ZHANG Boda, LEI Zhenyu, ZHENG Wenyi, LI Zhengkun, CAI Dayang, ZHANG Jinfeng, SU Ming, YANG Rui. Morphological parameters and geological significance of the columnar fluid migration pathways in seismic profiles[J]. Marine Geology & Quaternary Geology, 2019, 39(3): 171-181. DOI: 10.16562/j.cnki.0256-1492.2018103001
Citation: ZHANG Boda, LEI Zhenyu, ZHENG Wenyi, LI Zhengkun, CAI Dayang, ZHANG Jinfeng, SU Ming, YANG Rui. Morphological parameters and geological significance of the columnar fluid migration pathways in seismic profiles[J]. Marine Geology & Quaternary Geology, 2019, 39(3): 171-181. DOI: 10.16562/j.cnki.0256-1492.2018103001

Morphological parameters and geological significance of the columnar fluid migration pathways in seismic profiles

More Information
  • Received Date: October 29, 2018
  • Revised Date: January 11, 2019
  • Some columnar seismic anomalies with chimney structures and seepage pipes could be observed in seismic profiles. They are usually interpreted as the vertical migrating pathways of gas-bearing fluids. On the basis of comprehensive description from high-resolution seismic data, some morphological parameters of these columnar fluid migration pathways are calculated in this study. About eight important morphological parameters were systematically summarized, including the root zone level, termination level, plane shape, diameter, length/width ratio, vertical reflection offset, ellipticity, and fitting ellipse azimuth. Combined the spatial distribution pattern of morphological parameters with some special seafloor geomorphologies, such as pockmarks and mounds, and deeper structures, such as diapirs and faults, morphological parameters could be further used to reveal the geology of columnar migrating pathways for gas-bearing fluids. We divided all the parameters into five types, as (ⅰ) parameters for morphological classification of the columnar fluid flow structures; (ⅱ) parameters for reveal the genetic factors and forming mechanisms; (ⅲ) parameters for dating the episodic fluid activities; (ⅳ) parameters for defining the initial and terminal times; and (ⅴ) parameters for indirectly reflecting the relative fluid fluxes. Therefore, integrated analysis based on multi-parameters and comparisons between parameters are important for interpreting these columnar fluid migration pathways formed upon different geological background.
  • [1]
    Andresen K J. Fluid flow features in hydrocarbon plumbing systems: What do they tell us about the basin evolution?[J]. Marine Geology, 2012, 332-334:89-108. doi: 10.1016/j.margeo.2012.07.006
    [2]
    孙启良, 吴时国, 陈端新, 等.南海北部深水盆地流体活动系统及其成藏意义[J].地球物理学报, 2014, 57(12):4052-4062. doi: 10.6038/cjg20141217

    SUN Qiliang, WU Shiguo, CHEN Duanxin, et al. Focused fluid flow systems and their implications for hydrocarbon and gas hydrate accumulations in the deep-water basins of the northern South China Sea[J]. Chinese Journal of Geophysics, 2014, 57(12):4052-4062. doi: 10.6038/cjg20141217
    [3]
    Sun Q, Cartwright J, Wu S, et al. 3D seismic interpretation of dissolution pipes in the South China Sea: Genesis by subsurface, fluid induced collapse[J]. Marine Geology, 2013, 337(3):171-181. http://www.sciencedirect.com/science/article/pii/S0025322713000285
    [4]
    Moss J L, Cartwright J. 3D seismic expression of km-scale fluid escape pipes from offshore Namibia[J]. Basin Research, 2010, 22(4):481-501. doi: 10.1111/j.1365-2117.2010.00461.x
    [5]
    Sun Q, Wu S, Cartwright J, et al. Shallow gas and focused fluid flow systems in the Pearl River Mouth Basin, northern South China Sea[J]. Marine Geology, 2012, 315-318(4):1-14. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=6ab647482948e848eb254ec0452515a4
    [6]
    Karstens J, Berndt C. Seismic chimneys in the Southern Viking Graben-Implications for palaeo fluid migration and overpressure evolution[J]. Earth and Planetary Science Letters, 2015, 412:88-100. doi: 10.1016/j.epsl.2014.12.017
    [7]
    Hustoft S, Bünz S, Mienert J. Three-dimensional seismic analysis of the morphology and spatial distribution of chimneys beneath the Nyegga pockmark field, offshore mid-Norway[J]. Basin Research, 2010, 22(4):465-480. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=d8e83a81e1940ee5af4a0ba7e1318ae2
    [8]
    Riboulot V, Cattaneo A, Sultan N, et al. Sea-level change and free gas occurrence influencing a submarine landslide and pockmark formation and distribution in deepwater Nigeria[J]. Earth and Planetary Science Letters, 2013, 375:78-91. doi: 10.1016/j.epsl.2013.05.013
    [9]
    Su M, Sha Z, Zhang C, et al. Types, characteristics and sgnificances of migrating pathways of gas-bearing fluids in the Shenhu area, northern continental slope of the South China Sea[J]. Acta Geologica Sinica (English Edition), 2017, 91(1):219-231. doi: 10.1111/1755-6724.13073
    [10]
    Ho S, Dan C, Imbert P. Insights into the permeability of polygonal faults from their intersection geometries with Linear Chimneys: A case study from the Lower Congo basin[J]. Carnets De Geologie, 2016, 16(2):17-26.
    [11]
    Yang R, Su M, Qiao S, et al. Migration of methane associated with gas hydrates of the Shenhu area, northern slope of South China Sea[J]. Marine Geophysical Research, 2015, 36(2-3):253-261. doi: 10.1007/s11001-015-9249-9
    [12]
    Sun Y, Wu S, Dong D, et al. Gas hydrates associated with gas chimneys in fine-grained sediments of the northern South China Sea[J]. Marine Geology, 2012, 311-314:32-40. doi: 10.1016/j.margeo.2012.04.003
    [13]
    Kang N, Yoo D, Yi B, et al. Distribution and origin of seismic chimneys associated with gas hydrate using 2D multi-channel seismic reflection and well log data in the Ulleung basin, East Sea[J]. Quaternary International, 2016, 392:99-111. doi: 10.1016/j.quaint.2015.08.002
    [14]
    Plaza-Faverola A, Bünz S, Mienert J. Repeated fluid expulsion through sub-seabed chimneys offshore Norway in response to glacial cycles[J]. Earth and Planetary Science Letters, 2011, 305(3-4):297-308. doi: 10.1016/j.epsl.2011.03.001
    [15]
    Maestrelli D, Iacopini D, Jihad A A, et al. Seismic and structural characterization of fluid escape pipes using 3D and partial stack seismic from the Loyal Field (Scotland, UK): A multiphase and repeated intrusive mechanism[J]. Marine and Petroleum Geology, 2017, 88:489-510. doi: 10.1016/j.marpetgeo.2017.08.016
    [16]
    Heggland R. Using gas chimneys in seal integrity analysis: A discussion based on case histories[J]. Evaluating Fault and Cap Rock Seals: AAPG Hedberg Series, 2005(2): 237-245. https://www.onacademic.com/detail/journal_1000039775754010_5eaf.html
    [17]
    骆迪, 蔡峰.大陆边缘沉积盆地流体逸散管道地震特征及其成因机制[J].海洋地质前沿, 2017, 33(1):1-10. http://d.old.wanfangdata.com.cn/Periodical/hydzdt201701001

    LUO Di, CAI Feng. Seismic characteristic and genetic mechanism of fluid escape pipes in sedimentary basins of continental margin[J]. Marine Geology Frontiers, 2017, 33(1):1-10. http://d.old.wanfangdata.com.cn/Periodical/hydzdt201701001
    [18]
    Vadakkepuliyambatta S, Bünz S, Mienert J, et al. Distribution of subsurface fluid-flow systems in the SW Barents Sea[J]. Marine & Petroleum Geology, 2013, 43:208-221. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=50f6105156e76f75638a531c42ef8f20
    [19]
    Cartwright J, Santamarina C. Seismic characteristics of fluid escape pipes in sedimentary basins: Implications for pipe genesis[J]. Marine and Petroleum Geology, 2015, 65:126-140. doi: 10.1016/j.marpetgeo.2015.03.023
    [20]
    Müller S, Reinhardt L, Franke D, et al. Shallow gas accumulations in the German North Sea[J]. Marine & Petroleum Geology, 2018, 91:139-151. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=d90ae7f602d22b2f011d0ed55d778f37
    [21]
    罗敏, 吴庐山, 陈多福.海底麻坑研究现状及进展[J].海洋地质前沿, 2012, 28(5):33-42. http://www.cnki.com.cn/Article/CJFDTotal-HYDT201205007.htm

    LUO Min, WU Lushan, CHEN Duofu. Research status and progress of seabed pockmarks[J]. Marine Geology Frontiers, 2012, 28(5):33-42. http://www.cnki.com.cn/Article/CJFDTotal-HYDT201205007.htm
    [22]
    Hustoft S, Dugan B, Mienert J. Effects of rapid sedimentation on developing the Nyegga pockmark field: Constraints from hydrological modeling and 3-D seismic data, offshore mid-Norway[J]. Geochemistry Geophysics Geosystems, 2009, 10: Q06012. https://www.onacademic.com/detail/journal_1000035773146410_f465.html
    [23]
    Tasianas A, Bünz S, Bellwald B, et al. High-resolution 3D seismic study of pockmarks and shallow fluid flow systems at the Snøhvit hydrocarbon field in the SW Barents Sea[J]. Marine Geology, 2018, 403:247-261. doi: 10.1016/j.margeo.2018.06.012
    [24]
    Andresen K J, Huuse M. 'Bulls-eye' pockmarks and polygonal faulting in the Lower Congo basin: Relative timing and implications for fluid expulsion during shallow burial[J]. Marine Geology, 2011, 279(1-4):111-127. doi: 10.1016/j.margeo.2010.10.016
    [25]
    Sanchez-Guillamón O, Vázquez J T, Palomino D, et al. Morphology and shallow structure of seafloor mounds in the Canary basin (eastern central Atlantic Ocean)[J]. Geomorphology, 2018, 313:27-47. doi: 10.1016/j.geomorph.2018.04.007
    [26]
    Cartwright J. The impact of 3D seismic data on the understanding of compaction, fluid flow and diagenesis in sedimentary basins[J]. Journal of the Geological Society, 2007, 164(5):881-893. doi: 10.1144/0016-76492006-143
    [27]
    张为民, 李继亮, 钟嘉猷, 等.气烟囱的形成机理及其与油气的关系探讨[J].地质科学, 2000, 35(4):449-455. doi: 10.3321/j.issn:0563-5020.2000.04.008

    ZHANG Weimin, LI Jiliang, ZHONG Jiayou, et al. A study on formation mechanism of gas-chimney and relationship with petroleum[J]. Chinese Journal of Geology, 2000, 35(4):449-455. doi: 10.3321/j.issn:0563-5020.2000.04.008
    [28]
    周立宏, 孙志华, 王振升, 等.印缅俯冲增生楔气烟囱分带性及油气成藏规律[J].地学前缘, 2017, 24(4):352-369. http://d.old.wanfangdata.com.cn/Periodical/dxqy201704030

    ZHOU Lihong, SUN Zhihua, WANG Zhensheng, et al. Zonation and hydrocarbon accumulation rules of gas chimney in the Indo-Burmese Wedge[J]. Earth Science Frontiers, 2017, 24(4):352-369. http://d.old.wanfangdata.com.cn/Periodical/dxqy201704030
    [29]
    Moss J L, Cartwright J. The spatial and temporal distribution of pipe formation, offshore Namibia[J]. Marine and Petroleum Geology, 2010, 27(6):1216-1234. doi: 10.1016/j.marpetgeo.2009.12.013
    [30]
    Judd A G, Hovland M. Seabed Fluid Flow: The Impact on Geology, Biology and the Marine Environment[M]. Cambridge: Cambridge Univ Press, 2007.
    [31]
    Sun Q, Wu S, Hovland M, et al. The morphologies and genesis of mega-pockmarks near the Xisha Uplift, South China Sea[J]. Marine and Petroleum Geology, 2011, 28(6):1146-1156. doi: 10.1016/j.marpetgeo.2011.03.003
    [32]
    龚建明, 廖晶, 何拥军, 等.日本海天然气水合物气源成因及主控因素探讨[J].海洋地质与第四纪地质, 2017, 37(5):106-112. http://hydz.chinajournal.net.cn/WKD/WebPublication/paperDigest.aspx?paperID=78c150c9-3d5b-4f70-bb7b-d15fece4059c

    GONG Jianming, LIAO Jing, HE Yongjun, et al. Discussion on gas origins and main controlling factors for gas hydrates in the sea of Japan[J]. Marine Geology & Quaternary Geology, 2017, 37(5):106-112. http://hydz.chinajournal.net.cn/WKD/WebPublication/paperDigest.aspx?paperID=78c150c9-3d5b-4f70-bb7b-d15fece4059c
    [33]
    侯读杰, 庞雄, 肖建新, 等.白云凹陷断裂作为天然气运移通道的地质-地球化学证据[J].地学前缘, 2008, 15(4):81-87. doi: 10.3321/j.issn:1005-2321.2008.04.010

    HOU Dujie, PANG Xiong, XIAO Jianxin, et al. The geological and geochemical evidence on the identification of natural gas migration through fault system, Baiyun Sag, Pearl River Mouth basin[J]. Earth Science Frontiers, 2008, 15(4):81-87. doi: 10.3321/j.issn:1005-2321.2008.04.010
    [34]
    朱俊江, 李三忠.高分辨率三维海洋反射地震P-cable系统应用进展[J].海洋地质与第四纪地质, 2017, 37(4):225-232. http://hydz.chinajournal.net.cn/WKD/WebPublication/paperDigest.aspx?paperID=3fa76306-3beb-4682-90fe-58089a0c6b0d

    ZHU Junjiang, LI Sanzhong. Progress of application of P-cable system of 3-D high-resolution seismic[J]. Marine Geology & Quaternary Geology, 2017, 37(4):225-232. http://hydz.chinajournal.net.cn/WKD/WebPublication/paperDigest.aspx?paperID=3fa76306-3beb-4682-90fe-58089a0c6b0d
  • Cited by

    Periodical cited type(3)

    1. 于谦,王宏,贾建军,王韫玮,王福,高建华,高抒. Chenier的内涵分析和译名建议. 海洋通报. 2024(03): 364-370 .
    2. 仝长亮,吴祥柏,陈飞,朱钰,李高聪,贾建军. 基于潮流模拟的琼州海峡东口动力地貌分析. 海洋地质前沿. 2024(09): 38-48 .
    3. 贾建军,于谦,高抒. 海岸分类的回顾与展望. 海洋通报. 2023(06): 601-616 .

    Other cited types(0)

Catalog

    Article views (2837) PDF downloads (31) Cited by(3)

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return