Citation: | ZHANG Rui, HUANG Jianping, LI Zhenchun, WANG Wei, YUAN Shuangqi, ZHUANG Subin. A controlled beam migration for anisotropic media and its application to marine data[J]. Marine Geology & Quaternary Geology, 2020, 40(1): 184-197. DOI: 10.16562/j.cnki.0256-1492.2018120101 |
[1] |
吴国忱. 各向异性介质地震波传播与成像[M]. 东营: 中国石油大学出版社, 2006.
WU Guochen. Seismic Wave Propagation and Imaging in Anisotropic Media[M]. Dongying: China University of Petroleum Press, 2006.
|
[2] |
Babich V M, Popov M M. Gaussian summation method (review) [J]. Radiophysics and Quantum Electronics, 1989, 32(12): 1063-1081. doi: 10.1007/BF01038632
|
[3] |
Popov M M. A new method of computation of wave fields using Gaussian beams [J]. Wave Motion, 1982, 4(1): 85-97. doi: 10.1016/0165-2125(82)90016-6
|
[4] |
Popov M M. Ray theory and Gaussian beam method for geophysicists[Z]. EDUFBA, 2002.
|
[5] |
Bleistein N. Hagedoorn told us how to do Kirchhoff migration and inversion [J]. The Leading Edge, 1999, 18(8): 918-927. doi: 10.1190/1.1438407
|
[6] |
Hill N R. Prestack Gaussian-beam depth migration [J]. Geophysics, 2001, 66(4): 1240-1250. doi: 10.1190/1.1487071
|
[7] |
Gray S H, Notfors C, Bleistein N. Imaging using multi-arrivals: Gaussian beams or multi-arrival Kirchhoff?[C]//2002 SEG Annual Meeting. Salt Lake City, Utah: SEG, 2002: 1117-1120.
|
[8] |
Liu J, Palacharla G. Multiarrival Kirchhoff beam migration [J]. Geophysics, 2011, 76(5): WB109-WB118. doi: 10.1190/geo2010-0403.1
|
[9] |
Kachalov A P, Popov M M. Application of the method of summation of Gaussian beams for calculation of high-frequency wave fields [J]. Soviet Physics Doklady, 1981, 26: 604-606.
|
[10] |
Červený V, Popov M M, Pšenčík I. Computation of wave fields in inhomogeneous media-Gaussian beam approach [J]. Geophysical Journal International, 1982, 70(1): 109-128. doi: 10.1111/j.1365-246X.1982.tb06394.x
|
[11] |
Červený V. Synthetic body wave seismograms for laterally varying layered structures by the Gaussian beam method [J]. Geophysical Journal International, 1983, 73(2): 389-426. doi: 10.1111/j.1365-246X.1983.tb03322.x
|
[12] |
Červený V, Pšenčík I. Gaussian beams in two-dimensional elastic inhomogeneous media [J]. Geophysical Journal International, 1983, 72(2): 417-433. doi: 10.1111/j.1365-246X.1983.tb03793.x
|
[13] |
Červený V, Pšenčík I. Gaussian beams in elastic 2-D laterally varying layered structures [J]. Geophysical Journal International, 1984, 78(1): 65-91. doi: 10.1111/j.1365-246X.1984.tb06472.x
|
[14] |
Hill N R. Gaussian beam migration [J]. Geophysics, 1990, 55(11): 1416-1428. doi: 10.1190/1.1442788
|
[15] |
Alkhalifah T. Gaussian beam depth migration for anisotropic media [J]. Geophysics, 1995, 60(5): 1474-1484. doi: 10.1190/1.1443881
|
[16] |
Zhu T F, Gray S H, Wang D L. Prestack Gaussian-beam depth migration in anisotropic media [J]. Geophysics, 2007, 72(3): S133-S138. doi: 10.1190/1.2711423
|
[17] |
段鹏飞, 程玖兵, 陈爱萍, 等. TI介质局部角度域高斯束叠前深度偏移成像[J]. 地球物理学报, 2013, 56(12):4206-4214. [DUAN Pengfei, CHENG Jiubing, CHEN Aiping, et al. Local angle-domain Gaussian beam prestack depth migration in a TI medium [J]. Chinese Journal of Geophysics, 2013, 56(12): 4206-4214. doi: 10.6038/cjg20131223
|
[18] |
Protasov M I. 2-D Gaussian beam imaging of multicomponent seismic data in anisotropic media [J]. Geophysical Journal International, 2015, 203(3): 2021-2031. doi: 10.1093/gji/ggv408
|
[19] |
张凯, 段新意, 李振春, 等. 角度域各向异性高斯束逆时偏移[J]. 石油地球物理勘探, 2015, 50(5):912-918. [ZHANG Kai, DUAN Xinyi, LI Zhenchun, et al. Angle domain reverse time migration with Gaussian beams in anisotropic media [J]. Oil Geophysical Prospecting, 2015, 50(5): 912-918.
|
[20] |
李振春, 刘强, 韩文功, 等. VTI介质角度域转换波高斯束偏移成像方法研究[J]. 地球物理学报, 2018, 61(4):1471-1481. [LI Zhenchun, LIU Qiang, HAN Wengong, et al. Angle domain converted wave Gaussian beam migration in VTI media [J]. Chinese Journal of Geophysics, 2018, 61(4): 1471-1481.
|
[21] |
Popov M M, Semtchenok N M, Popov P M, et al. Depth migration by the Gaussian beam summation method [J]. Geophysics, 2010, 75(2): S81-S93. doi: 10.1190/1.3361651
|
[22] |
黄建平, 张晴, 张凯, 等. 格林函数高斯束逆时偏移[J]. 石油地球物理勘探, 2014, 49(1):101-106. [HUANG Jianping, ZHANG Qing, ZHANG Kai, et al. Reverse time migration with Gaussian beams based on the Green function [J]. Oil Geophysical Prospecting, 2014, 49(1): 101-106.
|
[23] |
Huang J P, Yuan M L, Zhang Q, et al. Reverse time migration with elastodynamic Gaussian beams [J]. Journal of Earth Science, 2017, 28(4): 695-702. doi: 10.1007/s12583-015-0609-9
|
[24] |
Gray S H, Bleistein N. True-amplitude Gaussian-beam migration [J]. Geophysics, 2009, 74(2): S11-S23. doi: 10.1190/1.3052116
|
[25] |
Protasov M I, Tcheverda V A. True amplitude elastic Gaussian beam imaging of multicomponent walkaway vertical seismic profiling data [J]. Geophysical Prospecting, 2012, 60(6): 1030-1042. doi: 10.1111/j.1365-2478.2012.01068.x
|
[26] |
黄建平, 杨继东, 李振春, 等. 基于有效邻域波场近似的起伏地表保幅高斯束偏移[J]. 地球物理学报, 2016, 59(6):2245-2256. [HUANG Jianping, YANG Jidong, LI Zhenchun, et al. An amplitude-preserved Gaussian beam migration based on wave field approximation in effective vicinity under irregular topographical conditions [J]. Chinese Journal of Geophysics, 2016, 59(6): 2245-2256. doi: 10.6038/cjg20160627
|
[27] |
Hu H, Liu Y K, Zheng Y C, et al. Least-squares Gaussian beam migration [J]. Geophysics, 2016, 81(3): S87-S100. doi: 10.1190/geo2015-0328.1
|
[28] |
Yuan M L, Huang J P, Liao W Y, et al. Least-squares Gaussian beam migration [J]. Journal of Geophysics and Engineering, 2017, 14(1): 184-196. doi: 10.1088/1742-2140/14/1/184
|
[29] |
Yang J D, Zhu H J, McMechan G, et al. Time-domain least-squares migration using the Gaussian beam summation method [J]. Geophysical Journal International, 2018, 214(1): 548-572. doi: 10.1093/gji/ggy142
|
[30] |
黄建平, 袁茂林, 李振春, 等. 双复杂条件下非倾斜叠加精确束偏移方法及应用Ⅰ——声波方程[J]. 地球物理学报, 2015, 58(1):267-276. [HUANG Jianping, YUAN Maolin, LI Zhenchun, et al. The accurate beam migration method without slant stack under dual-complexity conditions and its application (I): Acoustic equation [J]. Chinese Journal of Geophysics, 2015, 58(1): 267-276.
|
[31] |
张瑞, 黄建平, 崔超, 等. 莺歌海盆地二维剖面高斯束高精度叠前深度偏移[J]. 海洋地质与第四纪地质, 2017, 37(1):168-175. [ZHANG Rui, HUANG Jianping, CUI Chao, et al. High precision Gaussian beam pre-stack depth migration for Yinggehai basin 2D seismic profiles [J]. Marine Geology and Quaternary Geology, 2017, 37(1): 168-175.
|
[32] |
Yang J D, Zhu H J. A practical data-driven optimization strategy for Gaussian beam migration [J]. Geophysics, 2018, 83(1): S81-S92. doi: 10.1190/geo2017-0314.1
|
[33] |
Vinje V, Roberts G A, Taylor R. Controlled beam migration: a versatile structural imaging tool [J]. First Break, 2008, 26(9): 109-113.
|
[34] |
Zhou B, Zhou J, Wang Z L, et al. Anisotropic depth imaging with high fidelity controlled beam migration: A case study in Bohai, offshore China[C]//2011 SEG Annual Meeting. San Antonio, Texas: SEG, 2011: 217-221.
|
[35] |
Casasanta L, Gray S, Grion S. Converted-wave controlled beam migration with sparse sources or receivers[C]//75th EAGE Conference & Exhibition. London, UK: EAGE, 2013.
|
[36] |
黄建平, 吴建文, 杨继东, 等. 一种τ-p域二维控制束成像方法[J]. 石油地球物理勘探, 2016, 51(2):342-349. [HUANG Jianping, WU Jianwen, YANG Jidong, et al. A 2D control beam migration in the τ-p domain [J]. Oil Geophysical Prospecting, 2016, 51(2): 342-349.
|
[37] |
Červený V. Seismic rays and ray intensities in inhomogeneous anisotropic media [J]. Geophysical Journal International, 1972, 29(1): 1-13. doi: 10.1111/j.1365-246X.1972.tb06147.x
|
[38] |
Hanyga A. Gaussian beams in anisotropic elastic media [J]. Geophysical Journal International, 1986, 85(3): 473-504. doi: 10.1111/j.1365-246X.1986.tb04528.x
|
[39] |
Zhang Y, Xu S, Bleistein N, et al. True-amplitude, angle-domain, common-image gathers from one-way wave-equation migrations [J]. Geophysics, 2007, 72(1): S49-S58. doi: 10.1190/1.2399371
|
[40] |
高成, 孙建国, 齐鹏, 等. 2D共炮时间域高斯波束偏移[J]. 地球物理学报, 2015, 58(4):1333-1340. [GAO Cheng, SUN Jianguo, QI Peng, et al. 2-D Gaussian-beam migration of common-shot records in time domain [J]. Chinese Journal of Geophysics, 2015, 58(4): 1333-1340.
|
[41] |
Hale D. Migration by the Kirchhoff, slant stack, and Gaussian beam methods[Z]. Center for Wave Phenomena, Colorado School of Mines, 1992.
|
[42] |
孙夕平, 杜世通. 相干体技术算法研究及其在地震资料解释中的应用[J]. 石油大学学报: 自然科学版, 2003, 27(2):32-35, 40. [SUN Xiping, DU Shitong. Development and application of algorithm of coherency cub technique to seismic interpretation [J]. Journal of China University of Petroleum, China: Edition of Natural Science, 2003, 27(2): 32-35, 40.
|
[43] |
Bahorich M, Farmer S. 3-D seismic discontinuity for faults and stratigraphic features: The coherence cube [J]. The Leading Edge, 1995, 14(10): 1053-1058. doi: 10.1190/1.1437077
|
[44] |
Marfurt K J, Kirlin R L, Farmer S L, et al. 3-D seismic attributes using a semblance-based coherency algorithm [J]. Geophysics, 1998, 63(4): 1150-1165. doi: 10.1190/1.1444415
|
[45] |
Marfurt K J, Sudhaker V, Gersztenkorn A, et al. Coherency calculations in the presence of structural dip [J]. Geophysics, 1999, 64(1): 104-111. doi: 10.1190/1.1444508
|
[46] |
Neidell N S, Taner M T. Semblance and other coherency measures for multichannel data [J]. Geophysics, 1971, 36(3): 482-497. doi: 10.1190/1.1440186
|
[1] | LIN Li’e, ZHUO Haiteng, FENG Jin, LI Zhigao, SU Ming, WANG Yingmin, LEI Yaping, LIN Zhixuan, YANG Rongnan. Seismic sedimentary characteristics of the Ancient Pearl River system and its depositional model of confluence scours, northern shelf of the South China Sea in Early-Mid Miocene[J]. Marine Geology & Quaternary Geology, 2023, 43(2): 31-44. DOI: 10.16562/j.cnki.0256-1492.2022090601 |
[2] | GUO Yuxuan, QIAO Shuqing, SHI Xuefa, WU Bin, YUAN Long, REN Yijun, GAO Jingjing, ZHU Aimei, . Variation trend and contamination source of heavy metals in sediments from estuary area of Bangkok Bay in the past century[J]. Marine Geology & Quaternary Geology, 2019, 39(2): 61-69. DOI: 10.16562/j.cnki.0256-1492.2018031901 |
[3] | DENG Chengwen, ZHANG Xia, LIN Chunming, YU Jin, WANG Hong, YIN Yong. GRAIN-SIZE CHARACTERISTICS AND HYDRODYNAMIC CONDITIONS OF THE CHANGJIANG ESTUARINE DEPOSITS SINCE LAST GLACIAL[J]. Marine Geology & Quaternary Geology, 2016, 36(6): 185-198. DOI: 10.16562/j.cnki.0256-1492.2016.06.021 |
[4] | LI Meina, CHEN Xiaoying, LIU Jinqing, WU Zhen, Song Wei. COASTLINE CHANGE IN WEIHAI BASED ON REMOTE SENSING[J]. Marine Geology & Quaternary Geology, 2016, 36(6): 79-84. DOI: 10.16562/j.cnki.0256-1492.2016.06.010 |
[5] | LI Panfeng, ZHAO Tiehu, ZHANG Xiaobo, MEI Sai, YAN Zhonghui, QIN Ke, . FRACTAL RESEARCH OF REMOTE SENSING LINEAR FAULTS IN SHANDONG PENINSULA[J]. Marine Geology & Quaternary Geology, 2015, 35(4): 105-112. DOI: 10.16562/j.cnki.0256-1492.2015.04.011 |
[6] | LIU Xue, MA Yanyan, LI Guangxue, ZHAO Yun. COASTLINE EVOLUTION OF THE YANGTZE ESTUARY UPON SATELLITE REMOTE SENSING ANALYSIS[J]. Marine Geology & Quaternary Geology, 2013, 33(2): 17-23. DOI: 10.3724/SP.J.1140.2013.02017 |
[7] | BI Shipu, HU Gang, HE Yongjun, ZHANG Yong. REMOTE SENSING MONITORING OF SURFACE SUSPENDED SEDIMENTS AT YANGTZE ESTUARY IN THE PAST TWO DECADES[J]. Marine Geology & Quaternary Geology, 2011, 31(5): 17-24. DOI: 10.3724/SP.J.1140.2011.05017 |
[8] | ZHOU Chi, HE Longhua, YANG Na. VARIATIONS IN THE EBINUR LAKE AREA CAUSED BY HUMAN ACTIVITIES AND CLIMATIC CHANGES[J]. Marine Geology & Quaternary Geology, 2010, 30(2): 121-126. DOI: 10.3724/SP.J.1140.2010.02121 |
[9] | FANG Jianyong, CHEN Jian, WANG Aijun, LI Dongyi, HUANG Caibin. THE MODERN SEDIMENTARY ENVIRONMENT AND TRANSPORT TRENDS IN JIULONGJIANG ESTUARY[J]. Marine Geology & Quaternary Geology, 2010, 30(2): 35-41. DOI: 10.3724/SP.J.1140.2010.02035 |
[10] | MA Yan-yan, LI Guang-xue, LIU Yong, SHI Jing-hao. DYNAMIC CHANGE AND QUALITY EVALUATION OF JIAOZHOU BAY WETLAND BASED ON REMOTE SENSING ANALYSIS[J]. Marine Geology & Quaternary Geology, 2008, 28(1): 69-75. |