Citation: | TONG Hongpeng, YAO Kai, CHEN Linying, HU Haiming, CUI Caiying, CHEN Duofu. Formation model of authigenic chimneys on the Quaker serpentinite mud volcano in the Mariana forearc[J]. Marine Geology & Quaternary Geology, 2021, 41(6): 15-26. DOI: 10.16562/j.cnki.0256-1492.2021062501 |
[1] |
Evans B W, Hattori K, Baronnet A. Serpentinite: what, why, where? [J]. Elements, 2013, 9(2): 99-106. doi: 10.2113/gselements.9.2.99
|
[2] |
Schrenk M O, Brazelton W J, Lang S Q. Serpentinization, carbon, and deep life [J]. Reviews in Mineralogy and Geochemistry, 2013, 75(1): 575-606. doi: 10.2138/rmg.2013.75.18
|
[3] |
黄瑞芳, 孙卫东, 丁兴, 等. 蛇纹石化过程中铁活动性的高温高压实验研究[J]. 岩石学报, 2015, 31(3):883-890
HUANG Ruifang, SUN Weidong, DING Xing, et al. Experimental investigation of iron mobility during serpentinization [J]. Acta Petrologica Sinica, 2015, 31(3): 883-890.
|
[4] |
王先彬, 欧阳自远, 卓胜广, 等. 蛇纹石化作用、非生物成因有机化合物与深部生命[J]. 中国科学: 地球科学, 2014, 57(5):878-887 doi: 10.1007/s11430-014-4821-8
WANG Xianbin, OUYANG Ziyuan, ZHUO Shengguang, et al. Serpentinization, Abiogenic Organic Compounds, and Deep life [J]. Science China Earth Sciences, 2014, 57(5): 878-887. doi: 10.1007/s11430-014-4821-8
|
[5] |
焦鑫, 柳益群, 周鼎武, 等. "白烟型"热液喷流岩研究进展[J]. 地球科学进展, 2013, 28(2):221-232 doi: 10.11867/j.issn.1001-8166.2013.02.0221
JIAO Xin, LIU Yiqun, ZHOU Dingwu, et al. Progress of research on “White Smoke Type” exhalative hydrothermal rocks [J]. Advances in Earth Science, 2013, 28(2): 221-232. doi: 10.11867/j.issn.1001-8166.2013.02.0221
|
[6] |
王先彬, 郭占谦, 妥进才, 等. 中国松辽盆地商业天然气的非生物成因烷烃气体[J]. 中国科学 D辑: 地球科学, 2009, 52(2):213-226 doi: 10.1007/s11430-009-0015-1
WANG Xianbin, GUO Zhanqian, TUO Jincai, et al. Abiogenic hydrocarboris in commercial gases ftom the Songliao Basin, China [J]. Science China Ser D: Earth Science, 2009, 52(2): 213-226. doi: 10.1007/s11430-009-0015-1
|
[7] |
Fryer P. Serpentinite mud volcanism: observations, processes, and implications [J]. Annual Review of Marine Science, 2012, 4: 345-373. doi: 10.1146/annurev-marine-120710-100922
|
[8] |
Kelley D S, Karson J A, Früh-Green G L, et al. A serpentinite-hosted ecosystem: the lost city hydrothermal field [J]. Science, 2005, 307(5714): 1428-1434. doi: 10.1126/science.1102556
|
[9] |
Russell M J, Hall A J, Martin W. Serpentinization as a source of energy at the origin of life [J]. Geobiology, 2010, 8(5): 355-371. doi: 10.1111/j.1472-4669.2010.00249.x
|
[10] |
Fryer P, Wheat C G, Williams T, et al. Expedition 366 summary[M]//Fryer P, Wheat C G, Williams T, et al. Proceedings of the International Ocean Discovery Program. College Station, TX: International Ocean Discovery Program, 2018, 366: 1-23.
|
[11] |
Schwarzenbach E M. RESEARCH FOCUS: Serpentinization and the formation of fluid pathways [J]. Geology, 2016, 44(2): 175-176. doi: 10.1130/focus022016.1
|
[12] |
Fryer P, Ambos E L, Hussong D M. Origin and emplacement of Mariana forearc seamounts [J]. Geology, 1985, 13(11): 774-777. doi: 10.1130/0091-7613(1985)13<774:OAEOMF>2.0.CO;2
|
[13] |
Haggerty J A. Petrology and geochemistry of neocene sedimentary rocks from Mariana forearc seamounts: Implications for emplacement of the seamounts[C]//Keating B H, Fryer P, Batiza R, et al. Seamounts, Islands, and Atolls. Washington, DC: American Geophysical Union, 1987: 175-185.
|
[14] |
Frery E, Fryer P, Kurz W, et al. Episodicity of structural flow in an active subduction system, new insights from mud volcano's carbonate veins – Scientific Ocean drilling expedition IODP 366 [J]. Marine Geology, 2021, 434: 106431. doi: 10.1016/j.margeo.2021.106431
|
[15] |
Grimmer J C, Greiling R O. Serpentinites and low-K island arc meta-volcanic rocks in the Lower Köli Nappe of the central Scandinavian Caledonides: Late Cambrian–early Ordovician serpentinite mud volcanoes in a forearc basin? [J]. Tectonophysics, 2012, 541-543: 19-30. doi: 10.1016/j.tecto.2012.03.014
|
[16] |
Lockwood J P. Sedimentary and gravity-slide emplacement of serpentinite [J]. GSA Bulletin, 1971, 82(4): 919-936. doi: 10.1130/0016-7606(1971)82[919:SAGEOS]2.0.CO;2
|
[17] |
Pons M L, Quitté G, Fujii T, et al. Early Archean serpentine mud volcanoes at Isua, Greenland, as a niche for early life [J]. Proceedings of the National Academy of Sciences of the United States of America, 2011, 108(43): 17639-17643. doi: 10.1073/pnas.1108061108
|
[18] |
Spaggiari C V, Gray D R, Foster D A. Formation and emplacement of the Dolodrook serpentinite body, Lachlan Orogen, Victoria [J]. Australian Journal of Earth Sciences, 2003, 50(5): 709-723. doi: 10.1111/j.1440-0952.2003.01021.x
|
[19] |
Yoshida K, Iba Y, Taki S, et al. Deposition of serpentine-bearing conglomerate and its implications for Early Cretaceous tectonics in northern Japan [J]. Sedimentary Geology, 2010, 232(1-2): 1-14. doi: 10.1016/j.sedgeo.2010.09.002
|
[20] |
李鸿莉, 冯俊熙, 佟宏鹏, 等. 台湾利吉蛇纹岩角砾碎屑岩地球化学特征及其指示意义[J]. 地球化学, 2020, 49(1):50-61
LI Hongli, FENG Junxi, TONG Hongpeng, et al. Geochemical characteristics and their indicative significance of serpentine breccia clasolites in Lichi, Taiwan, China [J]. Geochimica, 2020, 49(1): 50-61.
|
[21] |
Albers E, Kahl W A, Beyer L, et al. Variant across-forearc compositions of slab-fluids recorded by serpentinites: Implications on the mobilization of FMEs from an active subduction zone (Mariana forearc) [J]. Lithos, 2020, 364-365: 105525. doi: 10.1016/j.lithos.2020.105525
|
[22] |
Scambelluri M, Cannaò E, Gilio M. The water and fluid-mobile element cycles during serpentinite subduction. A review [J]. European Journal of Mineralogy, 2019, 31(3): 405-428. doi: 10.1127/ejm/2019/0031-2842
|
[23] |
Alt J C, Shanks Ⅲ W C. Stable isotope compositions of serpentinite seamounts in the Mariana forearc: Serpentinization processes, fluid sources and sulfur metasomatism [J]. Earth and Planetary Science Letters, 2006, 242(3-4): 272-285. doi: 10.1016/j.jpgl.2005.11.063
|
[24] |
Benton L D, Ryan J G, Tera F. Boron isotope systematics of slab fluids as inferred from a serpentine seamount, Mariana forearc [J]. Earth and Planetary Science Letters, 2001, 187(3-4): 273-282. doi: 10.1016/S0012-821X(01)00286-2
|
[25] |
Benton L D, Ryan J G, Savov I P. Lithium abundance and isotope systematics of forearc serpentinites, Conical Seamount, Mariana forearc: Insights into the mechanics of slab-mantle exchange during subduction [J]. Geochemistry, Geophysics, Geosystems, 2004, 5(8): Q08J12.
|
[26] |
Mottl M J. Pore waters from serpentinite seamounts in the mariana and izu-bonin forearcs, leg 125: evidence for volatiles from the subducting slab[M]//Fryer P, Pearce J A, Stokking L B, et al. Proceedings of the Ocean Drilling Program Scientific Results. College Station, TX: Ocean Drilling Program, 1992: 373-385.
|
[27] |
Mottl M J, Komor S C, Fryer P, et al. Deep-slab fluids fuel extremophilic Archaea on a Mariana forearc serpentinite mud volcano: Ocean drilling program leg 195 [J]. Geochemistry, Geophysics, Geosystems, 2003, 4(11): 9009.
|
[28] |
Mottl M J, Wheat C G, Fryer P, et al. Chemistry of springs across the Mariana forearc shows progressive devolatilization of the subducting plate [J]. Geochimica et Cosmochimica Acta, 2004, 68(23): 4915-4933. doi: 10.1016/j.gca.2004.05.037
|
[29] |
Wheat C G, Fryer P, Takai K, et al. SPOTLIGHT•South chamorro seamount [J]. Oceanography, 2010, 23(1): 174-175. doi: 10.5670/oceanog.2010.81
|
[30] |
Wheat C G, Seewald J S, Takai K. Fluid transport and reaction processes within a serpentinite mud volcano: South Chamorro Seamount [J]. Geochimica et Cosmochimica Acta, 2020, 269: 413-428. doi: 10.1016/j.gca.2019.10.037
|
[31] |
冯俊熙, 罗敏, 胡钰, 等. 海底蛇纹岩化伴生的碳酸盐岩研究进展[J]. 矿物岩石地球化学通报, 2016, 35(4):789-799 doi: 10.3969/j.issn.1007-2802.2016.04.019
FENG Junxi, LUO Ming, HU Yu, et al. Progress of the research on authigenic carbonates associated with oceanic serpentinization [J]. Bulletin of Mineralogy, Petrology and Geochemistry, 2016, 35(4): 789-799. doi: 10.3969/j.issn.1007-2802.2016.04.019
|
[32] |
Fryer P, Saboda K L, Johnson L E, et al. Conical seamount: SeaMARC II, Alvin submersible, and seismic reflection studies[M]//Fryer P, Pearce J A, Stokking L B, et al. Proceedings of the Ocean Drilling Program Initial Reports. College Station, TX: Ocean Drilling Program, 1990: 69-80.
|
[33] |
Haggerty J A, Chaudhuri S. Strontium isotopic composition of the interstitial waters from Leg 125: Mariana and bonin forearcs[M]//Fryer P, Pearce J A, Stokking L B, et al. Proceedings of the Ocean Drilling Program, Scientific Results. College Station, TX: Ocean Drilling Program, 1992: 397-400.
|
[34] |
Hulme S M, Wheat C G, Fryer P, et al. Pore water chemistry of the Mariana serpentinite mud volcanoes: A window to the seismogenic zone [J]. Geochemistry, Geophysics, Geosystems, 2010, 11(1): Q01X09.
|
[35] |
Klein F, Humphris S E, Bach W. Brucite formation and dissolution in oceanic serpentinite [J]. Geochemical Perspectives Letters, 2020, 16: 1-5. doi: 10.7185/geochemlet.2035
|
[36] |
Tran T H, Kato K, Wada H, et al. Processes involved in calcite and aragonite precipitation during carbonate chimney formation on Conical Seamount, Mariana Forearc: Evidence from geochemistry and carbon, oxygen, and strontium isotopes [J]. Journal of Geochemical Exploration, 2014, 137: 55-64. doi: 10.1016/j.gexplo.2013.11.013
|
[37] |
Stern R J, Smoot N C. A bathymetric overview of the Mariana forearc [J]. Island Arc, 1998, 7(3): 525-540. doi: 10.1111/j.1440-1738.1998.00208.x
|
[38] |
Haggerty J A. Evidence from fluid seeps atop serpentine seamounts in the Mariana forearc: Clues for emplacement of the seamounts and their relationship to forearc tectonics [J]. Marine Geology, 1991, 102(1-4): 293-309. doi: 10.1016/0025-3227(91)90013-T
|
[39] |
Fryer P, Mottl M J. Lithology, mineralogy, and origin of serpentine muds recovered from conical and torishima forearc seamounts[M]//Fryer P, Pearce J A, Stokking L B, et al. Proceedings of the Ocean Drilling Program, Scientific Results. College Station, TX: Ocean Drilling Program, 1992: 343-362.
|
[40] |
Oakley A J, Taylor B, Fryer P, et al. Emplacement, growth, and gravitational deformation of serpentinite seamounts on the Mariana forearc [J]. Geophysical Journal International, 2007, 170(2): 615-634. doi: 10.1111/j.1365-246X.2007.03451.x
|
[41] |
Fryer P, Gharib J, Ross K, et al. Variability in serpentinite mudflow mechanisms and sources: ODP drilling results on Mariana forearc seamounts [J]. Geochemistry, Geophysics, Geosystems, 2006, 7(8): Q08014.
|
[42] |
Taylor J C. Computer programs for standardless quantitative analysis of minerals using the full powder diffraction profile [J]. Powder Diffraction, 1991, 6(1): 2-9. doi: 10.1017/S0885715600016778
|
[43] |
Ludwig K A, Kelley D S, Butterfield D A, et al. Formation and evolution of carbonate chimneys at the Lost City Hydrothermal Field [J]. Geochimica et Cosmochimica Acta, 2006, 70(14): 3625-3645. doi: 10.1016/j.gca.2006.04.016
|
[44] |
Ohara Y, Reagan M K, Fujikura K, et al. A serpentinite-hosted ecosystem in the Southern Mariana Forearc [J]. Proceedings of the National Academy of Sciences of the United States of America, 2012, 109(8): 2831-2835. doi: 10.1073/pnas.1112005109
|
[45] |
Okumura T, Ohara Y, Stern R J, et al. Brucite chimney formation and carbonate alteration at the Shinkai Seep Field, a serpentinite-hosted vent system in the southern Mariana forearc [J]. Geochemistry, Geophysics, Geosystems, 2016, 17(9): 3775-3796. doi: 10.1002/2016GC006449
|
[46] |
Kelley D S, Karson J A, Blackman D K, et al. An off-axis hydrothermal vent field near the Mid-Atlantic Ridge at 30° N [J]. Nature, 2001, 412(6843): 145-149. doi: 10.1038/35084000
|
[47] |
王秀璋, 徐学炎. 我国发现的水菱镁矿特征及其成因的探讨[J]. 地质科学, 1965, 4:374-382
WANG Xiuchang, XU Xueyan. On the mineralogical properties and origin of hydromagneiste from China [J]. Scientia Geologica Sinica, 1965, 4: 374-382.
|
[48] |
Gharib J J. Clastic metabasites and authigenic minerals within serpentinite protrusions from the Mariana forearc: Implications for sub-forearc subduction processes[D]. Doctor Dissertation of University of Hawaii, 2006.
|
[49] |
Curtis A C, Wheat C G, Fryer P, et al. Mariana forearc serpentinite mud volcanoes harbor novel communities of extremophilic Archaea [J]. Geomicrobiology Journal, 2013, 30(5): 430-441. doi: 10.1080/01490451.2012.705226
|
[50] |
Yamanaka T, Mizota C, Satake H, et al. Stable isotope evidence for a putative endosymbiont-based lithotrophic Bathymodiolus sp. mussel community atop a serpentine seamount [J]. Geomicrobiology Journal, 2003, 20(3): 185-197. doi: 10.1080/01490450303876
|
[51] |
Peckmann J, Thiel V. Carbon cycling at ancient methane-seeps [J]. Chemical Geology, 2004, 205(3-4): 443-467. doi: 10.1016/j.chemgeo.2003.12.025
|
[52] |
Eickenbusch P, Takai K, Sissman O, et al. Origin of short-chain organic acids in serpentinite mud volcanoes of the mariana convergent margin [J]. Frontiers in Microbiology, 2019, 10: 1729. doi: 10.3389/fmicb.2019.01729
|
[53] |
Giampouras M, Garrido C J, Bach W, et al. On the controls of mineral assemblages and textures in alkaline springs, Samail Ophiolite, Oman [J]. Chemical Geology, 2020, 533: 119435. doi: 10.1016/j.chemgeo.2019.119435
|
[54] |
Königsberger E, Königsberger L C, Gamsjäger H. Low-temperature thermodynamic model for the system Na2CO3-MgCO3-CaCO3-H2O [J]. Geochimica et Cosmochimica Acta, 1999, 63(19-20): 3105-3119. doi: 10.1016/S0016-7037(99)00238-0
|
[55] |
Purgstaller B, Dietzel M, Baldermann A, et al. Control of temperature and aqueous Mg2+/Ca2+ ratio on the (trans-) formation of ikaite [J]. Geochimica et Cosmochimica Acta, 2017, 217: 128-143. doi: 10.1016/j.gca.2017.08.016
|
[56] |
Bayon G, Henderson G M, Bohn M. U-Th stratigraphy of a cold seep carbonate crust [J]. Chemical Geology, 2009, 260(1-2): 47-56. doi: 10.1016/j.chemgeo.2008.11.020
|
[57] |
Feng D, Chen D F, Peckmann J, et al. Authigenic carbonates from methane seeps of the northern Congo fan: Microbial formation mechanism [J]. Marine and Petroleum Geology, 2010, 27(4): 748-756. doi: 10.1016/j.marpetgeo.2009.08.006
|
[58] |
Ludwig K A, Shen C C, Kelley D S, et al. U–Th systematics and 230Th ages of carbonate chimneys at the Lost City Hydrothermal Field [J]. Geochimica et Cosmochimica Acta, 2011, 75(7): 1869-1888. doi: 10.1016/j.gca.2011.01.008
|
[59] |
Palandri J L, Reed M H. Geochemical models of metasomatism in ultramafic systems: serpentinization, rodingitization, and sea floor carbonate chimney precipitation [J]. Geochimica et Cosmochimica Acta, 2004, 68(5): 1115-1133. doi: 10.1016/j.gca.2003.08.006
|
[60] |
Teichert B M A, Eisenhauer A, Bohrmann G, et al. U/Th systematics and ages of authigenic carbonates from Hydrate Ridge, Cascadia Margin: recorders of fluid flow variations [J]. Geochimica et Cosmochimica Acta, 2003, 67(20): 3845-3857. doi: 10.1016/S0016-7037(03)00128-5
|
[61] |
刘长华, 曾志刚, 殷学博. 现代海底热液硫化物烟囱体的生长模式研究现状[J]. 海洋科学, 2006, 30(5):71-73 doi: 10.3969/j.issn.1000-3096.2006.05.014
LIU Changhua, ZENG Zhigang, YIN Xuebo. Current research on chimneys growth model of modern sea-floor hydrothermal sulfide [J]. Marine Science, 2006, 30(5): 71-73. doi: 10.3969/j.issn.1000-3096.2006.05.014
|
1. |
热西提·亚力坤,单玄龙,郝国丽,李康. 珠江口盆地西江主洼泥-流体底辟及其发育条件. 海洋地质前沿. 2023(07): 58-69 .
![]() | |
2. |
罗静兰,李弛,雷川,曹江骏,宋昆鹏. 碎屑岩储集层成岩作用研究进展与热点问题讨论. 古地理学报. 2020(06): 1021-1040 .
![]() | |
3. |
XIE Yangbing,WU Tuoyu,SUN Jin,ZHANG Hanyu,WANG Jiliang,GAO Jinwei,CHEN Chuanxu. Sediment Compaction and Pore Pressure Prediction in Deepwater Basin of the South China Sea: Estimation from ODP and IODP Drilling Well Data. Journal of Ocean University of China. 2018(01): 25-34 .
![]() |
|
4. |
谢杨冰,吴时国. 南海深水海盆沉积物压实作用及影响因素. 海洋地质与第四纪地质. 2017(03): 37-46 .
![]() |