Citation: | LIN Li’e,ZHUO Haiteng,FENG Jin,et al. Seismic sedimentary characteristics of the Ancient Pearl River system and its depositional model of confluence scours, northern shelf of the South China Sea in Early-Mid Miocene[J]. Marine Geology & Quaternary Geology,2023,43(2):31-44. DOI: 10.16562/j.cnki.0256-1492.2022090601 |
[1] |
Bhattacharya J. Deltas and estuaries[M]//Middleton G V, Church M J, Coniglio M, et al. Encyclopedia of Sediments and Sedimentary Rocks. Dordrecht: Springer, 2003: 195-203.
|
[2] |
Zhuo H T, Wang Y M, Shi H S, et al. Contrasting fluvial styles across the mid-Pleistocene climate transition in the northern shelf of the South China Sea: evidence from 3D seismic data [J]. Quaternary Science Reviews, 2015, 129: 128-146. doi: 10.1016/j.quascirev.2015.10.012
|
[3] |
He M, Zhuo H T, Chen W T, et al. Sequence stratigraphy and depositional architecture of the Pearl River Delta system, northern South China Sea: an interactive response to sea level, tectonics and paleoceanography [J]. Marine and Petroleum Geology, 2017, 84: 76-101. doi: 10.1016/j.marpetgeo.2017.03.022
|
[4] |
Fisk H N, Kolb C R, McFarlan E Jr, et al. Sedimentary framework of the modern mississippi delta [J]. Journal of Sedimentary Research, 1954, 24(2): 76-99. doi: 10.1306/D4269661-2B26-11D7-8648000102C1865D
|
[5] |
Wang Y R, Lin C S, Zhang Z T, et al. Sedimentary evolution and controlling factors of Early-Mid Miocene Deltaic systems in the Northern Pearl River Mouth Basin, South China Sea [J]. Scientific Reports, 2021, 11(1): 6134. doi: 10.1038/s41598-021-85369-1
|
[6] |
李智高, 丁琳, 李小平, 等. 珠江口盆地珠一坳陷西部中新世早-中期沉积特征及控制因素[J]. 古地理学报, 2022, 24(1):99-111
LI Zhigao, DING Lin, LI Xiaoping, et al. Sedimentary characteristics and controlling factors of the western Zhu I depression during the early-middle Miocene, Pearl River Mouth Basin [J]. Journal of Palaeogeography (Chinese Edition), 2022, 24(1): 99-111.
|
[7] |
Weissmann G S, Hartley A J, Nichols G J, et al. Fluvial form in modern continental sedimentary basins: distributive fluvial systems [J]. Geology, 2010, 38(1): 39-42. doi: 10.1130/G30242.1
|
[8] |
Gibling M R. Width and thickness of fluvial channel bodies and valley fills in the geological record: a literature compilation and classifica-tion [J]. Journal of Sedimentary Research, 2006, 76(5): 731-770. doi: 10.2110/jsr.2006.060
|
[9] |
Posamentier H W. Lowstand alluvial bypass systems: incised vs. unincised [J]. AAPG Bulletin, 2001, 85(10): 1771-1793.
|
[10] |
Smith N D. Sedimentology and bar formation in the upper kicking horse river, a braided outwash stream [J]. The Journal of Geology, 1974, 82(2): 205-223. doi: 10.1086/627959
|
[11] |
Hein F J, Walker R G. Bar evolution and development of stratification in the gravelly, braided, Kicking Horse River, British Columbia [J]. Canadian Journal of Earth Sciences, 1977, 14(4): 562-570. doi: 10.1139/e77-058
|
[12] |
Ashmore P, Parker G. Confluence scour in coarse braided streams [J]. Water Resources Research, 1983, 19(2): 392-402. doi: 10.1029/WR019i002p00392
|
[13] |
Best J L, Ashworth P J. Scour in large braided rivers and the recognition of sequence stratigraphic boundaries [J]. Nature, 1997, 387(6630): 275-277. doi: 10.1038/387275a0
|
[14] |
Dalrymple R W, Boyd R, Zaitlin B A. Incised - Valley Systems: Origin and Sedimentary Sequences[M]. Tulsa: SEPM Society for Sedimentary Geology, 1994.
|
[15] |
Catuneanu O. Principles of Sequence Stratigraphy[M]. 2nd edn. Amsterdam: Elsevier, 2022.
|
[16] |
Posarnentier H W, Allen G P. Siliciclastic Sequence Stratigraphy – Concepts and Applications[M]. SEPM Concepts in Sedimentology and Paleontology, 1999.
|
[17] |
李三忠, 索艳慧, 刘鑫, 等. 南海的基本构造特征与成因模型: 问题与进展及论争[J]. 海洋地质与第四纪地质, 2012, 32(6):35-53
LI Sanzhong, SUO Yanhui, LIU Xin, et al. Basic strcutural pattern and tectonic models of the South China Sea: problems, advances and controversies [J]. Marine Geology & Quaternary Geology, 2012, 32(6): 35-53.
|
[18] |
朱筱敏, 董艳蕾, 曾洪流, 等. 中国地震沉积学研究现状和发展思考[J]. 古地理学报, 2020, 22(3):397-411
ZHU Xiaomin, DONG Yanlei, ZENG Hongliu, et al. Research status and thoughts on the development of seismic sedimentology in China [J]. Journal of Palaeogeography, 2020, 22(3): 397-411.
|
[19] |
Posamentier H W, Paumard V, Lang S C. Principles of seismic stratigraphy and seismic geomorphology I: extracting geologic insights from seismic data [J]. Earth-Science Reviews, 2022, 228: 103963. doi: 10.1016/j.earscirev.2022.103963
|
[20] |
Van Wagoner J C, Posamentier H W, Mitchum R M, et al. An overview of the fundamentals of sequence stratigraphy and key defini-tions[M]//Wilgus C K, Hastings B S, Posamentier H, et al. Sea-Level Changes: An Integrated Approach. Tulsa: SEPM Society for Sedimentary Geology, 1988.
|
[21] |
Embry A F, Johannessen E P. T–R sequence stratigraphy, facies analysis and reservoir distribution in the uppermost Triassic-Lower Jurassic succession, western Sverdrup basin, Arctic Canada [J]. Norwegian Petroleum Society Special Publications, 1993, 2: 121-146.
|
[22] |
Schumm S A. River response to baselevel change: implications for sequence stratigraphy [J]. The Journal of Geology, 1993, 101(2): 279-294. doi: 10.1086/648221
|
[23] |
Zeng H L, Zhu X M, Liu Q H, et al. An alternative, seismic-assisted method of fluvial architectural-element analysis in the subsurface: neogene, Shaleitian area, Bohai Bay Basin, China [J]. Marine and Petroleum Geology, 2020, 118: 104435. doi: 10.1016/j.marpetgeo.2020.104435
|
[24] |
梁旭, 范廷恩, 胡光义, 等. 海相辫状河三角洲沉积基准面旋回划分及砂体叠置样式分析: 以西江W油田珠江组为例[J]. 现代地质, 2018, 32(5):913-923
LIANG Xu, FAN Ting’en, HU Guangyi, et al. Division of base-level cycles and superimposition of sandbodies in marine braided delta reservoir: a case study of Zhujiang Formation in Xijiang W Oilfield, Pearl River Estuary Basin [J]. Geoscience, 2018, 32(5): 913-923.
|
[25] |
Talling P J. How and where do incised valleys form if sea level remains above the shelf edge? [J]. Geology, 1998, 26(1): 87-90. doi: 10.1130/0091-7613(1998)026<0087:HAWDIV>2.3.CO;2
|
[26] |
Schumm S A, Ethridge F G. Origin, evolution and morphology of fluvial valleys[M]//Dalrymple R W, Boyd R, Zaitlin B A. Incised-Valley Systems: Origin and Sedimentary Sequences. Tulsa: SEPM, Special Publication, 1994: 13-26.
|
[27] |
陈维涛, 孙珍, 何敏, 等. 珠江口盆地中中新世SQ14.8层序-沉积演化及其地质意义[J]. 大地构造与成矿学, 2021, 45(5):875-891 doi: 10.16539/j.ddgzyckx.2021.05.004
CHEN Weitao, SUN Zhen, HE Min, et al. The Mid-Miocene stratigraphic-depositional evolution recorded by the SQ14.8 layer in Pearl River Mouth Basin and its geological significances [J]. Geotectonica et Metallogenia, 2021, 45(5): 875-891. doi: 10.16539/j.ddgzyckx.2021.05.004
|
[28] |
Miall A D. Architecture and sequence stratigraphy of Pleistocene fluvial systems in the Malay Basin, based on seismic time-slice analy-sis [J]. AAPG Bulletin, 2002, 86(7): 1201-1216.
|
[29] |
Smith G H S, Nicholas A P, Best J L, et al. The sedimentology of river confluences [J]. Sedimentology, 2019, 66(2): 391-407. doi: 10.1111/sed.12504
|
[30] |
Ardies G W, Dalrymple R W, Zaitlin B A. Controls on the geometry of incised valleys in the Basal Quartz unit (Lower cretaceous), Western Canada Sedimentary Basin [J]. Journal of Sedimentary Research, 2002, 72(5): 602-618. doi: 10.1306/032101720602
|
[31] |
Ullah M S, Bhattacharya J P, Dupre W R. Confluence scours versus incised valleys: examples from the cretaceous ferron notom delta, southeastern utah, USA [J]. Journal of Sedimentary Research, 2015, 85(5): 445-458. doi: 10.2110/jsr.2015.34
|
[32] |
Huismans Y, Koopmans H, Wiersma A, et al. Lithological control on scour hole formation in the Rhine-Meuse Estuary [J]. Geomorphology, 2021, 385: 107720. doi: 10.1016/j.geomorph.2021.107720
|
[33] |
Rhoads B L, Sukhodolov A N. Field investigation of three-dimensional flow structure at stream confluences: 1. Thermal mixing and time-averaged velocities [J]. Water Resources Research, 2001, 37(9): 2393-2410. doi: 10.1029/2001WR000316
|
[34] |
Best J L. Flow dynamics at river channel confluences: implications for sediment transport and bed morphology[M]//Ethridge F G, Flores R M, Harvey M D. Recent Developments in Fluvial Sedimentology. Tulsa: SEPM, 1987: 27-35.
|
[35] |
Snedden J W. Channel-body basal scours: observations from 3D seismic and importance for subsurface reservoir connectivity [J]. Marine and Petroleum Geology, 2013, 39(1): 150-163. doi: 10.1016/j.marpetgeo.2012.08.013
|
[36] |
Fielding C R. Sedimentology and stratigraphy of large river deposits: recognition in the ancient record, and distinction from ‘incised valley fills’[M]//Gupta A. Large Rivers: Geomorphology and Management. Chichester: John Wiley & Sons, Ltd, 2007: 97-113.
|
[37] |
杜家元, 施和生, 丁琳, 等. 珠江口盆地(东部)地层岩性油气藏勘探有利区域分析[J]. 中国海上油气, 2014, 26(3):30-36,55
DU Jiayuan, SHI Hesheng, DING Lin, et al. An analysis of favorable exploration areas for stratigraphic-lithologic hydrocarbon accumulation in the eastern Pearl River Mouth Basin [J]. China Offshore Oil and Gas, 2014, 26(3): 30-36,55.
|
[38] |
Miall A D. How do we identify big rivers? And how big is big? [J]. Sedimentary Geology, 2006, 186(1-2): 39-50. doi: 10.1016/j.sedgeo.2005.10.001
|
[39] |
Ashworth P J, Lewin J. How do big rivers come to be different? [J]. Earth-Science Reviews, 2012, 114(1-2): 84-107. doi: 10.1016/j.earscirev.2012.05.003
|
[40] |
Clift P D, Wan S M, Blusztajn J. Reconstructing chemical weathering, physical erosion and monsoon intensity since 25 Ma in the northern South China Sea: a review of competing proxies [J]. Earth-Science Reviews, 2014, 130: 86-102. doi: 10.1016/j.earscirev.2014.01.002
|
[41] |
张向涛, 向绪洪, 赵梦, 等. 珠江水系演化与东亚地形倒转的耦合关系[J]. 地球科学, 2022, 47(7):2410-2420 doi: 10.3321/j.issn.1000-2383.2022.7.dqkx202207009
ZHANG Xiangtao, XIANG Xuhong, ZHAO Meng, et al. Coupling relationship between Pearl River water system evolution and East Asian terrain inversi-on [J]. Earth Science, 2022, 47(7): 2410-2420. doi: 10.3321/j.issn.1000-2383.2022.7.dqkx202207009
|
[42] |
郑荣才, 马奇科, 杨宝泉, 等. 白云凹陷珠江组深水扇砂岩储层特征及控制因素[J]. 成都理工大学学报:自然科学版, 2012, 39(5):455-462
ZHENG Rongcai, MA Qike, YANG Baoquan, et al. Characteristics of Miocene Zhujiang Formation submarine fan sandstone reservoirs in Baiyun sag, Pearl River Mouth Basin, China [J]. Journal of Chengdu University of Technology:Science & Technology Edition, 2012, 39(5): 455-462.
|