Science, 2003, 27(2): 32-35, 40.
    [43]
    Bahorich M, Farmer S. 3-D seismic discontinuity for faults and stratigraphic features: The coherence cube [J]. The Leading Edge, 1995, 14(10): 1053-1058. doi: 10.1190/1.1437077
    [44]
    Marfurt K J, Kirlin R L, Farmer S L, et al. 3-D seismic attributes using a semblance-based coherency algorithm [J]. Geophysics, 1998, 63(4): 1150-1165. doi: 10.1190/1.1444415
    [45]
    Marfurt K J, Sudhaker V, Gersztenkorn A, et al. Coherency calculations in the presence of structural dip [J]. Geophysics, 1999, 64(1): 104-111. doi: 10.1190/1.1444508
    [46]
    Neidell N S, Taner M T. Semblance and other coherency measures for multichannel data [J]. Geophysics, 1971, 36(3): 482-497. doi: 10.1190/1.1440186
  • Cited by

    Periodical cited type(3)

    1. 王首良,李元昊,马婷钰,段祎乐. 滨里海盆地早二叠世孔谷期盐构造特征及其形成机制. 海洋地质前沿. 2024(01): 65-78 .
    2. 韩续,索艳慧,李三忠,丁雪松,宋双双,田子晗,付新建. 新近纪以来华北东部古地貌演化数值模拟及陆架海沉降控制. 古地理学报. 2024(01): 192-207 .
    3. 陈念楠,李满根,关宝文,宋志杰,段建兵,李西得,刘武生,刘颖,范鹏飞. 二连盆地塔北凹陷西部早白垩世断—坳发育特征研究. 物探与化探. 2022(05): 1149-1156 .

    Other cited types(0)

Catalog

    Article views (2303) PDF downloads (24) Cited by(3)

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return