中国海域前新生代地层分布及其油气勘查方向

陈建文, 杨长清, 张莉, 钟广见, 王建强, 吴飘, 梁杰, 张银国, 蓝天宇, 薛路

陈建文,杨长清,张莉,等. 中国海域前新生代地层分布及其油气勘查方向[J]. 海洋地质与第四纪地质,2022,42(1): 1-25. DOI: 10.16562/j.cnki.0256-1492.2021101401
引用本文: 陈建文,杨长清,张莉,等. 中国海域前新生代地层分布及其油气勘查方向[J]. 海洋地质与第四纪地质,2022,42(1): 1-25. DOI: 10.16562/j.cnki.0256-1492.2021101401
CHEN Jianwen,YANG Changqing,ZHANG Li,et al. Distribution of Pre-Cenozoic strata and petroleum prospecting directions in China Seas[J]. Marine Geology & Quaternary Geology,2022,42(1):1-25. DOI: 10.16562/j.cnki.0256-1492.2021101401
Citation: CHEN Jianwen,YANG Changqing,ZHANG Li,et al. Distribution of Pre-Cenozoic strata and petroleum prospecting directions in China Seas[J]. Marine Geology & Quaternary Geology,2022,42(1):1-25. DOI: 10.16562/j.cnki.0256-1492.2021101401

中国海域前新生代地层分布及其油气勘查方向

基金项目: 国家专项海洋地质调查项目(DD20190818, DD20190211, DD20190212, DD20190213, DD20211353, DD20160152, DD20160153, DD20160154, DD20160155);国家自然科学基金面上项目“南黄海崂山隆起二叠系储层油气成藏破坏与流体演化过程还原研究”(42076220);国家自然科学基金青年基金“二连盆地下白垩统富火山组分的咸水湖相烃源岩地质地球化学特征及其有机质富集机制”(42102188);山东省自然科学基金面上项目“南黄海盆地崂山隆起石炭系油气保存条件的主控因素分析”(ZR2020MD071);山东省自然科学基金青年基金项目“二连盆地下白垩统小型断陷湖盆的咸化特征及其有机质富集机制”(ZR2021QD095);青岛海洋科学与技术试点国家实验室“十四五”重大科技项目课题(2021QNLM020001-01,2021QNLM020001-04)
详细信息
    作者简介:

    陈建文(1965—),男,博士,研究员,从事海域油气资源调查评价与研究,E-mail:jwchen2012@126.com

  • 中图分类号: P736

Distribution of Pre-Cenozoic strata and petroleum prospecting directions in China Seas

  • 摘要: 经过60年的油气调查与勘探,随着中国近海新生代盆地的勘探程度不断提高,油气发现难度逐渐加大,海洋油气勘探新领域的开拓成为当务之急。近年来的调查与勘探发现,中国海域前新生代盆地残留地层具有如下特征:① 厚度大,一般为4000~6000 m,最大厚度超过9000 m;② 分布广,有渤海、北黄海、南黄海、东海-南海北部和南海南部5大分布区;③ 存在新元古界、下古生界、上古生界、中生界“下部层系”、中生界“中部层系”和中生界“上部层系”6套地层;④ 可划分东海-南海型和渤海-黄海型两类层型结构,前者仅由“单一”的中生代地层组成,后者由新元古界-古生界-中生界“叠合”构成;⑤ 发育下寒武统、下志留统、石炭系、二叠系、侏罗系和白垩系6套烃源岩,其中下寒武统、下志留统和二叠系烃源岩有机质丰度高,侏罗系烃源岩分布最广;⑥ 具有孔隙型、裂缝改造型和风化壳型3类储层,其中,孔隙型储层包括白云岩、礁滩相碳酸盐岩和砂岩储层,裂缝型储层与大型断裂带和挤压构造带伴生,风化壳储层可分前寒武系变质岩和混合花岗岩、古生代碳酸盐岩、中生代火山岩以及花岗岩、中生代碎屑岩4亚类,其物性及分布主要受构造作用、风化淋滤作用和埋藏条件3种因素控制;⑦ 具备“古生古储”、“古生中储”、“古生新储”、“中生中储”、“中生新储”和“上生下储”6类成藏组合。综合分析认为:中国海域前新生界油气前景广阔,南黄海海相中-古生界、东海南部-南海北部海域中生界、新生代富生烃凹陷内的潜山是中国海洋油气下一步勘查方向;北黄海盆地坳陷区的中生界和渤海海域的前新生界“自生自储”油气藏值得重视。
    Abstract: After 60 years of oil and gas investigation and exploration, the exploration degree of Cenozoic basins and the difficulty of oil and gas discovery in offshore China has increased, and the development of new fields for offshore oil and gas exploration has become an urgent task. Surveys and explorations in recent years have found that characteristics of the residual strata in the Pre-Cenozoic basins in offshore China could be summarized as follows: ① Huge thickness. The thickness of the Pre-Cenozoic varies in the range of 4000~6000 m with a maximum over 9000 m; ② Wide distribution. Pre-Cenozoic Strata are found in five major areas, i.e. the Bohai Sea, the North Yellow Sea, the South Yellow Sea, the East China Sea–the northern South China Sea and the southern South China Sea from north to south; ③ Six sets of strata, which include the Neoproterozoic, the Lower Paleozoic, the Upper Paleozoic, the Lower Mesozoic, the Middle Mesozoic, and the Upper Mesozoic; ④ Two types of stratigraphic architectures, i.e. the type of East China Sea-South China Sea composed only by the Mesozoic, and the type of Bohai-Yellow Sea superimposed by the Neoproterozoic, Paleozoic, and Mesozoic; ⑤ Six sets of source rocks, which include the Lower Cambrian, the Lower Silurian, the Carboniferous, the Permian, the Jurassic, and the Cretaceous source rocks, among which the Lower Cambrian, the Lower Silurian, and the Permian source rocks have the highest organic matter content, and the Jurassic source rocks distribute the most widely; ⑥ Three kinds of reservoirs, namely the porous reservoirs, the fracture-modified reservoirs, and the weathering crust reservoirs. The porous reservoirs mainly consist of dolomite, reef-bank carbonate, and sandstone, and the fracture-modified reservoirs are often associated with large fault zones and/or compressive structural zones, and the weathering crust reservoirs can be further divided into four sub-types: Precambrian metamorphic rocks and magmatic granite, Paleozoic carbonate rocks, Mesozoic volcanic rocks and granite, and Mesozoic clastic rocks. The physical properties and distribution of reservoirs are mainly controlled by tectonics, weathering and leaching process, and burial conditions; ⑦ Six types of plays from the Paleozoic source to the Paleozoic reservoir, from the Paleozoic source to the Mesozoic reservoir, from the Paleozoic source to the Cenozoic reservoir, from the Mesozoic source to the Mesozoic reservoir, from the Mesozoic source to the Cenozoic reservoir, and from the Cenozoic source to the Pre-Cenozoic reservoirs. In conclusion, the Pre-Cenozoic petroleum has great potential and broad prospects in China Seas. Next exploration targets should be focused on the marine Mesozoic-Paleozoic in the South Yellow Sea, the Mesozoic-Cenozoic in the southern East China Sea and the northern South China Sea, and the buried hills in Cenozoic hydrocarbon-rich depressions. The Mesozoic in the North Yellow Sea and the self-generating source to self-storing reservoirs in the Pre-Cenozoic of the Bohai Sea should be paid attention.
  • 深海铁锰结核生长速率慢、赋存时间长,能有效记录海域内长周期重大地质事件和环境信息,且富含Cu、Co、Ni、Mn、Mo、稀土元素及钇(REY)等有用组分,可为人类社会发展提供重要的金属矿产资源[1-3]。铁锰结核一般由环绕内核的同心薄圈层逐次包裹而成,外层主要为铁的羟基氧化物和锰氧化物,含有少量的碎屑矿物,内核则可能是岩石、固结的沉积物、生物骨骼、自生矿物、年龄较老的结核以及这些物质的碎块等[1,3]。外层铁锰相物质在形成过程中会大量吸附周边海水或孔隙水内的金属物质,并通过氧化还原反应将这些物质固定在结核铁锰相纹层内,从而富集成矿[1-2]

    铁锰结核在全球各大洋、边缘海甚至湖泊中均有出露,但具有资源潜力的结核主要分布在水深约4 000~6 500 m的深海盆内[1]。太平洋是目前全球铁锰结核分布站位最多、赋存规模最大的大洋,目前已知的最具开发利用前景的5个铁锰结核成矿区,除一个位于中印度洋海盆内,其余CCZ(克拉里昂−克里伯顿断裂带)、CI(库克群岛海域及彭林海盆)、PB(秘鲁海盆)以及我国北京先驱高技术开发公司2019年获批的面积约7.4×104 km2的勘探矿区都位于太平洋内[2-4]。作为西太平洋最大的弧后盆地,前人20世纪初就曾在帕里西维拉海盆中央和西部海域内的拖网样品中发现过铁锰结核[5],后续海洋调查航次利用无缆抓斗、拖网、箱式取样器以及重力柱取样器在海盆及周边海域内发现了多处结核[6-14],甚至深海钻探计划(DSDP)也在海盆西侧水深4 712 m的449站位岩心表层发现了铁锰结核样品[15],但海盆西侧边缘与帕劳海脊相邻区域内的铁锰结核还鲜有发现(图1)。

    图  1  帕里西维拉海盆及周边海域内铁锰结核的分布
    前人发现的铁锰结核分布信息源自文献[5-15]。
    Figure  1.  Locations of the ferromanganese nodules in the Parece Vela Basin and adjacent oceans
    The distribution information of the ferromanganese nodules previously discovered is from the references [5-15].

    最近,中国地质调查局青岛海洋地质研究所组织的海洋环境地质调查航次在帕里西维拉海盆西缘中段靠近帕劳海脊的海域内首次采集到12个站位的铁锰结核样品,丰富了海盆内铁锰结核的分布信息。通过对这些样品的测试分析,揭示它们的成分特征,剖析成因类型和金属富集模式,并与全球主要铁锰结核成矿区内的样品进行比较研究,以探究这些不同海域内结核主要有用组分间的差异及关键控制因素。

    帕里西维拉海盆是西太平洋最大的弧后盆地,北部以索夫干断裂带为界[16-17],南部延伸到雅浦岛弧和马里亚纳岛弧,东西两侧分别为耸立于海底的帕劳海脊和西马里亚纳弧。帕里西维拉海盆初始形成于原伊豆−小笠原−马里亚纳弧在距今约30~29 Ma发生的近东西向弧后扩张,在约20~19 Ma 时扩张方向转变为北东—南西向,距今约15 Ma大规模扩张停止[17-19]。此后,海盆扩张中心处还发生过局部岩浆事件[20-21],可能会对海盆内各区域接受稳定沉积造成不同程度的影响。

    帕里西维拉海盆西缘中段区域从西向东倾斜变深,水深约4 000~5 500 m,坡脚普遍发育早期张裂作用阶段形成的谷地,导致海底地形起伏多变[22]。区域内DSDP59航次449孔111 m的沉积物岩心显示,沉积序列从顶到底可分为5层[15]。最上层40.9 m的沉积物为中中新世到更新世的黑褐色—黄褐色远洋黏土。其下第2层为6.6 m的中中新世含火山玻璃和浮岩的黑黄褐色放射虫软泥。第3层为11.0 m的中中新世黄褐色—黑褐色富放射虫的远洋黏土和黄色—黄褐色含放射虫和浮岩的微体古生物软泥。第4层为38.7 m的早—中中新世黑黄褐色含火山灰远洋黏土。最下层为13.8 m已经部分成岩的晚渐新世—早中新世微体古生物软泥,其下覆拉斑玄武岩。帕里西维拉海盆内分布着沿逆时针方向流动,可携带大量物质的底层流,原位测量流速可达10~15 cm/s,且在海盆西部边缘本研究区内的长周期监测数据也证实了该底层流的存在[23]。区域内的底层流受到南下的北太平洋深层水的影响,同时也通过雅浦海沟等深水道与北上的南极底层流进行交换[23-24]

    本文研究的铁锰结核样品位置信息见图1。这12个站位铁锰结核分布在帕里西维拉海盆西侧边缘中段海域内,离帕劳海脊最近的站位水深最浅,为3 947 m,远离海脊的站位水深较深,最大水深值为5 146 m,平均水深4 757 m。这些分布在沉积物表层的铁锰结核样品表面普遍较为光滑,铁锰相纹层厚薄不一,内核部位以硅酸盐相物质为主。结核样品多见椭球状、连生状等形态,大小不一,多数位于3~6 cm的中等大小范围内[25]

    铁锰结核全样样品的化学成分测试分析工作在自然资源部海洋地质实验检测中心完成。将样品进一步干燥磨碎至200目(约0.075 mm)后,加入45Li2B4O7+10LiBO2+5LiF混合熔剂,充分混合后在1 070 ℃条件下高温熔融。然后将熔融物倒入95%Pt+5%Au的合金坩埚模子制备玻璃样片,再用Axios PW4400 X射线荧光光谱仪分析Si、Al、Fe、Ca、Mg、K、Na、P、Mn、Ti这10种元素的含量。此外,将200目粉末样品加入NaOH溶液,置于已升温至700 ℃的高温炉中熔融10 min,取出冷却后,用水提取,形成氢氧化物沉淀,加三乙醇胺掩蔽Fe、Al,加EDTA溶液络合Ca、Ba,过滤。将氢氧化物沉淀溶于2 mol/dm盐酸,经强酸性阳离子交换树脂分离富集后,再用5 mol/dm盐酸洗涤,将淋洗液蒸发、定容后采用Thermo X Series 2等离子体质谱仪测定Co、Ni、Cu、Mo和REY等微量元素的含量。为了监控测试准确度和精密度,检测过程参考了国标《GB/T20260—2006海底沉积物化学分析方法》[26],并分别进行20%的重复样分析以及基体性质一致的国家一级标准物质同步分析,分析元素含量检测相对误差小于5%,分析结果准确可靠。

    根据离子半径的差异,本文借鉴文献[27]的分类方法将铁锰结核内的REY分为轻稀土(LREY:La-Nd)、中稀土(MREY:Sm-Dy)和重稀土(HREY:Y-Ho-Lu)3类。利用PAAS(后太古界澳大利亚页岩)数据来完成稀土元素的标准化处理[28],Ce和Y异常特征的计算见公式(1)和(2)。在本文中,将Ce/Ce* 和Y/Y*<0.9定义为负异常,0.9~1.1定义为无异常,>1.1定义为正异常。

    $$\frac{{{\rm{Ce}}}}{{{\rm{C}}{{\rm{e}}^{\rm{*}}}}} = \frac{{2{\rm{*C}}{{\rm{e}}_{{\rm{SN}}}}}}{{\left( {{\rm{L}}{{\rm{a}}_{{\rm{SN}}}} + {\rm{P}}{{\rm{r}}_{{\rm{SN}}}}} \right)}}$$ (1)
    $$\frac{{\rm{Y}}}{{{{\rm{Y}}^{\rm{*}}}}} = \frac{{2{\rm{*}}{{\rm{Y}}_{{\rm{SN}}}}}}{{\left( {{\rm{D}}{{\rm{Y}}_{{\rm{SN}}}} + {\rm{H}}{{\rm{o}}_{{\rm{SN}}}}} \right)}}$$ (2)

    式中,CeSN、YSN等表示用样品的Ce、Y含量除以PAAS的Ce、Y含量得出的值。

    本研究区内铁锰结核的主量元素成分变化较大。铁锰结核中丰度最大的金属元素是Mn和Fe,它们在本区样品中的含量为8.20%~25.24%和10.63%~22.18%,平均值为18.53%和15.72%,Mn/Fe为0.73~2.24,平均值为1.18。Si和Al的含量次之,分别为5.89%~16.19%和2.96%~6.56%,平均值为9.21%和4.79%。本区水深较深,大部分站位位于碳酸盐补偿深度以下[29-30],所以铁锰结核中Ca的含量较低,为1.24%~2.93%,平均值2.04%。其余K、Na、Mg等碱金属和碱土金属的含量也较低,为0.81%~2.02%、2.07%~3.63%和1.46%~2.75%,平均值分别为1.27%、2.98%和2.04%。此外,本区样品内还赋存有相当数量的Ti和P,含量分别为0.45%~1.88%和0.12%~0.32%,平均值为1.15%和0.22%。

    Cu、Co、Ni是铁锰结核中最具经济潜力的有用组分,它们在本区样品中的含量分别为(756~3 058)×10−6、(617~2 739)×10−6和(1 142~5 411)×10−6,平均值为1 781×10−6、1 180×10−6和3 255×10−6。REY也是铁锰结核中重要的伴生有益组分,但轻、中、重3类REY的含量迥异。ΣLREY含量相对较高,为(324~1 505)×10−6、平均值为889×10−6。ΣMREY和ΣHREY的含量较低,分别为(40~167)×10−6和(50~209)×10−6,平均值为105×10−6和141×10−6。ΣREY的含量为(415~1 850)×10−6,平均值为1 135×10−6。REY标准化配分模式中Ce和Y的异常程度明显,Ce/Ce*为1.42~2.07,平均值为1.77,属于明显正异常。Y/Y*为0.57~0.70,平均值为0.62,展示出明显负异常的分布特征。此外,本区铁锰结核样品内还含有相当数量的Mo,其含量为(115.0~308.1)×10−6,平均值为212.8×10−6

    深海铁锰结核的形成生长通常主要源自水生成因作用和成岩成因作用,此外,诸如海底热液活动以及微生物活动等也可能给结核贡献一定量的组分[1,3]。目前学术界已经建立了多种方法来划分铁锰结核的成因类型,早期主要使用Fe、Mn、Co、Ni、Cu等高含量金属元素的组合来绘制三角图以进行辨析[31-33]。近期的统计研究发现,水成型结核一般具有Ce正异常、Y负异常以及高Nd含量(>100×10−6)的特征,而成岩型结核的Ce和Y通常都为负异常,Nd的含量为(10~100)×10−6,热液型结核则更多地呈现出Ce负异常,Y正异常,Nd含量低于10×10−6的特征[34]。基于此,使用Ce、Nd、Y、Ho等低含量REY绘制散点图,能更高效准确地将多种结核的成因类型区分开[34-35]

    本文铁锰结核样品的REY标准化配分模式见图2,成因类型划分见图3。从图中可以看出,本区内铁锰结核样品的Ce和Y均分别展示出强正异常和强负异常的分布特征,Nd的含量较高,符合水生成因的各项指标参数,表明区内的结核样品主要是由水生作用形成的,缺乏成岩成因组分和热液成因组分的供给。这些铁锰结核样品的REY标准化配分模式与海水具有明显的镜像对称特征,这是因为+3价REY的分布代表着海水中溶解性REY络合物(大部分为碳酸盐络合物)与赋存在铁锰羟基氧化物表面的REY络合物之间的交换平衡,且这种平衡在短时间内就能实现[36-37],从而也表明本区铁锰结核样品内的REY主要来自海水。此外,本研究区在形成后并未遭受大规模海底热液来源物质的持续输入,铁锰结核样品的Mn/Fe均低于2.3,缺乏沉积物孔隙水内高含量Mn的供给,未能展示出成岩型铁锰结核内Mn、Fe之间强烈分异的典型特征,因此,完全符合水成型铁锰结核通常Mn/Fe≤5的特征[38-39]

    图  2  铁锰结核REY的PAAS标准化配分模式
    为便于显示,将海水的REY值扩大106倍;PAAS的稀土元素含量引自文献[28]。海水的REY含量数据选择与本研究区邻近且水深层位相近的海水的值,其中REE数据引自文献[40],采样区域为本研究区东面的西太平洋,水深5 660 m;Y数据引自文献[41],采样区域为西南太平洋东加罗林海盆,水深5 149 m。
    Figure  2.  Shale normalized rare earth elements and yttrium contents of the ferromanganese nodules from the research aera
    To facilitate the display in the diagram, the REY contents of the seawater are expanded by 106 times; PAAS data is from the reference [28]. The REY data of the seawater is from the reference [40], the sampling area with the water depth of 5 660 m is in the western Pacific Ocean close the study area, which is similar to the distribution depth of the samples in this paper. Y data of the seawater is from the reference [41], and the sampling area is in the east Caroline Basin of the southwest Pacific Ocean, with the water depth of 5 149 m.
    图  3  铁锰结核REY成因类型判别
    底图引自文献[34, 42]。
    Figure  3.  Discriminating between different genetic types of the ferromanganese nodules from the research aera based on rare earth elements and yttrium
    Discrimination plots are modified from the references [34,42].

    通常认为深海铁锰结核中的胶体态铁锰羟基氧化物会首先直接从水体中沉淀出来,然后带负电荷的MnO2胶体主要对水体中的溶解态阳离子进行吸附,而带微弱正电荷的无定形FeOOH则更多地吸附诸如碳酸盐、氢氧化物和含氧阴离子等阴离子和中性络合物[2-3,42]。这些无定形或胶体态的铁锰羟基氧化物具有非常高的活性比表面积,因此对周边水体中的溶解态物质的清扫效率极高,溶解在海水中的含金属物质在进入锰氧化物和铁的羟基氧化物体内前先与其功能基团进行表面络合反应[1]。锰氧化物和铁的羟基氧化物对水体内各金属的捕获能力可以部分通过表1中各元素含量间皮尔逊相关系数值的高低来得以检验。

    表  1  铁锰结核内主量元素及主要有用组分间的相关系数矩阵
    Table  1.  Pearson correlation coefficient matrix for major and valuable metal elements contained in the studied ferromanganese nodules
    AlCaFeKMgMnNaSiTiPCoCuMo
    Ca0.01
    Fe−0.120.91
    K0.57−0.42−0.54
    Mg−0.24−0.77−0.610.22
    Mn−0.780.170.30−0.500.33
    Na0.27−0.32−0.380.690.52−0.01
    Si0.60−0.59−0.710.670.05−0.850.13
    Ti−0.100.850.88−0.56−0.600.23−0.25−0.68
    P−0.290.850.91−0.64−0.480.43−0.29−0.830.92
    Co−0.51−0.17−0.09−0.380.190.190.00−0.250.250.25
    Cu−0.61−0.49−0.35−0.210.790.670.21−0.33−0.38−0.140.32
    Mo−0.550.230.27−0.580.260.89−0.06−0.800.270.410.120.60
    Ni−0.53−0.28−0.17−0.480.620.580.01−0.44−0.060.120.530.840.66
    下载: 导出CSV 
    | 显示表格

    主要有用组分Cu、Ni具有相似的富集模式,它们与Mn均具有较好的协同变化关系,而与Fe、Si、Al呈现强弱不一的负相关关系,表明Cu、Ni主要被锰氧化物所吸附而富集,在硅酸盐相内核中相对亏损。Co与Cu、Ni不同,它与Mn、Fe、Si、Al等主量元素的相关性均不佳,暗示Co可能分散赋存在铁锰羟基氧化物纹层以及硅酸盐相内核等结核的内外部位中。前人研究显示,Co主要富集在锰氧化物内[1-3,43],而本文样品Co元素出现分散分布的特征,可能是因为锰氧化物中的Co相对于铁的羟基氧化物或结核的硅酸盐内核部位不具有明显富集优势,使得Co与Mn之间并未展示出较好的相关性,这也可从本文结核样品较低的Co含量特征得以部分印证。高场强元素Ti与Fe的相关系数值高达0.88,远高于Ti与Mn、Si、Al的值,表明本区铁锰结核样品中高含量的Ti主要富集在铁的羟基氧化物内,海水中不带电荷的溶解态Ti(OH)40易与带弱电荷的铁的羟基氧化物通过共价键结合在一起,且铁的羟基氧化物表面高效的络合反应有利于Ti的稳定富集,此外含Ti相颗粒物质在结核表面的沉淀堆积也为Ti的富集有所贡献[1-2]。Mo与Cu、Ni类似,它与Mn和Si分别呈现出强正相关关系和强负相关关系,而与Fe、Al等其他主量元素的相关性较差,表明本文结核中的Mo主要被锰氧化物所清扫,这与EXAFS(X射线吸收精细结构)和Mo同位素的研究结果相一致[44-45]。此外,不管是从富集因素还是结构分析(例如EXAFS和XANES(X射线近边精细结构))的角度来看,都没有迹象表明Mo在进入锰氧化物载体相的过程中经历过表面氧化反应,这是因为Mo通常以最高价态(Mo6+)赋存在海水和铁锰结核内,它们进入铁锰结核的机制是表面络合或晶格融合,而非氧化还原反应[1]。而Cu、Ni、Co、Ti等有用组分在初始进入铁锰结核内时一般主要受共价键的控制,随着时间的推移则会有部分物质转变为受强化学键的控制,从而导致这些物质进入氧化物的晶格内,就如同在对水成型结核内的Ni所进行的X射线吸收光谱实验中看到的一样[46]

    本区铁锰结核样品REY的PAAS标准化配分模式十分一致(图2),12个站位样品均展示出明显的Ce正异常和Y负异常的分布特征。Ce除了具有稀土元素常见的+3价态外,还可以呈现出+4价态。因此,在氧化性环境下,铁锰结核捕获了Ce3+后,容易将其部分氧化成+4价态,Ce4+会以CeO2等难溶解形式堆积在结核表面而不再具有活性,几乎不参与铁锰结核与海水的REY交换反应,且铁锰结核还可以从海水中直接捕获Ce4+物质,而其他REY则不具备此类特征[47-49]。因此,随着时间的推移,对周边水体中Ce的这种氧化性清扫会导致作为氧化还原敏感示踪剂的Ce相对于非氧化还原敏感示踪剂的其他REY的日益富集,从而使得Ce的正异常程度逐步增大。与之相反,Y呈现出负异常则是因为铁锰结核从周边水体中吸附的Y在其体内存在形式不稳定,容易发生解吸而相对于其他REY呈现出亏损的特征[48,50]

    铁锰结核内REY与主量元素间的相关系数值见表2。从表中可以看出,REY内各元素与主量元素间展示出极为相似的协同变化特征,暗示了铁锰结核内的REY具有相对一致的地球化学特征和迁移富集模式。ΣREY与Fe、Ca、P、Ti具有强正相关关系,R≥0.92,与其他元素相关性较差或呈明显负相关关系,由此表明REY主要富集在铁的羟基氧化物内,而非锰氧化物或硅酸盐相内核中。本区内分布的铁锰结核主要为水成型,其铁的羟基氧化物对周边水体内以碳酸盐络合物等形式存在的REY的强力清扫是REY与Fe呈现强正相关关系的主要原因[2-3]。本文研究的铁锰结核样品分布水深较深,结核内的Ca主要不以碳酸盐形式存在,而可能部分以生物成因的磷灰石等钙磷酸盐碎屑组分以及自生成因钙磷酸盐等形式存在[27,51],而后者往往就主要赋存在铁的羟基氧化物内。研究表明,深海沉积物或铁锰结核中的钙磷酸盐通常含量不高,但却能容纳大量的REY[1,27,51]。铁锰结核在漫长的生长过程中,体内的+1价元素(如Na+等)和REY3+会与离子半径相似的Ca2+发生耦合置换反应,从而在钙磷酸盐体内保存大量的晶格态REY,使得Ca、P与REY之间存在极佳的相关关系[27,51]。此外,铁锰结核中可能存在的重结晶作用还会释放出部分REY[48],使得这些REY在漫长的地质作用过程中遭受不同程度的迁移活化,从而共同导致铁锰结核内REY含量存在不同分布以及与Fe、Ca、P等元素的相关关系发生变化。铁的羟基氧化物对Ti的富集吸附,使得REY与Ti存在伴生关系而呈现出良好的相关性。

    表  2  铁锰结核内REY与主量元素间的相关系数矩阵
    Table  2.  Pearson correlation coefficient matrix for REY and major elements contained in the studied ferromanganese nodules
    AlCaFeKMgMnNaPSiTi
    La−0.150.920.93−0.63−0.660.29−0.360.95−0.730.97
    Ce−0.140.890.92−0.58−0.680.22−0.350.93−0.670.98
    Pr−0.130.920.93−0.63−0.680.25−0.390.95−0.700.96
    Nd−0.120.920.94−0.62−0.670.27−0.370.95−0.710.96
    Sm−0.080.940.95−0.60−0.680.25−0.380.95−0.700.94
    Eu−0.120.920.94−0.62−0.630.28−0.340.96−0.730.96
    Gd−0.100.940.96−0.60−0.670.28−0.360.95−0.720.95
    Tb−0.090.940.95−0.60−0.650.29−0.360.95−0.720.94
    Dy−0.090.930.93−0.61−0.620.31−0.330.95−0.740.94
    Y0.000.940.91−0.55−0.660.26−0.320.91−0.690.90
    Ho−0.070.940.94−0.58−0.630.32−0.320.93−0.740.92
    Er−0.090.940.93−0.59−0.620.34−0.320.93−0.750.92
    Tm−0.110.930.92−0.61−0.580.36−0.300.95−0.770.93
    Yb−0.090.930.92−0.60−0.590.36−0.300.94−0.760.92
    Lu−0.110.920.91−0.62−0.570.36−0.300.94−0.770.93
    ΣREY−0.130.920.94−0.60−0.680.25−0.350.95−0.700.98
    下载: 导出CSV 
    | 显示表格

    通过与CCZ、CIOB、PB和CI等全球主要铁锰结核成矿区内样品成分的比较研究(图4),发现帕里西维拉海盆西缘中段铁锰结核样品的Co平均含量位居第3,高于PB,和CIOB相当,明显低于CCZ和CI,而Ni和Cu的平均含量则均为最低。Co+Ni+Cu的平均值仅为0.62%,远低于CCZ(2.58%)、CIOB(2.25%)和PB(1.95%),也逊色于CI(0.98%)。Mn的平均含量(18.5%)比PB(34.2%)、CCZ(28.4%)和CIOB(24.4%)低,仅略高于CI(16.9%),而Mo的平均含量(213×10−6)极低,仅分别是CIOB、CCZ、PB和CI的35.5%、36.1%、38.9%和72.2%。本区铁锰结核缺乏成岩成因组分的供给,使得样品内Ni、Cu、Mn、Mo等过渡金属的含量极低[1-3]。但本区铁锰结核样品的Ti含量较高(1.15%),其平均值分别是CIOB(0.42%)、CCZ(0.32%)和PB(0.16%)的2.7、3.6和7.2倍,接近以Ti含量高而闻名的CI(1.28%)。此外,本区样品的ΣREY平均含量(1 135×10−6)也较高,仅比CI低(1 678×10−6),高于CIOB(1 039×10−6)、CCZ(813×10−6)和PB(403×10−6)。本区铁锰结核样品内Ti和ΣREY的较高含量与其主要为水生成因密不可分[1-3]

    图  4  本文研究区与全球主要成矿区内铁锰结核的主要有用组分平均含量对比
    CCZ、CIOB、PB和CI铁锰结核样品的成分数据引自文献[2]。
    Figure  4.  Mean contents of the valuable metals in the ferromanganese nodules from the research aera and the high potential areas of the global ocean
    The contents of the valuable metals in the ferromanganese nodules from the CCZ, CIOB, PB and CI are from the reference [2].

    制约深海铁锰结核主要成矿元素富集的因素很多,包括赋存区域构造运动停止时间、陆源物质影响程度、沉积速率、结核成核和成矿物质供给、水深地形条件、底层流活动以及(微)生物作用等[52-53]。帕里西维拉海盆西缘中段海域远离陆地,沉积速率较低[54],铁锰结核分布水深大部分位于本区碳酸盐补偿深度附近及以深区域[29-30],这有利于避免结核在形成过程中陆源碎屑和钙质碳酸盐物质大量混入稀释,而造成有用组分含量的急剧降低。但包括研究区在内的帕里西维拉海盆形成年代较晚,留给铁锰结核缓慢生长发育的时间不足,海盆东、西、南三面被高耸的岛弧包围,缺乏与外界连通的大型水道,阻碍了诸如来自南极的低温、富氧、高密度底层流的大规模进入,这既不利于形成强氧化性的有利成矿环境和给铁锰结核提供丰富的成矿物质,也不利于冲刷沉积物,使得结核保持与周边水体的充分接触从而吸附足够的有用组分[1, 55-56]。此外,研究区内的铁锰结核主要为水生成因,高生长速率的成岩成因组分的贡献太低,降低了结核内Cu、Ni、Mn、Mo等有用组分的含量[1-3]。以上这些因素的共同作用,使得帕里西维拉海盆西侧边缘中段海域内的铁锰结核呈现出当前发现站位较多,但有用组分含量较低的分布和成分特征。但是,由于我们对广袤的帕里西维拉海盆及其周边海域的调查和认识程度尚不充分,海域内是否存在具有类似于CCZ等具有重要经济价值的铁锰结核富集区,仍需要后续研究工作的深入开展来加以探索和确认。此外,这些工作的持续开展也将进一步深化对制约海底铁锰结核富集成矿因素的认知,以更好地服务于人类深海矿产资源的勘探和开发事业。

    本文对帕里西维拉海盆西侧边缘中段海域水深3 947~5 146 m范围内新发现的12个站位铁锰结核样品进行了地球化学特征分析,发现相比于CCZ、CIOB、PB和CI等全球主要成矿区内的铁锰结核,本研究区内样品的Cu、Ni、Mo、Mn等主要有用组分的含量较低,Co的含量中等,Ti和ΣREY的含量较高。这些铁锰结核样品主要为水成型,缺乏成岩成因组分的大量供给,致使Mn和主要富集在锰氧化物内的Cu、Ni、Mo呈现出低含量的分布特征。Co相对分散地分布在结核铁锰相物质以及硅酸盐相内核中。Ti含量较高是铁的羟基氧化物从海水中强烈吸附含钛物质后发生高效的表面络合反应而富集的缘故,ΣREY含量较高则是铁的羟基氧化直接吸附以及体内的REY与钙磷酸盐发生耦合置换反应而滞留富集共同作用的结果。本文所有站位结核样品REY的标准化配分模式十分一致,均显示出明显的Ce正异常和Y负异常的分布特征。铁锰结核从海水中捕获的Ce3+容易氧化成难溶且不具有活性的Ce4+,使得Ce呈现出相对于其他REY的逐步富集,而Y呈现出负异常则是因为它在铁锰结核内的存在形式不稳定,容易发生解吸亏损。

    帕里西维拉海盆西侧边缘中段海域内存在逆时针方向循环的底层流,且远离陆地,水深较深,沉积速率较低,避免了陆源碎屑或钙质生物等的大规模稀释。但包括研究区在内的海盆整体形成年代较晚,铁锰结核生长发育的时间较短。海盆周边地形较高,缺乏与外界连通的水道,阻碍了诸如来自南极的富氧底层流的大规模进入,不利于研究区内铁锰结核的富集成矿。此外,区域内铁锰结核成岩成因组分的供给太低,降低了结核内Cu、Ni、Mn、Mo等主要有用组分的含量。以上诸多因素也许会使得帕里西维拉海盆西部边缘中段海域内分布的铁锰结核的大规模成矿前景变的黯淡。

  • 图  1   中国海域前新生代地层分布

    Figure  1.   Distribution of Pre-Cenozoic strata in China Seas

    图  2   渤海-黄海型层型结构

    Figure  2.   Stratigraphic sequence of the Bohai-South Yellow Sea type

    图  3   东海-南海型前新生代地层层序

    Figure  3.   Pre-Cenozoic stratigraphic sequence of the East Sea-South Sea type

    图  4   渤海海域石炭系—二叠系残留厚度

    Figure  4.   Residual thickness of the Carboniferous system -Permian system in the Bohai Sea area

    图  5   南黄海海域震旦系—下三叠统残留厚度

    Figure  5.   Residual thickness of the Sinian system – the Lower Triassic system in the South Yellow Sea Area

    图  6   东海-南海北部海域中生界残留厚度[119-122]

    Figure  6.   Residual thickness of the Mesozoic in the East China Sea-Northern South China Sea Area [119-122]

    图  7   南海南部中生界残留厚度[154]

    Figure  7.   Residual thickness of the Mesozoic in the Southern South China Sea Area [154]

    表  1   中国海域前新生代地层及最大厚度

    Table  1   Distribution of Pre-Cenozoic strata in China Seas (strata type and maxmum thickness)

    m 
    地层层序渤海黄海东海-南海北部南海南部
    北黄海南黄海东海台湾海峡台西南南海北部巴拉望礼乐
    中生界上部层系30004000*30003500*>10823000*3500*3000*4000*
    中部层系10002000>21954500*缺失6005300*缺失缺失
    下部层系120015003000*
    古生界上古生界1400>20004500*缺失缺失缺失
    下古生界>310>4724500*缺失缺失缺失缺失缺失
    元古界新元古界不详>9311200*缺失缺失缺失缺失缺失缺失
    叠合面积67616 km243279 km2183917 km2419433 km2608921 km2
    层型结构“叠合型”(新元古界-古生界-中生界)“单一型”(中生界)
      注:表中*为地震资料解释最大厚度;?表示情况不明。
    下载: 导出CSV

    表  2   下扬子区下寒武统幕府山组烃源岩厚度及有机质丰度

    Table  2   Statistical table of thickness and total organic abundance of source rocks in the Lower Cambrian Mufushan Formation in the lower Yangtze region

    序号井号厚度/mTOC/%
    最小最大平均
    1苏东121井3680.554.843
    2皖2井4650.57103.6
    3官地1井4420.5147.79.82
    下载: 导出CSV

    表  3   中国海域潜山油气藏生储盖组合特征

    Table  3   Characteristics of source rock, reservoir and cap rocks assemblages of buried hill reservoirs in China Seas

    潜山油气藏构造地层时代烃源岩(层位)储层岩性盖层(层位)
    蓬莱9-1庙西北凸起中生界沙河街组及东营组二长花岗岩馆陶组
    锦州25-1S辽西北凸起太古界沙河街组及东营组二长片麻岩、斜长片麻岩沙河街组及东营组
    曹妃甸11-6沙垒田凸起太古界东营组混合化黑云母花岗岩馆陶组
    曹妃甸18-2沙垒田凸起太古界东营组二长花岗岩馆陶组
    渤中26-2渤海凸起太古界沙河街组及东营组英云闪长岩、花岗闪长岩东营组及明化镇组
    锦州20-2辽西低凸起太古界沙河街组及东营组混合岩、碎屑岩沙河街组及东营组
    渤中19-6渤中凹陷太古界沙河街组变质岩沙河街组与东营组
    渤中13-2渤中凹陷太古界沙河街组及东营组花岗片麻岩中生界
    渤中28-1渤南凸起古生界奥陶系沙河街组碳酸盐岩沙河街组
    岐口17-9岐口凹陷中生界海沟房组、沙河街组碎屑岩沙河街组
    428W、428E石臼坨凸起古生界沙河街组及东营组花岗岩东营组
    曹妃甸2-1沙垒田凸起古生界沙河街组碳酸盐岩沙河街组
    涠6-1、涠10-3N等涠西南凹陷古生界流沙港组碳酸盐岩流沙港组
    惠州26-6惠州凹陷中生界文昌组、恩平组花岗岩文昌组、珠海组
    永乐8-1松南低凸起中生界始新统、渐新统崖城组花岗岩中新统
    下载: 导出CSV
  • [1] 张冰, 李堃年, 王铁良. 中国大陆架前第三纪地质结构的探讨[J]. 石油与天然气地质, 1986, 7(3):197-206 doi: 10.11743/ogg19860301

    ZHANG Bing, LI Kunnian, WANG Tieliang. Study of pre-tertiary geological tectonics on the continental shelf of China [J]. Oil & Gas Geology, 1986, 7(3): 197-206. doi: 10.11743/ogg19860301

    [2] 李培廉. 南黄海的白垩系: 一个值得重视的找油领域[J]. 海洋地质与第四纪地质, 1986, 6(4):51-55

    LI Peilian. The Cretaceous of South Huanghai Sea: A potential frontier oil prospecting [J]. Marine Geology & Quaternary Geology, 1986, 6(4): 51-55.

    [3] 郝服光. 东海盆地南部及台湾近海诸盆地白垩系及下第三系沉积特征[J]. 中国海上油气(地质), 1988, 2(1):13-20

    HAO Fuguang. Sedimentary characteristics of Cretaceous and Eogene in southern East China Sea Basin and offshore basins of Taiwan [J]. China Offshore Oil and Gas (Geology), 1988, 2(1): 13-20.

    [4] 王香婷, 毕力刚. 渤海地区中侏罗世和早白垩世孢粉组合[J]. 中国海上油气(地质), 1998, 12(5):319-327

    WANG Xiangting, BI Ligang. Sporo-pollen assemblages of middle Jurassic and early Cretaceous in Bohai region [J]. China Offshore Oil and Gas (Geology), 1998, 12(5): 319-327.

    [5] 姚伯初, 曾维军, 陈艺中, 等. 南海北部陆缘东部中生代沉积的地震反射特征[J]. 海洋地质与第四纪地质, 1995, 15(1):81-90

    YAO Bochu, ZENG Weijun, CHEN Yizhong, et al. Seismicreflectlve characteristics of mesonoic sediments on the eastern continental margin in the north of the South China Sea [J]. Marine Geology & Quaternary Geology, 1995, 15(1): 81-90.

    [6] 王平, 夏戡原, 黄慈流. 南海东北部中生代海相地层的分布及其地质地球物理特征[J]. 热带海洋, 2000, 19(4):28-35

    WANG Ping, XIA Kanyuan, HUANG Ciliu. Distribution and geological & geophysical characteristics of mesozoic marine strata in northeastern part of south China sea [J]. Tropical Oceanography, 2000, 19(4): 28-35.

    [7] 蔡乾忠. “残留特提斯”的猜想: 从中国近海域发现海相中生界-古新统谈起[J]. 中国地质, 1998(4):39-41

    CAI Qianzhong. Tethys remains, a hypothesis based on the discovery of marine Mesozoic and Paleogene in China's mar-ginal sea areas [J]. Geology in China, 1998(4): 39-41.

    [8] 蔡乾忠, 刘守全, 莫杰. 寻找海相油气新领域: 从南海北部“残留特提斯”谈起[J]. 中国海上油气(地质), 2000, 14(3):157-162

    CAI Qianzhong, LIU Shouquan, MO Jie. Search for new domains of marine-origin petroleum: “Remained Tethys” in the northern south China Sea [J]. China Offshore Oil and Gas (Geology), 2000, 14(3): 157-162.

    [9] 夏戡原, 黄慈流. 南海中生代特提斯期沉积盆地的发现与找寻中生代含油气盆地的前景[J]. 地学前缘, 2000, 7(3):227-238 doi: 10.3321/j.issn:1005-2321.2000.03.021

    XIA Kanyuan, HUANG Ciliu. The discovery of Meso-Tethys sedimentary basins in the South China Sea and their oil and gas perspective [J]. Earth Science Frontiers, 2000, 7(3): 227-238. doi: 10.3321/j.issn:1005-2321.2000.03.021

    [10] 苏乃容, 曾麟, 李平鲁. 珠江口盆地东部中生代凹陷地质特征[J]. 中国海上油气(地质), 1995, 9(4):228-236

    SU Nairong, ZENG Lin, LI Pinglu. Geological features of Mesozoic sags in the eastern part of Pearl River Mouth Basin [J]. China Offshore Oil and Gas (Geology), 1995, 9(4): 228-236.

    [11] 钟建强. 南沙群岛含油气盆地的前新生代基底及与北部陆缘的关系[J]. 中国海上油气(地质), 1997, 11(2):124-130

    ZHONG Jianqiang. Pre-Cenozoic basement of oil and gas bearing basins in Nansha islands and its relationship with northern continental margin [J]. China Offshore Oil and Gas (Geology), 1997, 11(2): 124-130.

    [12] 刘光鼎, 宋海斌, 张福勤. 中国近海前新生代残留盆地初探[J]. 地球物理学进展, 1999, 14(3):1-8

    LIU Guangding, SONG Haibin, ZHANG Fuqin. A preliminary study of Chinese offshore pre-cenozoic residual basins [J]. Progress in Geophysics, 1999, 14(3): 1-8.

    [13] 王国纯. 中国东部海域中生界地质特征及成藏地质条件[J]. 中国海上油气(地质), 1994, 8(2):91-98

    WANG Guochun. Mesozoic geological characteristics and hydrocarbon potential in the East China Sea Area [J]. China Offshore Oil and Gas (Geology), 1994, 8(2): 91-98.

    [14] 刘光鼎. 论中国油气二次创业[J]. 海洋地质动态, 2002, 18(11):1-3 doi: 10.3969/j.issn.1009-2722.2002.11.003

    LIU Guangding. The second round of oil & gas exploration of China [J]. Marine Geology Letters, 2002, 18(11): 1-3. doi: 10.3969/j.issn.1009-2722.2002.11.003

    [15] 吉治平. 渤海残留盆地油气地球物理研究综述[J]. 地球物理学进展, 2005, 20(4):1039-1046 doi: 10.3969/j.issn.1004-2903.2005.04.026

    JI Zhiping. A review of progress on geophysics of Bohai residual basin [J]. Progress in Geophysics, 2005, 20(4): 1039-1046. doi: 10.3969/j.issn.1004-2903.2005.04.026

    [16] 徐亚, 郝天珧, 戴明刚, 等. 渤海残留盆地分布综合地球物理研究[J]. 地球物理学报, 2007, 50(3):868-881 doi: 10.3321/j.issn:0001-5733.2007.03.028

    XU Ya, HAO Tianyao, DAI Minggang, et al. Integrated geophysics research on distribution of residual basins of Bohai Sea [J]. Chinese Journal of Geophysics, 2007, 50(3): 868-881. doi: 10.3321/j.issn:0001-5733.2007.03.028

    [17] 郝天珧, 杨长春, 刘洪, 等. 环渤海地区前新生代油气资源的综合地质、地球物理研究[J]. 地球物理学进展, 2007, 22(4):1269-1279 doi: 10.3969/j.issn.1004-2903.2007.04.037

    HAO Tianyao, YANG Changchun, LIU Hong, et al. Integrated geological and geophysical study for pre-cenozoic hydrocarbon resources in the circum-Bohai area [J]. Progress in Geophysics, 2007, 22(4): 1269-1279. doi: 10.3969/j.issn.1004-2903.2007.04.037

    [18] 张善文, 隋风贵, 林会喜, 等. 渤海湾盆地前古近系油气地质与远景评价[M]. 北京: 地质出版社, 2009: 124-128

    ZHANG Shanwen, SUI Fenggui, LIN Huixi, et al. Petroleum Geology and Perspective Evaluation on Pre-paleogene System in Bohai Bay Basin[M]. Beijing: Geological Publishing House, 2009: 124-128.

    [19] 周静, 吕大炜, 陈龙, 等. 渤海海域区前古近纪构造对上古生界-中生界烃源岩的影响[J]. 石油实验地质, 2013, 35(2):146-150 doi: 10.11781/sysydz201302146

    ZHOU Jing, LÜ Dawei, CHEN Long, et al. Influence of pre-paleogene tectonics on Upper Paleozoic-Mesozoic source rocks in Bohai Sea area [J]. Petroleum Geology and Experiment, 2013, 35(2): 146-150. doi: 10.11781/sysydz201302146

    [20] 李卓, 郭诚, 周立业, 等. 渤海S油田下古生界碳酸盐岩储层主控因素分析[J]. 广东石油化工学院学报, 2019, 29(3):5-9 doi: 10.3969/j.issn.2095-2562.2019.03.002

    LI Zhuo, GUO Cheng, ZHOU Liye, et al. Analysis on main controlling factors of lower paleozoic carbonate reservoir in Bohai S oilfield [J]. Journal of Guangdong University of Petrochemical Technology, 2019, 29(3): 5-9. doi: 10.3969/j.issn.2095-2562.2019.03.002

    [21] 徐长贵, 侯明才, 王粤川, 等. 渤海海域前古近系深层潜山类型及其成因[J]. 天然气工业, 2019, 39(1):21-32 doi: 10.3787/j.issn.1000-0976.2019.01.003

    XU Changgui, HOU Mingcai, WANG Yuechuan, et al. Type and genesis of Pre-Tertiary deep buried hills in the Bohai Sea area [J]. Natural Gas Industry, 2019, 39(1): 21-32. doi: 10.3787/j.issn.1000-0976.2019.01.003

    [22] 杨纪磊, 曹洁, 魏文艳, 等. 渤海海域下古生界牙形类生物地层初探[J]. 微体古生物学报, 2020, 37(3):238-244

    YANG Jilei, CAO Jie, WEI Wenyan, et al. Lower paleozoic conodonts from the Bohai Sea area and their stratigraphic significance [J]. Acta Micropalaeontologica Sinica, 2020, 37(3): 238-244.

    [23] 薛永安, 李慧勇, 许鹏, 等. 渤海海域中生界覆盖型潜山成藏认识与渤中13-2大油田发现[J]. 中国海上油气, 2021, 33(1):13-22

    XUE Yongan, LI Huiyong, XU Peng, et al. Recognition of oil and gas accumulation of Mesozoic covered buried hills in Bohai sea area and the discovery of BZ 13-2 oilfield [J]. China Offshore Oil and Gas, 2021, 33(1): 13-22.

    [24] 蔡峰. 北黄海盆地中生界源岩地化特征分析[J]. 海洋地质动态, 1997(9):4-7

    CAI Feng. Geochemical characteristics of Mesozoic source rocks in north Yellow Sea Basin [J]. Marine Geology Letters, 1997(9): 4-7.

    [25] 蔡峰. 北黄海盆地基底地质特征[J]. 海洋地质动态, 1999(12):1-3

    CAI Feng. Basement geological characteristics of north Yellow Sea Basin [J]. Marine Geology Letters, 1999(12): 1-3.

    [26] 陈洁. 北黄海前新生代残留盆地勘探潜力分析[J]. 地球物理学进展, 2005, 20(3):757-760 doi: 10.3969/j.issn.1004-2903.2005.03.029

    CHEN Jie. Potential analysis of exploration for pre-cenozoic marine residual basins in northern Yellow Sea [J]. Progress in Geophysics, 2005, 20(3): 757-760. doi: 10.3969/j.issn.1004-2903.2005.03.029

    [27] 陈玲, 白志琳, 李文勇. 北黄海盆地中新生代沉积坳陷特征及其油气勘探方向[J]. 石油物探, 2006, 45(3):319-323 doi: 10.3969/j.issn.1000-1441.2006.03.021

    CHEN Ling, BAI Zhilin, LI Wenyong. The character of mid-cenozoic sedimental depression and oil-gas explorating direction in north Yellow Sea [J]. Geophysical Prospecting for Petroleum, 2006, 45(3): 319-323. doi: 10.3969/j.issn.1000-1441.2006.03.021

    [28] 刘振湖, 高红芳, 胡小强, 等. 北黄海盆地东部坳陷中生界含油气系统研究[J]. 中国海上油气, 2007, 19(4):229-233 doi: 10.3969/j.issn.1673-1506.2007.04.003

    LIU Zhenhu, GAO Hongfang, HU Xiaoqiang, et al. A study on the Mesozoic petroleum system in East depression, North Yellow Sea basin [J]. China Offshore Oil and Gas, 2007, 19(4): 229-233. doi: 10.3969/j.issn.1673-1506.2007.04.003

    [29] 龚建明, 温珍河, 陈建文, 等. 北黄海盆地中生代地层的地质特征和油气潜力[J]. 海洋地质与第四纪地质, 2000, 20(2):69-77

    Gong J M, Wen Z H, Chen J W, et al. Geologic characteristics and hydrocarbon-generating potential of mesozoic strata in the North Yellow Sea Basin [J]. Marine Geology & Quaternary Geology, 2000, 20(2): 69-77.

    [30] 梁世友, 李凤丽, 付洁, 等. 北黄海盆地中生界烃源岩评价[J]. 石油实验地质, 2009, 31(3):249-252 doi: 10.3969/j.issn.1001-6112.2009.03.008

    LIANG Shiyou, LI Fengli, FU Jie, et al. Evaluation of meso-cenozoic hydrocarbon source rocks in north yellow sea basin [J]. Petroleum Geology & Experiment, 2009, 31(3): 249-252. doi: 10.3969/j.issn.1001-6112.2009.03.008

    [31] 张莉, 周永章, 王嘹亮, 等. 北黄海盆地生烃条件研究[J]. 天然气工业, 2009, 29(1):21-25 doi: 10.3787/j.issn.1000-0976.2009.01.005

    ZHANG Li, ZHOU Yongzhang, WANG Liaoliang, et al. A study on hydrocarbon generation conditions in the North Yellow Sea basin [J]. Natural Gas Industry, 2009, 29(1): 21-25. doi: 10.3787/j.issn.1000-0976.2009.01.005

    [32] 李文勇, 曾祥辉, 黄家坚. 北黄海中、新生代盆地: 残留盆地还是叠合盆地?[J]. 地质学报, 2009, 83(9):1269-1275 doi: 10.3321/j.issn:0001-5717.2009.09.007

    LI Wenyong, ZENG Xianghui, HUANG Jiajian. Meso-cenozoic North Yellow Sea: residual basin or superimposed basin? [J]. Acta Geologica Sinica, 2009, 83(9): 1269-1275. doi: 10.3321/j.issn:0001-5717.2009.09.007

    [33] 王强, 王应斌, 张友. 北黄海中生代残留盆地砂岩成岩作用及其对孔隙的影响[J]. 海洋地质前沿, 2011, 27(8):16-25

    WANG Qiang, WANG Yingbin, ZHANG You. Sandstone diagenesis in mesozoic residual basin of North Yellow Sea and its impact on porosity [J]. Marine Geology Frontiers, 2011, 27(8): 16-25.

    [34] 梁杰, 温珍河, 肖国林, 等. 北黄海盆地东部坳陷储层特征及影响因素[J]. 海洋地质与第纪地质, 2013, 33(2):111-119

    LIANG Jie, WEN Zhenhe, XIAO Guolin, et al. Reservoir characteristics and influential factors in the eastern depression of the North Yellow Sea basin [J]. Marine Geology & Quaternary Geology, 2013, 33(2): 111-119.

    [35] 刘金萍, 王改云, 杜民, 等. 北黄海盆地东部坳陷中生界烃源岩特征[J]. 中国海上油气, 2013, 25(4):12-16

    LIU Jinping, WANG Gaiyun, DU Min, et al. Analyzing characteristics of Mesozoic hydrocarbon source rocks in the Eastern depression, North Yellow Sea basin [J]. China Offshore Oil and Gas, 2013, 25(4): 12-16.

    [36] 刘振湖, 王飞宇, 刘金萍, 等. 北黄海盆地东部坳陷油气成藏时间研究[J]. 石油实验地质, 2014, 36(5):550-554 doi: 10.11781/sysydz201405550

    LIU Zhenhu, WANG Feiyu, LIU Jinping, et al. Time of hydrocarbon accumulation in eastern depression of North Yellow Sea Basin [J]. Petroleum Geology and Experiment, 2014, 36(5): 550-554. doi: 10.11781/sysydz201405550

    [37] 王后金, 王嘹亮, 冯常茂. 北黄海盆地的成盆动力学机制探讨[J]. 石油天然气学报(江汉石油学院学报), 2014, 36(5):1-7

    WANG Houjin, WANG Liaoliang, FENG Changmao. On dynamic mechanism of tectonic evolution in the north Yellow Sea Basin [J]. Journal of Oil and Gas Technology (Journal of Jianghan Petroleum Institute), 2014, 36(5): 1-7.

    [38] 王改云, 刘金萍, 王后金, 等. 北黄海盆地东部坳陷中生界沉积特征及演化[J]. 沉积学报, 2015, 33(3):561-567

    WANG Gaiyun, LIU Jinping, WANG Houjin, et al. Sedimentary characteristics and evolution of Mesozoic in the eastern depression, North Yellow Sea Basin [J]. Acta Sedimentologica Sinica, 2015, 33(3): 561-567.

    [39] 胡小强, 沈艳杰, 高丹, 等. 北黄海盆地东部坳陷沉积层序充填与盆地演化[J]. 世界地质, 2015, 34(4):1042-1051 doi: 10.3969/j.issn.1004-5589.2015.04.016

    HU Xiaoqiang, SHEN Yanjie, GAO Dan, et al. Filled characteristics of depositional sequence and evolution of eastern sag in North Yellow Sea Basin [J]. Global Geology, 2015, 34(4): 1042-1051. doi: 10.3969/j.issn.1004-5589.2015.04.016

    [40] 赵青芳, 李双林, 温珍河, 等. 北黄海盆地LV井侏罗系烃源岩特征及油源对比[J]. 沉积学报, 2016, 34(4):794-802

    ZHAO Qingfang, LI Shuanglin, WEN Zhenhe, et al. Geochemical characteristics of Jurassic source rocks from well LV and oil-source correlation in North Yellow Basin [J]. Acta Sedimentologica Sinica, 2016, 34(4): 794-802.

    [41] 王改云, 刘金萍, 简晓玲, 等. 北黄海盆地中生界沉积充填及有利生储盖组合[J]. 地质与勘探, 2016, 52(1):191-198

    WANG Gaiyun, LIU Jinping, JIAN Xiaoling, et al. Sedimentary filling and favorable source-reservoir-seal rock assemblage of mesozoic in the North Yellow Sea Basin [J]. Geology and Exploration, 2016, 52(1): 191-198.

    [42] 肖国林, 蔡来星, 郭兴伟, 等. 北黄海盆地东部坳陷勘探突破对我国近海残留“黑色侏罗系”油气勘探的启示[J]. 吉林大学学报:地球科学版, 2019, 49(1):115-130

    XIAO Guolin, CAI Laixing, GUO Xingwei, et al. Exploration Enlightenment on Residual “Black Jurassic” in Chinese offshore from exploration breakthrough in eastern sag of the North Yellow Sea Basin [J]. Journal of Jilin University:Earth Science Edition, 2019, 49(1): 115-130.

    [43] 冯志强, 姚永坚, 曾祥辉, 等. 对黄海中、古生界地质构造及油气远景的新认识[J]. 中国海上油气(地质), 2002, 16(6):367-373

    FENG Zhiqiang, YAO Yongjian, ZENG Xianghui, et al. New understanding of mesozoic-paleozoic tectonics and hydrocarbon potential in Yellow Sea [J]. China Offshore Oil and Gas (Geology), 2002, 16(6): 367-373.

    [44] 戴春山, 李刚, 蔡峰, 等. 黄海前第三系及油气勘探方向[J]. 中国海上油气(地质), 2003, 17(4):225-231

    DAI Chunshan, LI Gang, CAI Feng, et al. The pretertiary and its hydrocarbon exploration targets in Yellow Sea [J]. China Offshore Oil and Gas (Geology), 2003, 17(4): 225-231.

    [45] 李刚, 陈建文, 肖国林, 等. 南黄海海域的海相中-古生界油气远景[J]. 海洋地质动态, 2003, 19(8):12-16 doi: 10.3969/j.issn.1009-2722.2003.08.004

    LI Gang, CHEN Jianwen, XIAO Guolin, et al. Petroleum prospect of marine paleozoic in the South Yellow Sea [J]. Marine Geology Letters, 2003, 19(8): 12-16. doi: 10.3969/j.issn.1009-2722.2003.08.004

    [46] 李刚, 张燕, 陈建文, 等. 黄海海域陆相中生界地震反射特征及靶区优选[J]. 中国海洋大学学报, 2004, 34(6):1069-1074

    LI Gang, ZHANG Yan, CHEN Jianwen, et al. Seismic reflection characteristics and selection of hydrocarbon prospective areas in the terrestrial mesozoic strata of the Yellow Sea [J]. Periodical of Ocean University of China, 2004, 34(6): 1069-1074.

    [47] 戴春山, 杨艳秋, 闫桂京. 南黄海中-古生代海相残留盆地埋藏生烃史模拟及其意义[J]. 石油与天然气地质, 2005, 26(1):49-56 doi: 10.3321/j.issn:0253-9985.2005.01.008

    DAI Chunshan, YANG Yanqiu, YAN Guijing. Modelling of burial and hydrocarbon-generation histories of Meso-Paleozoic marine residual basins in South Yellow Sea and its geologic significance [J]. Oil & Gas Geology, 2005, 26(1): 49-56. doi: 10.3321/j.issn:0253-9985.2005.01.008

    [48] 曲希玉, 刘立, 陈建文, 等. 南黄海盆地北部坳陷白垩系沉积特征[J]. 吉林大学学报:地球科学版, 2005, 35(4):443-448

    QU Xiyu, LIU Li, CHEN Jianwen, et al. Sedimentary characteristics for the Cretaceous strata in the northern depression of the South Yellow Sea Basin [J]. Journal of Jilin University:Earth Science Edition, 2005, 35(4): 443-448.

    [49] 马立桥, 陈汉林, 董庸, 等. 苏北-南黄海南部叠合盆地构造演化与海相油气勘探潜力[J]. 石油与天然气地质, 2007, 28(1):35-42 doi: 10.3321/j.issn:0253-9985.2007.01.005

    MA Liqiao, CHEN Hanlin, DONG Yong, et al. Tectonic evolution of Subei-South Nanhuanghai superimposed basin from the Late Mesozoic to the Cenozoic and marine petroleum potential [J]. Oil & Gas Geology, 2007, 28(1): 35-42. doi: 10.3321/j.issn:0253-9985.2007.01.005

    [50] 蔡峰, 熊斌辉. 南黄海海域与下扬子地区海相中-古生界地层对比及烃源岩评价[J]. 海洋地质动态, 2007, 23(6):1-6 doi: 10.3969/j.issn.1009-2722.2007.06.001

    CAI Feng, XIONG Binhui. Comparison of marine mesozoic-paleozoic strata and hydrocarbon source rocks in the South Yellow Sea and Lower Yangtze area [J]. Marine Geology Letters, 2007, 23(6): 1-6. doi: 10.3969/j.issn.1009-2722.2007.06.001

    [51] 张海啟, 陈建文, 李刚, 等. 地震调查在南黄海崂山隆起的发现及其石油地质意义[J]. 海洋地质与第四纪地质, 2009, 29(3):107-113

    ZHANG Haiqi, CHEN Jianwen, LI Gang, et al. Discovery from seismic survey in Laoshan uplift of the South Yellow Sea and the significance [J]. Marine Geology & Quaternary Geology, 2009, 29(3): 107-113.

    [52] 王丰, 李慧君, 张银国. 南黄海崂山隆起地层属性及油气地质[J]. 海洋地质与第四纪地质, 2010, 30(2):95-102

    WANG Feng, LI Huijun, ZHANG Yinguo. Stratigraphic geologic attribute and hydrocarbon geology in Laoshan uplift of South Yellow Sea [J]. Marine Geology & Quaternary Geology, 2010, 30(2): 95-102.

    [53] 黄松, 郝天珧, 徐亚, 等. 南黄海残留盆地宏观分布特征研究[J]. 地球物理学报, 2010, 53(6):1344-1353

    HUANG Song, HAO Tianyao, XU Ya, et al. Study on macro distribution of residual basin of South Yellow Sea [J]. Chinese Journal of Geophysics, 2010, 53(6): 1344-1353.

    [54] 梁杰, 张银国, 董刚, 等. 南黄海海相中-古生界储集条件分析与预测[J]. 海洋地质与第四纪地质, 2011, 31(5):101-108

    LIANG Jie, ZHANG Yinguo, DONG Gang, et al. A discussion on marine mesozoic-palaeozoic reservoirs in South Yellow Sea [J]. Marine Geology & Quaternary Geology, 2011, 31(5): 101-108.

    [55] 龚建明, 王建强, 李小豫, 等. 南黄海崂山隆起古生界页岩气远景区[J]. 海洋地质与第四纪地质, 2013, 33(6):115-120

    GONG Jianming, WANG Jianqiang, LI Xiaoyu, et al. Exploration targets of paleozoic shale gas at the Laoshan uplift, South Yellow Sea [J]. Marine Geology & Quaternary Geology, 2013, 33(6): 115-120.

    [56] 张银国, 梁杰. 南黄海盆地二叠系至三叠系沉积体系特征及其沉积演化[J]. 吉林大学学报:地球科学版, 2014, 44(5):1406-1418

    ZHANG Yinguo, LIANG Jie. Sedimentary system characteristics and their sedimentary evolution from the permian to Triassic in the Southern Yellow Sea Basin [J]. Journal of Jilin Unviersity:Earth Science Edition, 2014, 44(5): 1406-1418.

    [57] 高顺莉, 周祖翼. 南黄海盆地东北凹侏罗纪地层的发现及其分布特征[J]. 高校地质学报, 2014, 20(2):286-293 doi: 10.3969/j.issn.1006-7493.2014.02.013

    GAO Shunli, ZHOU Zuyi. Discovery of the Jurassic strata in the north-east sag of South Yellow Sea [J]. Geological Journal of China Universities, 2014, 20(2): 286-293. doi: 10.3969/j.issn.1006-7493.2014.02.013

    [58] 高顺莉, 张敏强, 陈华. 大震源长缆深沉放地震采集技术在南黄海中古生代盆地的应用[J]. 海洋地质与第四纪地质, 2014, 34(1):95-101

    GAO Shunli, ZHANG Minqiang, CHEN Hua. A large-scale seismic source, deep gun and cable sinking and long cable pength application in mesozoic-paleozoic basin in the South Huanghai Sea [J]. Marine Geology & Quaternary Geology, 2014, 34(1): 95-101.

    [59] 张银国, 陈清华, 陈建文. 南黄海盆地上二叠统—下三叠统基准面旋回特征及沉积充填模式[J]. 海相油气地质, 2015, 20(3):10-16 doi: 10.3969/j.issn.1672-9854.2015.03.002

    ZHANG Yinguo, CHEN Qinghua, CHEN Jianwen. Upper permian-lower triassic base-level cycle and depositional filling model, South Yellow Sea [J]. Marine Origin Petroleum Geology, 2015, 20(3): 10-16. doi: 10.3969/j.issn.1672-9854.2015.03.002

    [60] 高顺莉, 谭思哲, 侯凯文, 等. 南黄海海域侏罗系分布与构造意义[J]. 海洋地质前沿, 2015, 31(4):7-12

    GAO Shunli, TAN Sizhe, HOU Kaiwen, et al. Distribution pattern of the Jurassic in the South Yellow Sea and its tectonic implications [J]. Marine Geology Frontiers, 2015, 31(4): 7-12.

    [61] 张银国, 陈清华, 陈建文, 等. 下扬子海相中-古生界烃源岩发育的控制因素[J]. 海洋地质前沿, 2016, 32(1):8-12

    ZHANG Yinguo, CHEN Qinghua, CHEN Jianwen, et al. Controlling factors on the mesozoic-paleozoic marine source rocks in the lower Yangtze Platform [J]. Marine Geology Frontiers, 2016, 32(1): 8-12.

    [62] 张鹏辉, 陈建文, 梁杰, 等. 南黄海盆地海相储层成岩作用与储层发育特征[J]. 海洋地质前沿, 2016, 32(1):35-42

    ZHANG Penghui, CHEN Jianwen, LIANG Jie, et al. Diagenesis and characteristics of the marine reservoirs in the South Yellow Sea Basin [J]. Marine Geology Frontiers, 2016, 32(1): 35-42.

    [63] 吴淑玉, 陈建文, 梁杰, 等. 南黄海海相中-古生界碳酸盐岩储层特征及成藏模式: 对比四川盆地和苏北盆地[J]. 海洋地质前沿, 2016, 32(1):13-21

    WU Shuyu, CHEN Jianwen, LIANG Jie, et al. Characteristics of mesozoic-palaeozoic marine carbonate reservoir in the South Yellow Sea Basin and hydrocarbon accumulation: comparison between the Sichuan Basin and the Subei Basin [J]. Marine Geology Frontiers, 2016, 32(1): 13-21.

    [64] 张银国, 陈建文, 吴淑玉, 等. 南黄海崂山隆起下石炭统和州组至下二叠统栖霞组储层预测[J]. 海洋地质前沿, 2016, 32(10):60-64

    ZHANG Yinguo, CHEN Jianwen, WU Shuyu, et al. Reservoir prediction for deposits from Hezhou Formation of Lower Carboniferous to Qixia Formation of Lower Permian on the Laoshan uplift of the South Yellow Sea [J]. Marine Geology Frontiers, 2016, 32(10): 60-64.

    [65]

    Yuan Y, Chen J W, Zhang Y G, et al. Sedimentary system characteristics and depositional filling model of Upper Permian–Lower Triassic in South Yellow Sea Basin [J]. Journal of Central South University, 2018, 25(12): 2910-2928. doi: 10.1007/s11771-018-3962-x

    [66] 梁杰, 陈建文, 张银国, 等. 南黄海盆地中、古生界盖层条件[J]. 现代地质, 2016, 30(2):353-360 doi: 10.3969/j.issn.1000-8527.2016.02.010

    LIANG Jie, CHEN Jianwen, ZHANG Yinguo, et al. Conditions of the mesozoic-paleozoic cap rocks in the South Yellow Sea Basin [J]. Geoscience, 2016, 30(2): 353-360. doi: 10.3969/j.issn.1000-8527.2016.02.010

    [67] 陈建文, 施剑, 刘俊, 等. 南黄海海相中-古生界地震地质条件[J]. 海洋地质前沿, 2016, 32(10):1-8

    CHEN Jianwen, SHI Jian, LIU Jun, et al. Seismic geological conditions of the marine Meso-Paleozoic in the South Yellow Sea Basin [J]. Marine Geology Frontiers, 2016, 32(10): 1-8.

    [68] 陈建文, 张异彪, 刘俊, 等. 南黄海“高富强”地震勘查技术及其应用[J]. 海洋地质前沿, 2016, 32(10):9-17

    CHEN Jianwen, ZHANG Yibiao, LIU Jun, et al. The “HRS” seismic exploration technology and its application in the South Yellow Sea Basin [J]. Marine Geology Frontiers, 2016, 32(10): 9-17.

    [69] 张敏强, 漆滨汶, 高顺莉, 等. 南黄海中古生界勘探进展及油气潜力[J]. 海洋地质前沿, 2016, 32(3):7-15

    ZHANG Minqiang, QI Binwen, GAO Shunli, et al. New exploration progress and hydrocarbon potential of the Meso-Paleozoic systems in the South Yellow Sea [J]. Marine Geology Frontiers, 2016, 32(3): 7-15.

    [70] 雷宝华, 陈建文, 李刚, 等. 南黄海盆地二叠系地震地层特征与识别[J]. 海洋地质前沿, 2016, 32(1):29-34

    LEI Baohua, CHEN Jianwen, LI Gang, et al. Seismic stratigraphic features and recognition of the Permian in the South Yellow Sea Basin [J]. Marine Geology Frontiers, 2016, 32(1): 29-34.

    [71] 袁勇, 陈建文, 张银国, 等. 南黄海盆地崂山隆起海相中-古生界构造地质特征[J]. 海洋地质前沿, 2016, 32(1):49-53

    YUAN Yong, CHEN Jianwen, ZHANG Yinguo, et al. Geotectonic features of the marine Mesozoic-Paleozoic on the Laoshan uplift of the South Yellow Sea Basin [J]. Marine Geology Frontiers, 2016, 32(1): 49-53.

    [72] 陈建文. 下扬子地块南黄海海相层系具备良好的油气形成条件[J]. 中国地质调查成果快讯, 2016, 2(12):1-5

    CHEN Jianwen. Good oil and gas formation conditions of marine strata in the South Yellow Sea Basin of Lower Yangtze Block [J]. Results Express of China Geological Survey, 2016, 2(12): 1-5.

    [73] 陈建文. 南黄海海相中生界-古生界具有形成大型油气田的物质基础[J]中国地质调查成果快讯, 2016, 2(12): 6-10

    CHEN Jianwen. Material base of great resources in marine Mesozoic-Paleozoic in the South Yellow Sea Basin[J]. Results Express of China Geological Survey, 2016, 2(12): 6-10.

    [74] 王文娟, 陈建文, 张银国, 等. 以海陆对比优选南黄海海相中-古生界油气勘探目标区[J]. 海洋地质前沿, 2016, 32(10):65-70

    WANG Wenjuan, CHEN Jianwen, ZHANG Yinguo, et al. Discussion on exploration targets of marine Mesozoic and Paleozoic hydrocarbon in the South Yellow Sea [J]. Marine Geology Frontiers, 2016, 32(10): 65-70.

    [75] 陈建文, 施剑, 张异彪, 等. 地震调查技术突破南黄海海相中-古生界成像技术瓶颈[J]. 地球学报, 2017, 38(6):847-858 doi: 10.3975/cagsb.2017.06.01

    CHEN Jianwen, SHI Jian, ZHANG Yibiao, et al. The application of “HRS” seismic exploration technology to making breakthrough of the seismic imaging “Bottleneck” of the marine Mesozoic-Paleozoic strata in the South Yellow Sea Basin [J]. Acta Geoscientica Sinica, 2017, 38(6): 847-858. doi: 10.3975/cagsb.2017.06.01

    [76] 袁勇, 陈建文, 梁杰, 等. 海陆对比看南黄海海相中-古生界的生储盖组合特征[J]. 石油实验地质, 2017, 39(2):195-202,212 doi: 10.11781/sysydz201702195

    YUAN Yong, CHEN Jianwen, LIANG Jie, et al. Source-reservoir-seal assemblage of marine Mesozoic-Paleozoic in South Yellow Sea Basin by land-ocean comparison [J]. Petroleum Geology & Experiment, 2017, 39(2): 195-202,212. doi: 10.11781/sysydz201702195

    [77] 梁杰, 张鹏辉, 陈建文, 等. 南黄海盆地中-古生代海相地层油气保存条件[J]. 天然气工业, 2017, 37(5):10-19 doi: 10.3787/j.issn.1000-0976.2017.05.002

    LIANG Jie, ZHANG Penghui, CHEN Jianwen, et al. Hydrocarbon preservation conditions in Mesozoic–Paleozoic marine strata in the South Yellow Sea Basin [J]. Natural Gas Industry, 2017, 37(5): 10-19. doi: 10.3787/j.issn.1000-0976.2017.05.002

    [78] 蔡来星, 王蛟, 郭兴伟, 等. 南黄海中部隆起中-古生界沉积相及烃源岩特征: 以CSDP-2井为例[J]. 吉林大学学报:地球科学版, 2017, 47(4):1030-1046

    CAI Laixing, WANG Jiao, GUO Xingwei, et al. Characteristics of sedimentary facies and source rocks of Mesozoic-Paleozoic in Central uplift of South Yellow Sea: A case study of CSDP-2 coring well [J]. Journal of Jilin Unviersity:Earth Science Edition, 2017, 47(4): 1030-1046.

    [79] 肖国林, 蔡来星, 郭兴伟, 等. 南黄海中部隆起CSDP-2井中-古生界烃源岩精细评价[J]. 海洋地质前沿, 2017, 33(12):24-36

    XIAO Guolin, CAI Laixing, GUO Xingwei, et al. Detailed assessment of Meso-Paleozoic hydrocarbon source rocks: Implications from well CSDP-2 on the Central uplift of the South Yellow Sea Basin [J]. Marine Geology Frontiers, 2017, 33(12): 24-36.

    [80] 陈建文, 雷宝华, 梁杰, 等. 南黄海盆地油气资源调查新进展[J]. 海洋地质与第四纪地质, 2018, 38(3):1-23

    CHEN Jianwen, LEI Baohua, LIANG Jie, et al. New progress of petroleum resources survey in South Yellow Sea Basin [J]. Marine Geology & Quaternary Geology, 2018, 38(3): 1-23.

    [81] 陈建文, 张银国, 欧光习, 等. 南黄海古生界油气多期成藏的包体证据[J]. 海洋地质前沿, 2018, 34(2):69-70

    CHEN Jianwen, ZHANG Yinguo, OU Guangxi, et al. The inclusion evidences of multi-accumulation of Paleozoic in South Yellow Sea [J]. Marine Geology Frontiers, 2018, 34(2): 69-70.

    [82] 张银国, 陈建文, 梁杰, 等. 南黄海盆地崂山隆起古油藏证据(英文)[J]. 中国地质, 2018, 1(4):566-567 doi: 10.31035/cg2018067

    ZHANG Yinguo, CHEN Jianwen, LIANG Jie, et al. Evidence of the existence of paleo-reservoirs in Laoshan uplift of the South Yellow Sea Basin [J]. China Geology, 2018, 1(4): 566-567. doi: 10.31035/cg2018067

    [83] 陈建文. 南黄海海相中生界—古生界具有重要的油气资源前景[J]. 中国地质调查成果快讯, 2018, 4(27):35-40

    CHEN Jianwen. The Mesozoic and Paleozoic Marine strata in the South Yellow Sea have important oil and gas resource prospects [J]. Results Express of China Geological Survey, 2018, 4(27): 35-40.

    [84] 雷宝华, 陈建文, 梁杰, 等. 印支运动以来南黄海盆地的构造变形与演化[J]. 海洋地质与第四纪地质, 2018, 38(3):45-54

    LEI Baohua, CHEN Jianwen, LIANG Jie, et al. Tectonic deformation and evolution of the South Yellow Sea basin since Indosinian movement [J]. Marine Geology & Quaternary Geology, 2018, 38(3): 45-54.

    [85] 许振强, 梁杰, 陈建文, 等. 南黄海崂山隆起中、古生界油气保存条件分析[J]. 海洋地质与第四纪地质, 2018, 38(3):125-133

    XU Zhenqiang, LIANG Jie, CHEN Jianwen, et al. Evaluation of hydrocarbon preservation on the Laoshan uplift [J]. Marine Geology & Quaternary Geology, 2018, 38(3): 125-133.

    [86] 王建强, 龚建明, 张莉, 等. 南黄海盆地“三明治”结构的页岩气保存条件探讨[J]. 海洋地质与第四纪地质, 2018, 38(3):134-142

    WANG Jianqiang, GONG Jianming, ZHANG Li, et al. Discussion on preservation conditions of shale gas with “Sandwich” structure in South Yellow Sea basin [J]. Marine Geology & Quaternary Geology, 2018, 38(3): 134-142.

    [87] 施剑, 陈春峰, 陈建文, 等. 南黄海海相地层速度的提取及其特征[J]. 海洋地质与第四纪地质, 2018, 38(3):175-185

    SHI Jian, CHEN Chunfeng, CHEN Jianwen, et al. Extraction of seismic velocity of marine strata and their characteristics in the South Yellow Sea basin [J]. Marine Geology & Quaternary Geology, 2018, 38(3): 175-185.

    [88] 刘俊, 陈建文, 吴淑玉, 等. 南黄海崂山隆起石炭系—下二叠统海相碳酸盐岩叠前三参数反演储层预测[J]. 海洋地质与第四纪地质, 2018, 38(3):186-198

    LIU Jun, CHEN Jianwen, WU Shuyu, et al. Prestack three-term seismic inversion for prediction of Carboniferous-lower Permian carbonate reservoir on the Central uplift of South Yellow Sea basin [J]. Marine Geology & Quaternary Geology, 2018, 38(3): 186-198.

    [89] 雷宝华, 陈建文, 吴志强, 等. 苏北-南黄海盆地海相中-古生界密度和速度分析及其地震反射模型构建[J]. 石油地球物理勘探, 2018, 53(3):558-567

    LEI Baohua, CHEN Jianwen, WU Zhiqiang, et al. Density and velocity analysis and seismic reflection model construction of marine Mesozoic-Paleozoic in the North Jiangsu-to-South Yellow Sea Basin [J]. Oil Geophysical Prospecting, 2018, 53(3): 558-567.

    [90]

    Yuan Y, Chen J W, Zhang Y X, et al. Tectonic evolution and geological characteristics of hydrocarbon reservoirs in marine mesozoic-paleozoic strata in the South Yellow Sea Basin [J]. Journal of Ocean University of China, 2018, 17(5): 1075-1090. doi: 10.1007/s11802-018-3583-x

    [91] 吴淑玉,陈建文,刘俊,等. 叠前同时反演技术在南黄海崂山隆起储层预测中的应用[J]. 海洋地质与第四纪地质, 2018, 38(3):161-174

    WU Shuyu, CHEN Jianwen, LIU Jun, et al. Application of pre-stack simultaneous inversion in the reservoir prediction in South Yellow Sea basin [J]. Marine Geology & Quaternary Geology, 2018, 38(3): 161-174.

    [92] 陈建文, 张银国, 欧光习. 南黄海崂山隆起志留系古油藏的深部烃源证据[J]. 海洋地质前沿, 2019, 35(1):74-76

    CHEN Jianwen, ZHANG Yinguo, OU Guangxi. Deep source evidence of Silurian paleoreservoirs in Laoshan uplift, South Yellow Sea [J]. Marine Geology Frontiers, 2019, 35(1): 74-76.

    [93] 许明, 陈建文, 雷宝华, 等. 南黄海海域中生代前陆盆地形成的构造背景[J]. 现代地质, 2019, 33(1):13-24

    XU Ming, CHEN Jianwen, LEI Baohua, et al. Tectonic background of mesozoic foreland basin development in the Southern Yellow Sea [J]. Geoscience, 2019, 33(1): 13-24.

    [94]

    Chen J W, Xu M, Lei B H, et al. Prospective prediction and exploration situation of marine Mesozoic-Paleozoic oil and gas in the South Yellow Sea [J]. China Geology, 2019, 2(1): 67-84. doi: 10.31035/cg2018072

    [95]

    Liang J, Chen J W, Zhang Y G, et al. New evidence of Silurian hydrocarbon accumulation is discovered by fluid inclusion analysis in the South Yellow Sea Basin [J]. China Geology, 2019, 2(1): 110-111. doi: 10.31035/cg2018077

    [96]

    Zhang Y X, Chen J W, Zhou J Y, et al. Sedimentological sequence and depositional evolutionary model of Lower Triassic carbonate rocks in the South Yellow Sea Basin [J]. China Geology, 2019, 2(3): 301-314.

    [97]

    Yuan Y, Chen J W, Liang J, et al. Hydrocarbon geological conditions and exploration potential of mesozoic–paleozoic marine strata in the South Yellow Sea Basin [J]. Journal of Ocean University of China, 2019, 18(6): 1-15.

    [98]

    Chen J W, Shi J, Zhang Y B, et al. The “HRS” seismic exploration technology of deep strata in China Sea Areas: a case of the South Yellow Sea basin [J]. Acta Geologica Sinica (English Edition), 2019, 93(S2): 388-389.

    [99]

    Liang J, Chen J W, Wang J Q, et al. Hydrocarbon geological conditions and exploration prospects of marine strata in the Laoshan Uplift, South Yellow Sea Basin [J]. Acta Geologica Sinica (English Edition), 2019, 93(S2): 303-304.

    [100]

    Wu S Y, Liu J, Chen J W, et al. Pre-stack simultaneous inversion in the marine carbonate reservoir prediction of the South Yellow Sea Basin, China [J]. Acta Geologica Sinica (English Edition), 2019, 93(S2): 420-421.

    [101] 陈建文, 袁勇, 施剑, 等. 中国海域深部“高富强”地震探测技术与南黄海盆地海相地层的发现[J]. 天然气勘探与开发, 2019, 42(3):46-57

    CHEN Jianwen, YUAN Yong, SHI Jian, et al. “High, rich, and strong” seismic technologies for deeper layers in offshore China and discoveries in marine strata of South Yellow Sea Basin [J]. Natural Gas Exploration and Development, 2019, 42(3): 46-57.

    [102] 陈建文, 许明, 雷宝华, 等. 华北-扬子板块碰撞结构的识别: 来自南黄海海域的证据[J]. 海洋地质与第四纪地质, 2020, 40(3):1-12

    CHEN Jianwen, XU Ming, LEI Baohua, et al. Collision of North China and Yangtze Plates: Evidence from the South Yellow Sea [J]. Marine Geology & Quaternary Geology, 2020, 40(3): 1-12.

    [103] 陈建文. 崂山断隆带西部发现大型有利构造带[J]. 中国地质调查成果快讯, 2020, 6(18):40-42

    CHEN Jianwen. A large favorable tectonic belt was found in the west of Laoshan fault-uplift belt [J]. Results Express of China Geological Survey, 2020, 6(18): 40-42.

    [104] 陈建文, 张异彪, 陈华, 等. 南黄海盆地海相中−古生界地震探测技术攻关历程及效果[J]. 海洋地质前沿, 2021, 37(4):1-17

    CHEN Jianwen, ZHANG Yibiao, CHEN Hua, et al. Research experiences and application of seismic exploration technology to the Mesozoic-Paleozoic marine strata in the South Yellow Sea basin [J]. Marine Geology Frontiers, 2021, 37(4): 1-17.

    [105] 张鹏辉, 梁杰, 陈建文, 等. 中国叠合盆地深部海相地层油气保存条件剖析[J]. 海洋地质前沿, 2019, 35(1):1-11

    ZHANG Penghui, LIANG Jie, CHEN Jianwen, et al. Hydrocarbon preservation analysis for marine strata in superimposed basins of China [J]. Marine Geology Frontiers, 2019, 35(1): 1-11.

    [106] 高顺莉, 谭思哲, 陈春峰, 等. 下扬子-南黄海二叠纪岩相古地理特征及油气勘探启示[J]. 海洋地质前沿, 2021, 37(4):53-60

    GAO Shunli, TAN Sizhe, CHEN Chunfeng, et al. Permian lithofacies paleogeography of the South Yellow Sea area, lower yangtze plate and its implications for petroleum exploration [J]. Marine Geology Frontiers, 2021, 37(4): 53-60.

    [107] 王文娟, 陈建文, 雷宝华, 等. 下扬子巢湖鼓地1井五峰-高家边组生物地层及部分笔石带缺失原因[J]. 海洋地质前沿, 2021, 37(4):61-67

    WANG Wenjuan, CHEN Jianwen, LEI Baohua, et al. Cause of the partial missing of graptolite zones in Wufeng and Kaochiapien formations of well GD-1, Chaohu area, lower Yangtze region [J]. Marine Geology Frontiers, 2021, 37(4): 61-67.

    [108] 张玉玺, 陈建文, 张银国. 下扬子-南黄海地区下三叠统“错时相”沉积及成因[J]. 海洋地质前沿, 2021, 37(4):68-76

    ZHAGN Yuxi, CHEN Jianwen, ZHANG Yinguo. Anachronistic facies and its origin of the lower Triassic in the lower Yangtze-South Yellow Sea area [J]. Marine Geology Frontiers, 2021, 37(4): 68-76.

    [109] 周江羽, 陈建文, 张玉玺, 等. 下扬子地区幕府山组古环境和构造背景: 来自细粒混积沉积岩系元素地球化学的证据[J]. 地质学报, 2021, 95(6):1693-1711 doi: 10.3969/j.issn.0001-5717.2021.06.003

    ZHOU Jiangyu, CHEN Jianwen, ZHANG Yuxi, et al. Paleoenvironment and tectonic background of Mufushan Formation in Lower Yangtze area: evidence from geochemistry of fine-grained mixed-siliciclastic-calcareous deposits [J]. Acta Geologica Sinica, 2021, 95(6): 1693-1711. doi: 10.3969/j.issn.0001-5717.2021.06.003

    [110]

    Xu M, Chen J W, Liang J, et al. Basement structures underneath the northern South Yellow Sea basin (East China): Implications for the collision between the North China and South China blocks [J]. Journal of Asian Earth Sciences, 2019, 186: 104040. doi: 10.1016/j.jseaes.2019.104040

    [111] 陈建文. 南黄海崂山隆起海相中-古生界发现多个大型圈闭构造[J]. 海洋地质前沿, 2016, 32(4):69-70

    CHEN Jianwen. Several large traps were found in the marine Mesozoic Paleozoic of Laoshan uplift in the South Yellow Sea [J]. Marine Geology Frontiers, 2016, 32(4): 69-70.

    [112] 冯晓杰, 张川燕, 王春修, 等. 东海陆架和台西南盆地中生界及其油气勘探潜力[J]. 中国海上油气(地质), 2001, 15(5):306-310,316

    FENG Xiaojie, ZHANG Chuanyan, WANG Cunxiu, et al. Mesozoic in the East China Sea shelf and Taixinan Basin and its petroleum potential [J]. China Offshore Oil and Gas (Geology), 2001, 15(5): 306-310,316.

    [113] 陈建文, 李刚, 陈国威. 东海陆架盆地西部坳陷带的中生界和古新统油气远景[J]. 海洋地质动态, 2003, 19(8):17-19 doi: 10.3969/j.issn.1009-2722.2003.08.005

    CHEN Jianwen, LI Gang, CHEN Guowei. Petroleum prospects of mesozoic and paleocene in the western depression of the East China Sea shelf basin [J]. Marine Geology Letters, 2003, 19(8): 17-19. doi: 10.3969/j.issn.1009-2722.2003.08.005

    [114] 冯晓杰, 蔡东升, 王春修, 等. 东海陆架盆地中新生代构造演化特征[J]. 中国海上油气(地质), 2003, 17(1):33-37

    FENG Xiaojie, CAI Dongsheng, WANG Chunxiu, et al. The Meso-Cenozoic tectonic evolution in East China Sea Shelf Basin [J]. China Offshore Oil and Gas (Geology), 2003, 17(1): 33-37.

    [115]

    Yang C Q, Sun J, Yang Y Q, et al. Key factors controlling Mesozoic hydrocarbon accumulation in the southern East China Sea basin [J]. Marine and Petroleum Geology, 2020, 118: 104436. doi: 10.1016/j.marpetgeo.2020.104436

    [116] 舒良树, 周新民, 邓平, 等. 中国东南部中、新生代盆地特征与构造演化[J]. 地质通报, 2004, 23(9):876-884 doi: 10.3969/j.issn.1671-2552.2004.09.008

    SHU Liangshu, ZHOU Xinmin, DENG Ping, et al. Geological features and tectonic evolution of Meso-Cenozoic basins in southeastern China [J]. Geological Bulletin of China, 2004, 23(9): 876-884. doi: 10.3969/j.issn.1671-2552.2004.09.008

    [117] 须雪豪, 陈琳琳, 汪企浩. 东海陆架盆地中生界地质特征与油气资源潜力浅析[J]. 海洋石油, 2004, 24(3):1-7,55 doi: 10.3969/j.issn.1008-2336.2004.03.001

    XU Xuehao, CHEN Linlin, WANG Qihao. Analysis of Mesozoic geological characteristics and resource potential in the East China Sea Shelf Basin [J]. Offshore Oil, 2004, 24(3): 1-7,55. doi: 10.3969/j.issn.1008-2336.2004.03.001

    [118] 高乐. 东海陆架中生代残余盆地特征及勘探方向探讨[J]. 中国海上油气, 2005, 17(3):148-152 doi: 10.3969/j.issn.1673-1506.2005.03.002

    GAO Le. Mesozoic remnant basin characteristics and hydrocarbon exploration direction on East China Sea shelf [J]. China Offshore Oil and Gas, 2005, 17(3): 148-152. doi: 10.3969/j.issn.1673-1506.2005.03.002

    [119] 刘建华, 黎明碧, 方银霞. 东海陆架盆地海相中生界及其与邻近古海洋关系探讨[J]. 热带海洋学报, 2005, 24(2):1-7 doi: 10.3969/j.issn.1009-5470.2005.02.001

    LIU Jianhua, LI Mingbi, FANG Yinxia. Mesozoic strata in East China Sea shelf basin and their relationship with adjacent Palaeo-seas [J]. Journal of Tropical Oceanography, 2005, 24(2): 1-7. doi: 10.3969/j.issn.1009-5470.2005.02.001

    [120] 唐建. 东海及邻近地区中生代沉积地层展布研究[D]. 上海: 同济大学, 2007

    TANG Jian. Study on the Mesozoic sedimentary strata distribution of East China and adjacent areas[D]. Shanghai: Tongji University, 2007.

    [121]

    Shu L S, Zhou X M, Deng P, et al. Mesozoic tectonic evolution of the Southeast China block: new insights from basin analysis [J]. Journal of Asian Earth Sciences, 2009, 34(3): 376-391. doi: 10.1016/j.jseaes.2008.06.004

    [122] 杨艳秋, 李刚, 戴春山. 东海陆架盆地西部坳陷带中生界分布特征及其有利区探讨[J]. 世界地质, 2011, 30(3):396-403 doi: 10.3969/j.issn.1004-5589.2011.03.011

    YANG Yanqiu, LI GANG, DAI Chunshan. Characteristics of Mesozoic distribution and discussion on its favourable area in western depression zone of East China Sea Shelf basin [J]. Global Geology, 2011, 30(3): 396-403. doi: 10.3969/j.issn.1004-5589.2011.03.011

    [123] 胡文博. 东海陆架盆地南部中生界沉积体系研究[D]. 北京: 中国地质大学(北京), 2012

    HU Wenbo. The Mesozoic sedimentary systems in the Southern East China Sea Shelf basin[D]. Beijing: China University of Geosciences (Beijing), 2012.

    [124] 杨长清, 杨传胜, 李刚, 等. 东海陆架盆地南部中生代构造演化与原型盆地性质[J]. 海洋地质与第四纪地质, 2012, 32(3):105-111

    YANG Changqing, YANG Chuansheng, LI Gang, et al. Mesozoic tectonic evolution and Prototype Basin characters in the Southern East China Sea shelf basin [J]. Marine Geology & Quaternary Geology, 2012, 32(3): 105-111.

    [125] 李刚, 龚建明, 杨长清, 等. “大东海”中生代地层分布: 值得关注的新领域[J]. 海洋地质与第四纪地质, 2012, 32(3):98-104

    LI Gang, GONG Jianming, YANG Changqing, et al. Stratigraphic features of the mesozoic “Great East China Sea”: a new exploration field [J]. Marine Geology & Quaternary Geology, 2012, 32(3): 98-104.

    [126] 蒋玉波, 龚建明, 曹志敏, 等. 东海陆架盆地南部及邻区陆域中生界对比[J]. 海洋地质前沿, 2013, 29(10):1-7

    JIANG Yubo, GONG Jianming, CAO Zhimin, et al. Correlation of the Mesozoic between Southern East China Sea shelf basin and its adjacent areas [J]. Marine Geology Frontiers, 2013, 29(10): 1-7.

    [127] 杨长清, 李刚, 龚建明, 等. 中国东南海域中生界油气地质条件与勘探前景[J]. 吉林大学学报:地球科学版, 2015, 45(1):1-12

    YANG Changqing, LI Gang, GONG Jianming, et al. Petroleum geological conditions and exploration prospect of the Mesozoic in Southeast China Sea area [J]. Journal of Jilin University:Earth Science Edition, 2015, 45(1): 1-12.

    [128] 梁杰, 陈建文, 张银国, 等. 东海陆架盆地西部坳陷带中生界储层类型及成因[J]. 海洋地质与第四纪地质, 2016, 36(5):131-138

    LIANG Jie, CHEN Jianwen, ZHANG Yinguo, et al. Type and origin of mesozoic reservoirs in western depression zone of East China Sea shelf basin [J]. Marine Geology & Quaternary Geology, 2016, 36(5): 131-138.

    [129] 杨长清, 韩宝富, 杨艳秋, 等. 东海陆架盆地中生界油气调查进展与面临的挑战[J]. 海洋地质前沿, 2017, 33(4):1-8

    YANG Changqing, HAN Baofu, YANG Yanqiu, et al. Oil and gas exploration in the mesozoic of East China Sea shelf basin: progress and challenges [J]. Marine Geology Frontiers, 2017, 33(4): 1-8.

    [130] 江东辉, 唐建, 王丹萍, 等. 东海陆架盆地南部及邻近陆域中生代地层格架对比[J]. 海洋地质前沿, 2017, 33(4):16-21

    JIANG Donghui, TANG Jian, WANG Danping, et al. Mesozoic stratigraphic framework of the Southern East China Sea shelf basin and its correlation with adjacent areas [J]. Marine Geology Frontiers, 2017, 33(4): 16-21.

    [131]

    Yang C Q, Yang Y Q, Li G, et al. The Mesozoic basin-mountain coupling process of the Southern East China Sea Shelf Basin and its adjacent land area [J]. Acta Geologica Sinica (English Edition), 2016, 90(3): 1051-1052. doi: 10.1111/1755-6724.12748

    [132] 陈虹宇, 胡广. 中国东南沿海早白垩世大地构造演化分析: 来自浙江东部沿海石浦群沉积岩的证据[J]. 地质论评, 2017, 63(S1):269-270

    CHEN Hongyu, HU Guang. Analysis of Tectonic evolution during early Cretaceous in coastal area of SE China: A Case from sedimentary rock of Shipu Group in eastern Zhejiang province [J]. Geological Review, 2017, 63(S1): 269-270.

    [133] 崔幸, 王亮亮, 罗洪明, 等. 东海陆架盆地南部中生代盆地性质与演化: 砂箱物理模拟检验[J]. 海洋地质与第四纪地质, 2017, 37(4):181-192

    CUI Xing, WANG Liangliang, LUO Hongming, et al. Sandbox modeling test for Mesozoic basins in Southern East China Sea Shelf Basin [J]. Marine Geology & Quaternary Geology, 2017, 37(4): 181-192.

    [134] 杨传胜, 杨长清, 李刚, 等. 东海陆架盆地中—新生界油气勘探研究进展与前景分析[J]. 海洋地质与第四纪地质, 2018, 38(2):136-147

    YANG Chuansheng, YANG Changqing, LI Gang, et al. Prospecting of Meso-cenozoic hydrocarbon in the East China Sea Shelf Basin [J]. Marine Geology & Quaternary Geology, 2018, 38(2): 136-147.

    [135] 杨长清, 杨传胜, 孙晶, 等. 东海陆架盆地南部中生代演化与动力学转换过程[J]. 吉林大学学报:地球科学版, 2019, 49(1):139-153

    YANG Changqing, YANG Chuansheng, SUN Jing, et al. Mesozoic evolution and dynamics transition in southern shelf basin of the East China Sea [J]. Journal of Jilin University:Earth Science Edition, 2019, 49(1): 139-153.

    [136] 郝沪军, 林鹤鸣, 杨梦雄, 等. 潮汕坳陷中生界: 油气勘探的新领域[J]. 中国海上油气(地质), 2004, 16(2):73-83

    HAO Hujun, LIN Heming, YANG Mengxiong, et al. The mesozoic in chaoshan depression: a new domain of petroleum exploration [J]. China Offshore Oil and Gas (Geology), 2004, 16(2): 73-83.

    [137] 颜佳新, 周蒂. 南海北部陆缘区中特提斯构造演化研究[J]. 海洋地质与第四纪地质, 2001, 21(4):49-54

    YAN Jiaxin, ZHOU Di. Advancement on the Meso-Tethys along the northern margin of the South China Sea [J]. Marine Geology and Quaternary Geology, 2001, 21(4): 49-54.

    [138] 杨少坤, 林鹤鸣, 郝沪军. 珠江口盆地东部中生界海相油气勘探前景[J]. 石油学报, 2002, 23(5):28-33 doi: 10.3321/j.issn:0253-2697.2002.05.006

    YANG Shaokun, LIN Heming, HAO Hujun. Oil and gas exploration prospect of Mesozoic in the eastern part of Pearl River mouth Basin [J]. Acta Petrolei Sinica, 2002, 23(5): 28-33. doi: 10.3321/j.issn:0253-2697.2002.05.006

    [139] 林鹤鸣, 郝沪军. 珠江口盆地东部和台湾西部海域中生界地质构造特征[J]. 中国海上油气(地质), 2002, 16(4):231-237

    LIN Heming, HAO Hujun. Mesozoic tectonics in the eastern Pearl River mouth basin and offshore western Taiwan [J]. China Offshore Oil and Gas (Geology), 2002, 16(4): 231-237.

    [140] 刘海龄. 南海及邻区地层对比[M]//刘昭蜀. 南海地质. 北京: 科学出版社, 2002: 233-254

    LIU Hailling. Contrast of strata in South China Sea and its adjacent areas[M]//LIU Zhaoshu. Geology of the South China Sea. Beijing: Science Press, 2002: 233-254.

    [141] 颜佳新, 周蒂. 南海及周边部分地区特提斯构造遗迹: 问题与思考[J]. 热带海洋学报, 2002, 21(2):43-49 doi: 10.3969/j.issn.1009-5470.2002.02.005

    YAN Jiaxin, ZHOU Di. Reviews on Tethyan trace in South China Sea and some adjacent regions [J]. Journal of Tropical Oceanography, 2002, 21(2): 43-49. doi: 10.3969/j.issn.1009-5470.2002.02.005

    [142] 周蒂. 台西南盆地和北港隆起的中生界及其沉积环境[J]. 热带海洋学报, 2002, 21(2):50-57 doi: 10.3969/j.issn.1009-5470.2002.02.006

    ZHOU Di. Mesozoic strata and sedimentary environment in SW Taiwan Basin of NE South China Sea and Peikang High of western Taiwan [J]. Journal of Tropical Oceanography, 2002, 21(2): 50-57. doi: 10.3969/j.issn.1009-5470.2002.02.006

    [143] 杨静, 冯晓杰, 范迎风, 等. 南海东北部中晚中生代构造、古地理背景及油气远景分析[J]. 中国海上油气(地质), 2003, 17(2):89-92,103

    YANG Jing, FENG Xiaojie, FAN Yingfeng, et al. An analysis of middle-late mesozoic tectonics, paleogeography and petroleum potential in the northeastern South China Sea [J]. China Offshore Oil and Gas (Geology), 2003, 17(2): 89-92,103.

    [144] 张莉, 李文成, 曾祥辉. 礼乐盆地地层发育特征及其与油气的关系[J]. 石油实验地质, 2003, 25(5):469-472,480 doi: 10.3969/j.issn.1001-6112.2003.05.009

    ZHANG Li, LI Wencheng, ZENG Xianghui. Stratigraphic sequence and hydrocarbon potential in Lile Basin [J]. Petroleum Geology & Experiment, 2003, 25(5): 469-472,480. doi: 10.3969/j.issn.1001-6112.2003.05.009

    [145] 周蒂, 颜佳新, 丘元禧, 等. 南海西部围区中特提斯东延通道问题[J]. 地学前缘, 2003, 10(4):469-477 doi: 10.3321/j.issn:1005-2321.2003.04.014

    ZHOU Di, YAN Jiaxin, QIU Yuanxi, et al. Route for the eastern extension of meso-tethys in the western environs of the South China Sea [J]. Earth Science Frontiers, 2003, 10(4): 469-477. doi: 10.3321/j.issn:1005-2321.2003.04.014

    [146] 陈汉宗, 孙珍, 周蒂. 华南中生代岩相变化及海相地层时空分布[J]. 热带海洋学报, 2003, 22(2):74-82 doi: 10.3969/j.issn.1009-5470.2003.02.008

    CHEN Hanzong, SUN Zhen, ZHOU Di. Distributions of mesozoic lithofacies and marine strata in South China [J]. Journal of Tropical Oceanography, 2003, 22(2): 74-82. doi: 10.3969/j.issn.1009-5470.2003.02.008

    [147] 周蒂, 颜佳新, 丘元禧, 等. 南海西部围区中生代岩相古地理及中特提斯东延通道[M]//李家彪, 高抒. 中国边缘海海盆演化与资源效应. 北京: 海洋出版社, 2003: 150-169

    ZHOU Di, YAN Jiaxin, QIU Yuanxi, et al. Mesozoic litho-facies and paleo-geography of western environs of South China Sea and their bearing on the eastern extension of Meso-Tethys[M]//LI Jiabiao, GAO Shu. Studies on the Formation and Evolution of the China's Marginal Seas, Volume 2. Beijing: Ocean Press, 2003: 150-169.

    [148] 周蒂, 陈汉宗, 孙珍, 等. 南海及其围区中生代岩相古地理及有关大地构造和资源问题[M]//李家彪, 高抒. 中国边缘海岩石层结构与动力过程. 北京: 海洋出版社, 2004: 65-76

    ZHOU Di, CHEN Hanzong, SUN Zhen, et al. Mesozoic lithofacies and paleogeography of South China Sea and surrounding areas and their bearing on tectonics and resources[M]//LI Jiabiao, GAO Shu. Studies on the Formation and Evolution of the China's Marginal Seas, Volume 3. Beijing: Ocean Press, 2004: 65-76.

    [149] 郝沪军, 汪瑞良, 张向涛, 等. 珠江口盆地东部海相中生界识别及分布[J]. 中国海上油气, 2004, 16(2):84-88 doi: 10.3969/j.issn.1673-1506.2004.02.002

    HAO Hujun, WANG Ruiliang, ZHANG Xiangtao, et al. Mesozoic marine sediment identification and distribution in the eastern Pearl River Mouth Basin [J]. China Offshore Oil and Gas, 2004, 16(2): 84-88. doi: 10.3969/j.issn.1673-1506.2004.02.002

    [150] 夏戡原, 黄慈流, 黄志明. 南海及邻区中生代(晚三叠世—白垩纪)地层分布特征及含油气性对比[J]. 中国海上油气, 2004, 16(2):73-83 doi: 10.3969/j.issn.1673-1506.2004.02.001

    XIA Kanyuan, HUANG Ciliu, HUANG Zhiming. Upper Triassic-Cretaceous sediment distribution and hydrocarbon potential in South China Sea and its adjacent areas [J]. China Offshore Oil and Gas, 2004, 16(2): 73-83. doi: 10.3969/j.issn.1673-1506.2004.02.001

    [151] 邱燕, 温宁. 南海北部边缘东部海域中生界及油气勘探意义[J]. 地质通报, 2004, 23(2):142-146 doi: 10.3969/j.issn.1671-2552.2004.02.007

    QIU Yan, WEN Ning. Mesozoic in the eastern sea area of the northern margin of the South China Sea and its significance for oil/gas exploration [J]. Geological Bulletin of China, 2004, 23(2): 142-146. doi: 10.3969/j.issn.1671-2552.2004.02.007

    [152] 刘海龄, 杨恬, 朱淑芬, 等. 南海西北部新生代沉积基底构造演化[J]. 海洋学报, 2004, 26(3):54-67

    LIU Hailing, YANG Tian, ZHU Shufen, et al. Tectonic evolution of Cenozoic sedimentary basements in the northwestern South China Sea [J]. Acta Oceanologica Sinica, 2004, 26(3): 54-67.

    [153] 刘海龄, 阎贫, 张伯友, 等. 南海前新生代基底与东特提斯构造域[J]. 海洋地质与第四纪地质, 2004, 24(1):15-28

    LIU Hailing, YAN Pin, ZHANG Boyou, et al. Pre-Cenozoic basements of the South China Sea and Eastern Tethyan realm [J]. Marine Geology & Quaternary Geology, 2004, 24(1): 15-28.

    [154] 周蒂, 陈汉宗, 孙珍, 等. 南海中生代三期海盆及其与特提斯和古太平洋的关系[J]. 热带海洋学报, 2005, 24(2):16-25 doi: 10.3969/j.issn.1009-5470.2005.02.003

    ZHOU Di, CHEN Hanzong, SUN Zhen, et al. Three Mesozoic Sea basins in eastern and Southern South China Sea and their relation to tethys and paleo-pacific domains [J]. Ournal of Tropical Oceanography, 2005, 24(2): 16-25. doi: 10.3969/j.issn.1009-5470.2005.02.003

    [155] 倪金龙, 夏斌, 刘海龄. 南海及邻区前中生代构造演化与东特提斯构造域[J]. 海洋地质动态, 2005, 21(10):11-16

    NI Jinlong, XIA Bin, LIU Hailing. Pre-mesozoic tectonic evolution in the South China Sea and Adjacent Area and eastern tethyan realm [J]. Marine Geology Letters, 2005, 21(10): 11-16.

    [156] 钟广见, 易海, 林珍, 等. 粤东和南海东北部陆坡区中生界及烃源岩特征[J]. 新疆石油地质, 2007, 28(6):676-680 doi: 10.3969/j.issn.1001-3873.2007.06.004

    ZHONG Guangjian, YI Hai, LIN Zhen, et al. Characteristic of source rocks and Mesozoic in continental slope area of Northeastern the South China Sea and East Guangdong of China [J]. Xinjiang Petroleum Geology, 2007, 28(6): 676-680. doi: 10.3969/j.issn.1001-3873.2007.06.004

    [157] 邵磊, 尤洪庆, 郝沪军, 等. 南海东北部中生界岩石学特征及沉积环境[J]. 地质论评, 2007, 53(2):164-169 doi: 10.3321/j.issn:0371-5736.2007.02.003

    SHAO Lei, YOU Hongqing, HAO Hujun, et al. Petrology and depositional environments of Mesozoic strata in the northeastern South China Sea [J]. Geological Review, 2007, 53(2): 164-169. doi: 10.3321/j.issn:0371-5736.2007.02.003

    [158] 吴国瑄, 王汝建, 郝沪军, 等. 南海北部海相中生界发育的微体化石证据[J]. 海洋地质与第四纪地质, 2007, 27(1):79-85

    WU Guoxuan, WANG Rujian, HAO Hujun, et al. Microfossil evidence for development of marine Mesozoic in the north of south China Sea [J]. Marine Geology & Quaternary Geology, 2007, 27(1): 79-85.

    [159] 刘海龄, 谢国发, 阎贫, 等. 南沙海区中生界岩相分布及构造特征[J]. 海洋与湖沼, 2007, 38(3):272-278 doi: 10.3321/j.issn:0029-814X.2007.03.014

    LIU Hailing, XIE Guofa, YAN Pin, et al. Tectonic implication of Mesozoic marine deposits in the Nansha islands of the South China Sea [J]. Oceanologia et Limnologia Sinica, 2007, 38(3): 272-278. doi: 10.3321/j.issn:0029-814X.2007.03.014

    [160] 杨树春, 仝志刚, 贺清, 等. 潮汕坳陷中生界生烃历史及火成岩侵入影响分析: 以LF35-1-1井为例[J]. 中国海上油气, 2008, 20(3):152-156 doi: 10.3969/j.issn.1673-1506.2008.03.003

    YANG Shuchun, TONG Zhigang, HE Qing, et al. Mesozoic hydrocarbon generation history and igneous intrusion impacts in Chaoshan depression, South China sea: a case of LF35-1-1 well [J]. China Offshore Oil and Gas, 2008, 20(3): 152-156. doi: 10.3969/j.issn.1673-1506.2008.03.003

    [161] 孙龙涛, 孙珍, 周蒂, 等. 南沙海区礼乐盆地沉积地层与构造特征分析[J]. 大地构造与成矿学, 2008, 32(2):151-158 doi: 10.3969/j.issn.1001-1552.2008.02.003

    SUN Longtao, SUN Zhen, ZHOU Di, et al. Stratigraphic and structural characteristics of lile basin in Nansha area [J]. Geotectonica et Metallogenia, 2008, 32(2): 151-158. doi: 10.3969/j.issn.1001-1552.2008.02.003

    [162] 郝沪军, 施和生, 张向涛, 等. 潮汕坳陷中生界及其石油地质条件: 基于LF35-1-1探索井钻探结果的讨论[J]. 中国海上油气, 2009, 21(3):151-156 doi: 10.3969/j.issn.1673-1506.2009.03.002

    HAO Hujun, SHI Hesheng, ZHANG Xiangtao, et al. Mesozoic sediments and their petroleum geology conditions in Chaoshan sag: a discussion based on drilling results from the exploratory well LF35-1-1 [J]. China Offshore Oil and Gas, 2009, 21(3): 151-156. doi: 10.3969/j.issn.1673-1506.2009.03.002

    [163] 姚永坚, 高红芳, 何家雄, 等. 南海东北部潮汕坳陷及陆上邻区中生界烃源岩初步研究[J]. 天然气地球科学, 2009, 20(6):862-871

    YAO Yongjian, GAO Hongfang, HE Jiaxiong, et al. Preliminary studies on the Mesozoic source rocks in Chaoshan depression, Northeastern South China Sea [J]. Natural Gas Geoscience, 2009, 20(6): 862-871.

    [164] 沈艳杰, 程日辉, 王嘹亮, 等. 粤东地区上白垩统盐湖沉积及其在南海北部中生界油气勘探中的意义[J]. 吉林大学学报:地球科学版, 2009, 39(5):759-766

    SHEN Yanjie, CHENG Rihui, WANG Liaoliang, et al. Salt lake sediments of the Upper Cretaceous in Eastern Guangdong and its significance in oil and gas exploration of the Mesozoic in the Northern South China Sea [J]. Journal of Jilin University:Earth Science Edition, 2009, 39(5): 759-766.

    [165] 王嘹亮, 程日辉, 李飞, 等. 南海北部陆缘中生代沉积层序、对比和油气地质意义[J]. 吉林大学学报:地球科学版, 2009, 39(2):175-182

    WANG Liaoliang, CHENG Rihui, LI Fei, et al. The Mesozoic sedimentary sequences, Correlation and Geological significance for petroleum of the north margin of South China Sea [J]. Journal of Jilin University:Earth Science Edition, 2009, 39(2): 175-182.

    [166] 孙龙涛, 孙珍, 詹文欢, 等. 南沙海域礼乐盆地油气资源潜力[J]. 地球科学—中国地质大学学报, 2010, 35(1):137-145 doi: 10.3799/dqkx.2010.014

    SUN Longtao, SUN Zhen, ZHAN Wenhuan, et al. Petroleum potential prediction of the Lile Basin in Nansha [J]. Earth Science—Journal of China University of Geosciences, 2010, 35(1): 137-145. doi: 10.3799/dqkx.2010.014

    [167] 段九春, 米慧芬. 潮汕坳陷中生界地震相与沉积相研究[J]. 资源与产业, 2012, 14(1):100-105 doi: 10.3969/j.issn.1673-2464.2012.01.019

    DUAN Jiuchun, MI Huifen. Seismic facies and sedimentary facies study of Mesozoic in Chaoshan sag [J]. Resources & Industries, 2012, 14(1): 100-105. doi: 10.3969/j.issn.1673-2464.2012.01.019

    [168] 刘宝明, 刘海龄. 南海及邻区中生界—新的油气勘探领域[J]. 海洋地质与第四纪地质, 2011, 31(2):105-109

    LIU Baoming, LIU Hailing. The mesozoic in the South China Sea and adjacent areas: new targets for hydrocarbon exploration [J]. Marine Geology & Quaternary Geology, 2011, 31(2): 105-109.

    [169] 张莉, 耿安松, 王嘹亮, 等. 华南陆缘中生界烃源岩条件评价[J]. 海洋地质与第四纪地质, 2012, 32(1):99-108

    ZHANG Li, GENG Ansong, WANG Liaoliang, et al. Assessment of Mesozoic source rocks at the Margin of South China continent [J]. Marine Geology & Quaternary Geology, 2012, 32(1): 99-108.

    [170] 王利杰, 姚永坚, 孙珍, 等. 南沙地块东部中生界分布及构造变形特征[J]. 地质论评, 2020, 66(S1):77-80

    WANG Lijie, YAO Yongjian, SUN Zhen, et al. Mesozoic distribution and tectonic deformation in the eastern Nansha block [J]. Geological Review, 2020, 66(S1): 77-80.

    [171] 刘守全, 蔡乾忠, 莫杰. 中国海域油气勘探的新领域: 应当重视海域中生界油气资源[J]. 中国地质, 2001, 28(11):4-9 doi: 10.3969/j.issn.1000-3657.2001.11.002

    LIU Shouquan, CAI Qianzhong, MO Jie. A new field of petroleum exploration in sea areas of China-Attention should be paid to Mesozoic marine petroleum resources [J]. Chinese Geology, 2001, 28(11): 4-9. doi: 10.3969/j.issn.1000-3657.2001.11.002

    [172] 赖万忠. 中国海域中生界油气勘探[J]. 中国海上油气(地质), 2001, 15(5):311-316

    LAI Wanzhong. Mesozoic petroleum exploration in offshore China [J]. China Offshore Oil and Gas (Geology), 2001, 15(5): 311-316.

    [173] 陈建文, 肖国林, 刘守全, 等. 中国海域油气资源勘查战略研究[J]. 海洋地质与第四纪地质, 2003, 23(4):77-82

    CHEN Jianwen, XIAO Guolin, LIU Shouquan, et al. Strategy of oil and gas resources explorations in China seas [J]. Marine Geology & Quaternary Geology, 2003, 23(4): 77-82.

    [174] 肖国林, 董贺平, 杨长清, 等. 我国近海非常规油气资源勘探态势及其地质有利性[J]. 海洋地质前沿, 2020, 36(7):73-76

    XIAO Guolin, DONG Heping, YANG Changqing, et al. Exploration status and geological advantages of unconventional oil and gas resources in China Off shore [J]. Marine Geology Frontiers, 2020, 36(7): 73-76.

    [175] 蔡东升, 冯晓杰, 高乐, 等. 中国近海前第三纪残余盆地及其勘探潜力与方向[J]. 中国海上油气, 2004, 16(1):1-17 doi: 10.3969/j.issn.1673-1506.2004.01.001

    CAI Dongsheng, FENG Xiaojie, GAO Le, et al. Petroleum potential and exploration direction of pre-Tertiary remnant basins in offshore China [J]. China Offshore Oil and Gas, 2004, 16(1): 1-17. doi: 10.3969/j.issn.1673-1506.2004.01.001

    [176] 刘光鼎, 陈洁. 中国海域残留盆地油气勘探潜力分析[J]. 地球物理学进展, 2005, 20(4):881-888 doi: 10.3969/j.issn.1004-2903.2005.04.001

    LIU Guangding, CHEN Jie. Potential analysis of petroleum explortation in residual basins of the China sea [J]. Progress in Geophysics, 2005, 20(4): 881-888. doi: 10.3969/j.issn.1004-2903.2005.04.001

    [177] 温珍河, 刘守全, 陈建文, 等. 值得重视的海域海相油气勘探[J]. 海相油气地质, 2007, 12(3):5-9 doi: 10.3969/j.issn.1672-9854.2007.03.002

    WEN Zhenhe, LIU Shouquan, CHEN Jianwen, et al. Oil and gas explor ation in marine formation of China sea ar eas [J]. Marine Origin Petroleum Geology, 2007, 12(3): 5-9. doi: 10.3969/j.issn.1672-9854.2007.03.002

    [178] 陈建文, 梁杰, 张银国, 等. 中国海域油气资源潜力分析与黄东海海域油气资源调查进展[J]. 海洋地质与第四纪地质, 2019, 39(6):1-29

    CHEN Jianwen, LIANG Jie, ZHANG Yinguo, et al. Regional evaluation of oil and gas resources in offshore China and exploration of marine Paleo-Mesozoic oil and gas in the Yellow Sea and East China Sea [J]. Marine Geology & Quaternary Geology, 2019, 39(6): 1-29.

    [179] 丘学林, 赵明辉, 徐辉龙, 等. 南海深地震探测的重要科学进程: 回顾和展望[J]. 热带海洋学报, 2012, 31(3):1-9

    QIU Xuelin, ZHAO Minghui, XU Huilong, et al. Important processes of deep seismic surveys in the South China Sea: Retrospection and expectation [J]. Journal of Tropical Oceanography, 2012, 31(3): 1-9.

    [180] 邢涛, 詹文欢, 李福元, 等. 东沙海域复杂海况下单源单缆长排列地震资料处理[J]. 热带海洋学报, 2020, 39(4):91-99

    XING Tao, ZHAN Wenhuan, LI Fuyuan, et al. Single-source, single-cable, long-array, seismic data processing in complex sea conditions of Dongsha sea area [J]. Journal of Tropical Oceanography, 2020, 39(4): 91-99.

    [181] 陈华, 张亚斌, 徐翔之, 等. 中深层地震采集方法研究: 以东海盆地X海域为例[J]. 石油天然气学报, 2010, 32(5):219-223,409

    CHEN Hua, ZHANG Yabin, XU Xiangzhi, et al. Study on seismic data acquisition in mid-deep zone: by taking X trough in East China Sea Basin for example [J]. Journal of Oil and Gas Technology, 2010, 32(5): 219-223,409.

    [182] 邓桂林, 丁龙翔, 李福元, 等. 海洋长排列单源单缆准三维窄方位地震资料处理技术[J]. 物探与化探, 2019, 43(4):828-834

    Deng Guilin, Ding Longxiang, Li Fuyuan, et al. The processing technology of narrow azimuth Quasi three-dimensional seismic data acquisition by single source and single long streamer system in marine seismic exploration [J]. Geophysical and Geochemical Exploration, 2019, 43(4): 828-834.

    [183] 吴庆勋, 高坤顺, 吴昊明, 等. 渤海海域前新生代基底特征及其油气勘探意义[J]. 现代地质, 2019, 33(4):802-810,819

    WU Qingxun, GAO Kunshun, WU Haoming, et al. Characteristics of pre-cenozoic basement in Bohai Sea and its significance in oil and gas exploration [J]. Geoscience, 2019, 33(4): 802-810,819.

    [184] 徐春强, 张震, 王晨杰, 等. 渤海海域428潜山地层结构特征及勘探潜力[J]. 海洋地质前沿, 2020, 36(11):52-58

    XU Chunqiang, ZHANG Zhen, WANG Chenjie, et al. Stratigraphic framework and exploration potential of buried hill 428 in the Bohai Sea [J]. Marine Geology Frontiers, 2020, 36(11): 52-58.

    [185] 陈丽祥, 牛成民, 李慧勇, 等. 渤海湾盆地渤中21-2构造碳酸盐岩储层发育特征及其控制因素[J]. 油气地质与采收率, 2016, 23(2):16-21 doi: 10.3969/j.issn.1009-9603.2016.02.003

    CHEN Lixiang, NIU Chengmin, LI Huiyong, et al. Carbonate reservoir characteristics and its controlling factors in Bozhong 21-2 structure, Bohai Bay Basin [J]. Petroleum Geology and Recovery Efficiency, 2016, 23(2): 16-21. doi: 10.3969/j.issn.1009-9603.2016.02.003

    [186] 李乃胜. 黄海三大盆地的构造演化[J]. 海洋与湖沼, 1995, 26(4):355-362 doi: 10.3321/j.issn:0029-814X.1995.04.003

    LI Naisheng. Tectonic evolution of three structuralbasins in the Yellow Sea [J]. Oceanologia et Limnologia Sinica, 1995, 26(4): 355-362. doi: 10.3321/j.issn:0029-814X.1995.04.003

    [187] 肖国林, 孙长虹, 郑浚茂. 北黄海盆地东部前中生界基底特征[J]. 现代地质, 2005, 19(2):261-266 doi: 10.3969/j.issn.1000-8527.2005.02.015

    XIAO Guolin, SUN Changhong, ZHENG Junmao. Pre-mesozoic basement characteristics in the eastern depression of the North Yellow Sea Basin [J]. Geoscience, 2005, 19(2): 261-266. doi: 10.3969/j.issn.1000-8527.2005.02.015

    [188] 陈建文, 吴志强, 李慧君, 等. 南黄海前第三系油气前景研究[R]. 青岛: 青岛海洋地质研究所, 2010

    CHEN Jianwen, WU Zhiqiang, LI Huijun, et al. Oil and gas prospects of Pre- Tertiary in South Yellow Sea[R]. Qingdao: Qingdao Institute of Marine Geology, 2010.

    [189] 邱燕, 王立飞, 黄文凯, 等. 中国海域中新生代沉积盆地[M]. 北京: 地质出版社, 2016: 233

    QIU Yan, WANG Lifei, HUANG Wenkai, et al. Mesozoic Cenozoic Sedimentary Basins in China Sea Area[M]. Beijing: Geological Publishing House, 2016: 233.

    [190] 国土资源部油气资源战略研究中心. 海域油气资源战略调查与选区[M]. 北京: 地质出版社, 2013: 238

    Compiled by the Oil and Gas Resources Strategic Research Center of the Ministry of Land and Resources. Strategic Investigation and Selection of Offshore Oil and Gas Resources[M]. Beijing: Geological Publishing House, 2013: 238.

    [191] 龚再升, 李思田, 谢泰俊, 等. 南海北部大陆边缘盆地分析与油气聚集[M]. 北京: 科学出版社, 1997

    GONG Zaisheng, LI Sitian, XIE Taijun, et al. Continental Margin Basin Analysis and Hydrocarbon Accumulation of the Northern South China Sea[M]. Beijing: Science Press, 1997.

    [192] 肖国林, 王明健, 杨长清, 等. 东海南部中生界烃类生成、运聚与成藏数值模拟[J]. 海洋地质与第四纪地质, 2019, 39(6):138-149

    XIAO Guolin, WANG Mingjian, YANG Changqing, et al. Numerical simulation of Mesozoic hydrocarbon generation, migration and accumulation in the southern East China Sea [J]. Marine Geology & Quaternary Geology, 2019, 39(6): 138-149.

    [193] 陈建平, 赵长毅, 何忠华. 煤系有机质生烃潜力评价标准探讨[J]. 石油勘探与开发, 1997, 24(1):1-5

    CHEN Jianping, ZHAO Changyi, HE Zhonghua. Criteria for evaluating the hydrocarbon generating potential of organic matter in coal measures [J]. Petroleum Exploration and Development, 1997, 24(1): 1-5.

    [194] 张莉, 雷振宇, 许红, 等. 台西盆地地层沉积特征与成烃-成藏地质条件[J]. 石油与天然气地质, 2019, 40(1):152-161 doi: 10.11743/ogg20190115

    ZHANG Li, LEI Zhenyu, XU Hong, et al. Sedimentary features and geological conditions for hydrocarbon generation and accumulation in Taixi Basin [J]. Oil & Gas Geology, 2019, 40(1): 152-161. doi: 10.11743/ogg20190115

    [195] 张莉, 沙志彬, 王立飞. 南沙海域礼乐盆地中生界油气资源潜力[J]. 海洋地质与第四纪地质, 2007, 27(4):97-102

    ZHANG Li, SHA Zhibin, WANG Lifei. Hydrocarbon resources potential of Mesozoic in Liyue Basin, Northeastern Nansha Sea areas [J]. Marine Geology & Quaternary Geology, 2007, 27(4): 97-102.

    [196] 卢欢, 徐长贵, 王清斌, 等. 碳酸盐胶结物形成机制及其对渤海海域C12和Q17构造中生界碎屑岩储层的影响[J]. 石油与天然气地质, 2019, 40(6):1270-1280 doi: 10.11743/ogg20190611

    LU Huan, XU Changgui, WANG Qingbin, et al. Genetic mechanism of carbonate cements and its impact on the Mesozoicclastic reservoir quality of the C12 and Q17 structures, Bohai Sea area [J]. Oil & Gas Geology, 2019, 40(6): 1270-1280. doi: 10.11743/ogg20190611

    [197] 王保全, 王志萍, 汤国民, 等. 渤海海域中部地区中生界火山岩储层特征及主控因素[J]. 海洋地质前沿, 2020, 36(8):36-42

    WANG Baoquan, WANG Zhiping, TANG Guomin, et al. Characteristics of Mesozoic volcanic reservoir rocks and their main controlling factors in the central Bohai Sea [J]. Marine Geology Frontiers, 2020, 36(8): 36-42.

    [198] 胡志伟, 徐长贵, 杨波, 等. 渤海海域蓬莱9-1油田花岗岩潜山储层成因机制及石油地质意义[J]. 石油学报, 2017, 38(3):274-285 doi: 10.7623/syxb201703004

    HU Zhiwei, XU Changgui, YANG Bo, et al. Reservoir forming mechanism of Penglai 9-1 granite buried-hills and its oil geology significance in Bohai Sea [J]. Acta Petrolei Sinica, 2017, 38(3): 274-285. doi: 10.7623/syxb201703004

    [199] 王建强, 梁杰, 陈建文, 等. 中国海域基岩油气藏特征及未来勘探方向[J]. 海洋地质与第四纪地质, 2021, 41(6):151-162

    WANG Jianqiang, LIANG Jie, CHEN Jianwen, et al. Characteristics of the recently bedrock hydrocarbon reservoir in China Seas and future exploration directions [J]. Marine Geology & Quaternary Geology, 2021, 41(6): 151-162.

  • 期刊类型引用(7)

    1. 吴潇平,赵广涛,徐翠玲,来志庆. 东南太平洋秘鲁海盆DEA区浅层埋藏型铁锰结核的矿物学和地球化学特征及成因类型. 中国海洋大学学报(自然科学版). 2023(02): 94-106 . 百度学术
    2. 丁雪,胡邦琦,赵京涛,王飞飞,黄威,李攀峰,刘佳,郭建卫,崔汝勇. 九州-帕劳海脊南段及邻近海域表层沉积物元素地球化学特征及其地质意义. 海洋地质与第四纪地质. 2023(01): 61-70 . 本站查看
    3. 杨叶飘,韩宗珠,来志庆,龙时迈,顾伟,窦连想. 西盘古海盆锰结核的元素地球化学特征及生长机制. 海洋地质前沿. 2023(09): 35-45 . 百度学术
    4. 丁雪,刘佳,杨慧良,赵京涛,黄威,李攀峰,宋维宇,郭建卫,虞义勇,崔汝勇,胡邦琦. 九州-帕劳海脊南段铁锰结壳物质组成特征及成因机制. 海洋地质与第四纪地质. 2023(04): 105-115 . 本站查看
    5. 黄威,胡邦琦,宋维宇,赵京涛,路晶芳,孟祥君,江云水,崔汝勇,丁雪. 九州-帕劳海脊南部13°20′N海山铁锰结壳关键金属富集规律及制约因素. 海洋地质与第四纪地质. 2022(05): 137-148 . 本站查看
    6. 宋维宇,李超,孟祥君,黄威,赵京涛,陆凯,徐磊,胡邦琦,虞义勇,孙建伟,李阳,周吉祥,胡刚,原晓军. 九州-帕劳海脊南段共生多金属结核与富钴结壳地球化学特征及其资源意义. 海洋地质与第四纪地质. 2022(05): 149-157 . 本站查看
    7. 季虹. 浅谈第四系“姜结石、铁锰结核”形成与分布的关系. 中国金属通报. 2021(11): 112-113 . 百度学术

    其他类型引用(1)

图(7)  /  表(3)
计量
  • 文章访问数:  1645
  • HTML全文浏览量:  517
  • PDF下载量:  112
  • 被引次数: 8
出版历程
  • 收稿日期:  2021-10-13
  • 修回日期:  2021-10-31
  • 录用日期:  2021-11-01
  • 网络出版日期:  2022-01-26
  • 刊出日期:  2022-02-27

目录

/

返回文章
返回