南黄海地区二叠系孤峰组硅质烃源岩的地球化学特征及上升流成因

吴飘, 陈建文, 张银国, 龚建明, 蓝天宇, 薛路, 可行

吴飘,陈建文,张银国,等. 南黄海地区二叠系孤峰组硅质烃源岩的地球化学特征及上升流成因[J]. 海洋地质与第四纪地质,2023,43(1): 138-158. DOI: 10.16562/j.cnki.0256-1492.2022061501
引用本文: 吴飘,陈建文,张银国,等. 南黄海地区二叠系孤峰组硅质烃源岩的地球化学特征及上升流成因[J]. 海洋地质与第四纪地质,2023,43(1): 138-158. DOI: 10.16562/j.cnki.0256-1492.2022061501
WU Piao,CHEN Jianwen,ZHANG Yinguo,et al. Geochemical characteristics and upwelling origin of siliceous source rocks in the Permian Gufeng Formation of the South Yellow Sea area[J]. Marine Geology & Quaternary Geology,2023,43(1):138-158. DOI: 10.16562/j.cnki.0256-1492.2022061501
Citation: WU Piao,CHEN Jianwen,ZHANG Yinguo,et al. Geochemical characteristics and upwelling origin of siliceous source rocks in the Permian Gufeng Formation of the South Yellow Sea area[J]. Marine Geology & Quaternary Geology,2023,43(1):138-158. DOI: 10.16562/j.cnki.0256-1492.2022061501

南黄海地区二叠系孤峰组硅质烃源岩的地球化学特征及上升流成因

基金项目: 国家专项海洋地质调查项目(DD20221723; DD20190818; DD20160152);国家自然科学基金面上项目“南黄海崂山隆起二叠系储层油气成藏破坏与流体演化过程还原研究”(42076220);国家自然科学基金青年基金项目“二连盆地下白垩统富火山组分的咸水湖相烃源岩地质地球化学特征及其有机质富集机制”(42102188);山东省自然科学基金面上项目“南黄海盆地崂山隆起石炭系油气保存条件的主控因素分析”(ZR2020MD071);山东省自然科学基金青年基金项目“南黄海盆地崂山隆起上二叠统特低渗砂岩致密层储层表征研究”(ZR2020QD038),“二连盆地下白垩统小型断陷湖盆的咸化特征及其有机质富集机制”(ZR2021QD095);崂山实验室“十四五”科技创新项目(LSKJ202203401,LSKJ202203404)
详细信息
    作者简介:

    吴飘(1990—),男,博士,主要从事油气地球化学研究,E-mail:wupiao0921@163.com

    通讯作者:

    陈建文(1965—),男,研究员,主要从事海域油气资源调查评价与研究,E-mail: jwchen2012@126.com

  • 中图分类号: P736

Geochemical characteristics and upwelling origin of siliceous source rocks in the Permian Gufeng Formation of the South Yellow Sea area

  • 摘要: 前人对南黄海地区中二叠统孤峰组层状硅质岩的生烃潜力和成因研究较少,本文利用下扬子-南黄海地区的5口钻井资料,对二叠系孤峰组硅质烃源岩进行了详细的矿物学和地球化学研究,并通过与现代秘鲁上升流区的沉积物进行元素含量对比,分析了南黄海地区孤峰组硅质烃源岩的生烃潜力和成因机制。结果显示,下扬子-南黄海地区孤峰组具有硅质岩和硅质泥岩不等厚互层的特征,是一套呈SWW-NEE向展布的过成熟偏腐殖型优质烃源岩。在地球化学特征方面,南黄海地区孤峰组硅质烃源岩和秘鲁上升洋流沉积物均表现出还原性敏感元素和生产力敏感元素相对富集,K、Ti、Mn相对亏损,具有Co×Mn<0.4、Cd/Mo>0.1的特征,显示为大陆边缘的上升流成因。研究显示,南黄海地区孤峰组硅质烃源岩的有机质富集主要受高生产力控制,形成于中等滞留的缺氧-硫化环境。与硅质泥岩相比,孤峰组硅质岩的陆源碎屑输入和Co×Mn值较低,Zr/Rb值较高,这意味着硅质岩沉积时期的上升流活动强度大于硅质泥岩。此外,部分探井中的孤峰组硅质泥岩相对于硅质岩具有较高的化学蚀变指数,说明古气候变暖是造成上升流活动减弱和硅质沉积含量减少的主要原因。
    Abstract: Few studies regarding the hydrocarbon generation potential and genesis of the layered siliceous source rocks in the Mid-Permian Gufeng Formation (GFF) of the South Yellow Sea (SYS) has been conducted. The mineralogy and geochemistry of the siliceous source rocks in the GFF were studied in detail based on the borehole data of five wells located in the Lower Yangtze to South Yellow Sea area, and the element content were compared with those of the sediments in the modern upwelling area of Peru, from which the hydrocarbon generation potential of the GFF siliceous source rocks in the SYS and its origin were revealed. Geological data shows that the GFF in the SYS area is characterized by interbeds of siliceous rocks and siliceous mudstones in unequal thickness, and is a set of over-mature and slightly humic high-quality source rocks extending in the SWW-NEE direction. In terms of geochemistry, both the siliceous rocks and Peruvian upwelling deposits show enrichment in the elements that are sensitive to reduction and productivity, but relative depletion in K, Ti and Mn, and have Co×Mn value lower than 0.4, Cd/Mo value higher than 0.1, indicating their origin of upwelling on continental margin. This study shows that the enrichment of organic matter in the GFF siliceous source rocks in the SYS area is mainly controlled by high productivity and is formed in anoxic to euxinic environment with moderate retention. Compared with siliceous mudstone in the GFF, the terrigenous clastic input and Co×Mn value are lower and Zr/Rb value is higher in the siliceous rocks, which means that the upwelling intensity of the siliceous rocks during sedimentation is greater than that of siliceous mudstones. In addition, the siliceous mudstone of the GFF have higher chemical alteration index than the GFF siliceous rocks in some wells, which suggests that the paleoclimate warming is the main cause for the weakening of upwelling activity and the reduction of siliceous sediment content.
  • 礼乐盆地位于南沙海域东北部,是发育于中生代沉积基底之上的新生代大型裂陷盆地[1-4]图1),整体呈NE-SW向展布,其西北侧为礼乐西海槽,东北侧为南海深海盆,东南侧为巴拉望盆地,西南侧为九章、安渡北盆地和南沙海槽盆地。与南海北部陆缘盆地原地发育不同,礼乐地块是随着南海海盆扩张从南海北部漂移到现今位置的[5-10]。构造位置上,现今位于南海南部大陆边缘的礼乐盆地,在裂离前处于古南海的北部大陆边缘。因此,礼乐盆地构造演化与南海北部陆缘盆地既有相似之处,又有其独特特征。构造沉降史不仅记录了丰富的盆地演化信息,而且是深部地质过程在地表的响应[11]。通过分析构造沉降史,不仅可以获得礼乐盆地在不同阶段的构造、沉积和热演化信息,而且可能取得深部地质过程的新认识。

    图  1  礼乐盆地沉降分析代表点位置图(a)、礼乐滩实钻井位置图(b)及礼乐盆地构造区划与测线位置图(c)
    图a中的钻井XK-1为西科-1井,图b中的五角星为实钻井位置。
    Figure  1.  (a)Locations of the representative points for tectonic subsidence analyses,(b)Locations of commercial drills in the Reed Bank,(c)Tectonic framework of the Liyue Basin showing the studied seismic lines

    我国自20世纪80年代开始在南沙海域开展综合地质与地球物理调查和研究,不仅积累了一批礼乐盆地的地质、地球物理资料,而且对礼乐盆地构造、沉积和油气地质特征等都有了较全面的认识。前人[2, 12-16]为了深入揭示礼乐盆地的构造演化历史,对其构造沉降史进行了较为详细的研究。由于礼乐盆地勘探和研究程度相对较低,各家所用的地层分层数据、界面年龄等构造沉降计算所需的基础数据并不一致,因此重建的构造沉降史也有较大的差异。近些年,精细处理和解释了礼乐盆地已有的二维地震资料。为了获取礼乐盆地的构造演化信息,本文基于这些新解释的资料,从8条骨干剖面上选取37口位于南部坳陷和北部坳陷的模拟井,结合位于礼乐滩的6口实钻井(图1),利用回剥技术对这些代表点进行沉降史重建,并对盆地沉降特征和成因做了较系统的分析。这些工作不仅有助于认识礼乐盆地和南海区域的构造演化过程,而且有助于获得南海深部过程的演变信息。

    礼乐盆地是新生代大型裂陷盆地,其演化可分为张裂、漂移和拗陷等3个阶段[1, 4, 16-17]。张裂阶段(古新世—早渐新世),礼乐盆地与南海北部陆缘一起经历了广泛的张裂作用,发育了厚层海相碎屑岩地层;漂移阶段(晚渐新世—早中新世),礼乐盆地与南海北部陆缘裂离后,随着南海海底扩张和古南海南向俯冲而往南漂移,直至早中新世末期,礼乐地块与南侧婆罗洲-苏禄块体发生碰撞而停靠在现今位置;拗陷阶段(中中新世—第四纪),随着南海海底扩张停止,礼乐盆地进入拗陷阶段,其东南侧巴拉望海槽因南侧块体持续挤压和沉积加载作用而具有前陆盆地的演化特征[17-18]。根据重处理地震资料和新落实的钻井分层,按照新生代基底构造和裂陷期(古新世—早渐新世)残留地层厚度展布,把礼乐盆地自北向南划分为北部坳陷、中部隆起和南部坳陷3个一级构造单元。根据张裂阶段地层厚度,北部坳陷又进一步分为北1凹陷、北2凹陷、北3凹陷及北部低凸起,其中北1凹陷是面积最大的主凹陷,北2和北3凹陷是位于盆地边缘、面积较小的凹陷(图1c)。盆地内发育有NNE、NW和EW向等多组断裂,其中控盆断裂主要为NNE向[4]。礼乐盆地现仅有7口实钻井,均位于礼乐滩上(图1b)。岩石拖网和钻井数据均揭示研究区发育有中生界和新生界两套地层[5],钻井自下而上揭示了白垩系、古新统、始新统、渐新统、中新统、上新统以及第四系(图2),晚渐新世以来礼乐滩持续发育碳酸盐台地灰岩和生物礁,且不同区域礁体厚度不等,最大厚度可达到2500 m。

    图  2  礼乐盆地S-1钻井岩性柱状图(据文献[1]、[5]修改,S-1钻井位置见图1b
    Figure  2.  Stratigraphic chart of drill hole S-1 in the Liyue Basin

    深部地壳结构探测[19-21]和重力反演结果[22-23]显示礼乐盆地莫霍面埋深为16~30 km,其中北部低凸起莫霍面埋深最大,最深可达28~30 km;北1凹陷和南部坳陷莫霍面埋深较小,最浅处埋深仅为16~18 km;北2凹陷和北3凹陷莫霍面埋深分别为16~20 km和16~24 km,莫霍面往海盆方向迅速抬升(图3)。图4是利用8条骨干地震剖面和苏达权等[22]的莫霍面埋深数据计算得到的地壳厚度和拉张因子等值线图。计算拉张因子时,初始地壳厚度假定为现今华南沿海的地壳厚度32 km。由于图4仅采用了8条骨干剖面的数据,因此,其他区域的地壳厚度和拉张因子仅供参考。该图显示,南部坳陷地壳厚度变化较为复杂,地壳厚度一般小于18 km,拉张因子一般大于1.9,靠近中部隆起的坳陷东南部地壳厚度仅10~16 km,拉张因子可以达到2.2~3.0。北1凹陷东南部地壳厚度一般小于16 km,地壳拉张因子一般大于2.0,沉积中心区地壳厚度不足10 km,地壳拉张因子超过3.0。北部低凸起区地壳厚度一般为22~28 km,拉张因子为1.2~1.7。北2凹陷地壳厚度为16~19 km,拉张因子为1.7~2.2,北3凹陷地壳厚度为16~21 km,拉张因子为1.7~2.0。地壳厚度和拉张因子显示礼乐盆地张裂阶段经历了强烈伸展减薄的裂陷过程,减薄中心位于盆地的东南部。

    图  3  南海南部莫霍面埋深等值线图(a)及延伸入礼乐盆地的2条深部地壳结构剖面(b)
    图a莫霍面埋深数据据苏达权等[22],3条黑色细虚线为深地震探测剖面位置,礼乐盆地位于黑色粗线内。
    Figure  3.  (a) Moho depth contour in the southern South China Sea, and (b) two crustal structure profiles extending into the Liyue basin
    图  4  礼乐盆地地壳厚度(a)及拉张因子分布图(b)
    黑色粗线代表礼乐盆地范围。
    Figure  4.  Crustal thickness (a) and stretching factor distribution map of the Liyue basin(b)

    基底沉降是沉积盆地发育的必要条件。盆地基底沉降即盆地总沉降,可分为构造因素引起的构造沉降和非构造因素如沉积体和水体负载作用、全球海平面变化等产生的沉降。盆地的总沉降和构造沉降可采用回剥法计算[24]。回剥法的基本思想是从今往古、由上往下逐层剥去各个地层单元,并经解压实、古水深、海平面以及均衡等校正,得到各个关键时刻的基底埋深即总沉降量以及构造沉降量。沉降分析时,首先利用礼乐盆地的时深转换公式(1)将地震时间剖面转为深度剖面(图5):

    图  5  地震测线G地层结构的时间剖面(a)与深度剖面(b)(G测线位置见图1c
    Figure  5.  Time profile(a)and depth profile(b)along Line G showing the stratigraphic structure(see figure 1 for profile location)
    $$ {y}=0.000\;206\;974\;5{t}^{2}+0.939\;826\;89t $$ (1)

    其中,时间t为海底起算双程走时,单位为ms,y为对应的海底起算深度,单位为m。然后,从深度剖面上读取模拟井的分层数据。随后,逐层回剥时,依据沉积层骨架厚度不变的原则,利用解压实技术计算各关键时刻的沉积层厚度S。解压实时,假定地层孔隙度ϕz)随深度z呈指数降低,$\phi (z) = {\phi _0}\exp ( - cz)$,其中,ϕ0是沉积时孔隙度,c为压实因子。计算所采用的相关参数见表1,各层岩性占比通过分析沉积环境、地震相和钻井资料获得。根据各关键时刻的沉积层厚度、古水深和全球海平面曲线,可以得到盆地的总沉降史及各时间段的平均总沉降速率(如图6b)。

    表  1  模型参数值
    Table  1.  Parameter symbols and values in the model
    符号/单位参数物理含义参数值
    a/km岩石圈初始厚度125
    tc/km地壳初始厚度32
    ρw/kg·m−3海水密度1030
    ρc/kg·m−3地壳密度(0 ℃)2800
    ρm/ kg·m−3地幔密度(0 ℃)3330
    ρa/kg·m−3软流圈密度(1333 ℃)3185
    α/℃ −1热膨胀系数3.28×10-5
    岩层表面孔隙度
    砂岩0.49
    φ0泥岩0.63
    灰岩0.60
    岩层压实系数
    砂岩0.27×10−3/m
    c泥岩0.51×10−3/m
    灰岩0.53×10−3/m
    地层骨架密度
    砂岩2650
    ρ/kg·m−3泥岩2720
    灰岩2710
    下载: 导出CSV 
    | 显示表格
    图  6  南部坳陷模拟井构造沉降史
    a. 南部坳陷模拟井(编号1-5)的构造沉降史,灰色线为6-13号模拟井构造沉降曲线;b. 南部坳陷模拟井(编号6-13)的构造沉降史,灰色线为1-5号模拟井构造沉降曲线;c. 12号模拟井的沉降史与沉降速率柱状图,绿线、蓝线和黑线分别是古水深、构造沉降史和总沉降史曲线;d. 南部坳陷模拟井位置及编号示意图,图例说明见图1,黄色点为第12号模拟井。
    Figure  6.  Tectonic subsidence histories of the Southern Depression
    (a) Tectonic subsidence histories of the pseudo wells No. 1-5,(b) pseudo wells No. 6-13,(c) the subsidence histories and subsidence rate diagram of the pseudo well No. 12, and (d) locations of the numbered pseudo wells in the Southern Depression.

    岩石圈强度对基底沉降是有影响的。考虑到研究区岩石圈有效弹性厚度小于10 km[25],这里假定岩石圈没有强度。利用局部均衡原理,某时间点的载水构造沉降量可从该时间点的总沉降中去除沉积负载和海平面变化产生的沉降获得。某时间点的载水构造沉降量可由下式[24]计算:

    $$ Y=S\left(\frac{{\rho }_{\mathrm{m}}-{\rho }_{\mathrm{s}}}{{\rho }_{\mathrm{m}}-{\rho }_{\mathrm{w}}}\right)-{\rm{SL}}\left(\frac{{\rho }_{\mathrm{m}}}{{\rho }_{\mathrm{m}}-{\rho }_{\mathrm{w}}}\right)+{W}_{\mathrm{d}} $$ (2)

    其中,S是该时间点的沉积层厚度;ρmρwρs分别是地幔、水体和该时间点的沉积层平均密度;SL为相对于现今海平面(参考面)的古海平面变化,古海平面高于参考面则SL取正值;Wd是该时间点的古水深。利用各时间点的构造沉降量,可以得到计算代表点的构造沉降史和构造沉降速率变化(图6b)。

    沉降分析时,全球海平面变化依据Haq 等[26],古水深则根据前人获得的礼乐盆地结构、构造演化、钻井岩性、拖网取样、岩相古地理、地震相以及碳酸盐岩台地和礁体发育等多方面成果进行估计,例如Steuer等[18]通过详细分析南沙地块的礁体和碳酸盐岩台地分布特征,提出早中新世南沙区为浅海区,中中新世以后才发生快速沉降;Kudrass 等[27]根据拖网获得的样品也认为晚渐新世—早中新世礼乐盆地为浅海碳酸盐岩沉积环境。这些认识说明礼乐盆地现今的深水环境主要是中中新世以后快速沉降获得的。

    根据重处理地震资料和新落实的钻井分层情况,本文采用的新生代各地层界面年龄如下:新生界基底T100(65.5 Ma)、T86(47.8 Ma)、T83(41 Ma)、T80(33.9 Ma)、T72(31 Ma)、T70(28.4 Ma)和T50(16 Ma)。由于礼乐盆地勘探和研究程度仍较低,还无法获得可靠的剥蚀厚度数据,因此,文中构造沉降分析没有考虑剥蚀事件的影响。由于目前在重处理的地震剖面上未发现盆地内发育大幅度的地层削蚀,因此,我们推测盆内剥蚀厚度较小,忽略剥蚀事件不影响文中沉降分析的主要认识。

    本文共计算了43个代表点的构造沉降史,其中6个是位于礼乐滩上的实钻井,37个为沿8条骨干剖面选取的模拟井(图1)。所选模拟井一般位于所在构造区的凹陷区,基本可以反映所在构造区的构造沉降变化。北部坳陷由北1凹陷、北2凹陷、北3凹陷和北部低凸起组成,其中北2和北3凹陷位于地壳厚度快速变化的盆地边缘区域(图14),古水深较难估计,考虑到这两个凹陷面积较小,文中未对其进行沉降分析。北1凹陷北部局部区域发育生物礁(如实钻井S-1所在的礁体),这些区域与北部低凸起具有水深浅、地壳厚度大的共性特点(图1b),为了叙述方便,文中把北1凹陷北部生物礁发育区与北部低凸起归为礼乐滩礁体发育区。下面分别描述南部坳陷和北部坳陷北1凹陷(水深较大区域)、礼乐滩礁体发育区的沉降特征。

    南部坳陷位于礼乐盆地西南部,整体表现为东南断西北超、北东断南西超的格局。受晚期岩浆活动改造,坳陷西北、西南区域被分割为多个小型凹陷。南部坳陷沉积中心位于其东南部,基底埋深可达8 600 m。中中新世以后,受东南侧巴拉望区域西向逆冲抬升影响,物源供给增加,坳陷东南部沉积物的堆积速率和中中新统—第四系厚度往东南方向明显增大。图6a6b为南部坳陷13口模拟井的构造沉降史。图6c为南部坳陷中心区域第12号模拟井(图6d黄色圆点)的沉降曲线和沉降速率柱状图。图6显示南部坳陷最大构造沉降量可以达到4800 m。这些模拟井的构造沉降曲线特征基本相同,可以分为快-慢-快3个阶段。张裂阶段(T100-T70),沉降中心位于坳陷东南部区域,最大平均沉降速率约为60 m/Ma。该阶段沉降速率总体上随时间变化不明显,但是如图6c所示,部分模拟井晚始新世构造沉降和总沉降速率降低,早渐新世构造沉降和总沉降速率明显增大,并且早渐新世负载沉降明显大于构造沉降,表明晚始新世沉积物堆积速率降低,早渐新世不仅沉降加强,而且沉积物堆积速率明显增大。漂移阶段(T70-T50),构造沉降和总沉降速率维持在较低水平,平均构造沉降速率一般不超过25 m/Ma,表明礼乐地块与北部陆缘裂离、往南漂移后,南部坳陷构造沉降速率和沉积物堆积速率明显降低。拗陷阶段(T50至今),整体表现为快速沉降,构造沉降量可以达到1500~2500 m,构造沉降速率变化范围为90~160 m/Ma,平均构造沉降速率可以达到120 m/Ma,构造沉降中心仍然位于坳陷东南部。图6c显示,虽然该阶段来自东南侧巴拉望区域的沉积物明显增多,沉积层厚度增大,但是构造沉降速率明显大于沉积负载沉降速率,说明沉积物不足以填满快速构造沉降形成的沉积空间,导致水深快速增大。

    北1凹陷是北部坳陷的主要凹陷,凹陷中部基底埋深可以达到7000~10000 m。这里主要分析水深较大的非礁体发育区。该凹陷总共计算了13个模拟井的构造沉降史(图7)。与南部坳陷沉积中心区类似,图7显示北1凹陷载水构造沉降量最大可达4800 m。图7c为北1凹陷中部第3号模拟井的沉降曲线和沉降速率柱状图。与南部坳陷相似,北1凹陷模拟井的构造沉降曲线特征基本相同,也可以分为快-慢-快3个阶段。张裂阶段(T100-T70),构造沉降速率较大,凹陷中心位于北1凹陷东南部,最大构造沉降速率约为80 m/Ma,凹陷西北部构造沉降量较小,构造沉降速率约为17 m/Ma。图7c显示,中始新世凹陷中部构造沉降速率和沉积负载沉降速率有增大趋势,晚始新世沉降速率降低,而早渐新世构造沉降速率和沉积负载沉降速率都显著增大,表明早渐新世物源丰富,沉积物堆积速率明显加大。漂移阶段(T70-T50),构造沉降和总沉降速率维持在较低水平,平均构造沉降速率低于20 m/Ma,表明与北部陆缘裂离后,礼乐盆地的构造沉降速率和沉积物堆积速率明显降低。图7b中8号模拟井位于凹陷东南侧的基底隆起上(图1c中B剖面东南端,断层下盘),其构造沉降不降反升,可能是早中新世晚期礼乐-巴拉望地块受到其东南侧块体碰撞、仰冲的结果。拗陷阶段(T50至今),构造沉降速率、总沉降速率和水深明显增大,沉积负载沉降速率有所降低,平均构造沉降速率可以达到125 m/Ma,构造沉降量可以达到1500~2500 m,构造沉降中心仍然位于凹陷东南部。与南部坳陷类似,图7c显示,虽然该阶段来自南侧巴拉望区域的沉积物明显增多,沉积层厚度增大,但是沉积负载沉降明显低于构造沉降,一方面说明下伏沉积层的压实为该阶段沉积物提供了较多的沉积空间,另一方面也说明沉积物不足以填满快速构造沉降形成的沉积空间,导致水深快速增大。

    图  7  北1凹陷模拟井构造沉降史
    a. 北1凹陷模拟井(编号1-7)的构造沉降史,灰色线为8-13号模拟井构造沉降曲线;b. 北1凹陷模拟井(编号8-13)的构造沉降史,灰色线为1-7号模拟井构造沉降曲线;c. 3号模拟井的沉降史与沉降速率柱状图,绿线、蓝线和黑线分别是古水深、构造沉降史和总沉降史曲线;d. 北1凹陷模拟井位置及编号示意图,图例说明见图1,黄色点为第3号模拟井。
    Figure  7.  Tectonic subsidence histories of the Bei 1 sag
    (a) Tectonic subsidence histories of the pseudo wells No. 1-7,(b) the pseudo wells No. 8-13,(c) the subsidence histories and subsidence rate diagram of the pseudo well No. 3, and (d) locations of the numbered pseudo wells in the Bei 1 sag.

    该区包括北部坳陷的北部低凸起区和北1凹陷北部发育生物礁的浅水区,总共计算了17口钻井的构造沉降史(图8),其中6口为实钻井(图8a),11口为模拟井(图8b)。图8c为位于北部低凸起上的第1号模拟井的沉降曲线和沉降速率柱状图。虽然该区地壳拉张减薄程度较小,构造沉降速率变化不明显,但是构造沉降曲线总体上仍然可以分为快-慢-快3个阶段(图8b)。张裂阶段(T100-T70),平均构造沉降速率一般为10~40 m/Ma,其中北部低凸起构造沉降量一般低于北1凹陷北部礁体发育区。该阶段沉降速率在中始新世有所增大,晚始新世降低,而后在早渐新世沉积物负载沉降速率明显加大,早渐新世晚期构造沉降速率也明显增大。图8b中5号模拟井正好位于北1凹陷北部礁体发育区边缘斜坡的断层下降盘,张裂阶段发生了快速构造沉降,构造沉降速率高达70 m/Ma。漂移阶段(T70-T50),构造沉降和总沉降速率维持在较低水平,构造沉降速率为6~13 m/Ma,平均速率约为10 m/Ma。拗陷阶段(T50至今),构造沉降速率比漂移阶段加快,为16~33 m/Ma,平均速率约为25 m/Ma。

    图  8  礼乐滩礁体发育区构造沉降史
    a. 礼乐滩礁体发育区实钻井的构造沉降史,灰色线为模拟井构造沉降曲线;b. 礼乐滩礁体发育区模拟井的构造沉降史,灰色线为实钻井构造沉降曲线;c. 1号模拟井的沉降史与沉降速率柱状图,绿线、蓝线和黑线分别是古水深、构造沉降史和总沉降史曲线;d. 礼乐滩礁体发育区模拟井位置及编号示意图,图例说明见图1,黄色点为第1号模拟井。
    Figure  8.  Tectonic subsidence histories in the reef body developing area
    (a) Tectonic subsidence histories of the commercial wells,(b) tectonic subsidence histories of the pseudo wells,(c) the subsidence histories and subsidence rate diagram of pseudo well No.1, and (d) locations of the numbered pseudo wells in the reef body developing area.

    实钻井具有更为细致的分层资料,可以揭示更丰富的构造沉降细节。区内共收集到6口实钻井的分层数据,其中S-1和B-1井有详细的新近系分层数据,其他4口钻井新近系没有细分。这些实钻井揭示,该区28.4 Ma左右开始发育碳酸盐岩礁体。图9a为S-1钻井的沉降曲线和沉降速率柱状图。为了对比,本文根据罗威等[28]的分层数据,对西科1井(XK-1)也进行了沉降分析(图9b)。西科1井是一口全取芯科学探井(图1a),井深1268.02 m,揭示了1257.52 m的碳酸盐岩生物礁、滩沉积和10.5 m的花岗质基底。该孔礁灰岩开始发育时间为23 Ma[28],略晚于礼乐滩S-1礁灰岩发育时间。图8a显示,研究区实钻井现今总构造沉降量为1520~2070 m,该沉降量范围介于模拟井现今总构造沉降量变化区间内,说明实钻井与模拟井平均构造沉降速率基本一致。张裂阶段(T100-T70),实钻井构造沉降量为900~1200 m,平均构造沉降速率为24~32 m/Ma,中始新世沉降速率有一定的增大现象(图9a),晚始新世—早渐新世早期构造沉降速率稍微变缓,早渐新世晚期—晚渐新世构造沉降速率有所上升。图9显示,早中新世以来S-1井和XK-1井构造沉降量基本一致,而且构造沉降变化也基本上是同步的。S-1井早中新世以来构造沉降量为640 m(礁体厚度2 060 m),XK-1井构造沉降量为724 m(礁体厚度1257 m)。早中新世,S-1井构造沉降速率降低,但是沉积负载沉降速率显著增大,表明该时期礁体生长迅速(全球海平面上升)。中中新世,S-1井构造沉降速率增大到78 m/Ma,总沉降速率达到187 m/Ma。有意思的是,XK-1井中中新世的构造沉降速率也明显增大,达到81 m/Ma,总沉降速率达到123 m/Ma。两地具有相似的构造沉降速率,说明中中新世较快的构造沉降并非是局部构造事件引起的。该时期礼乐滩具有较高的构造沉降速率,说明礼乐滩更适合生物礁的生长。晚中新世,构造沉降速率明显降低,甚至出现轻微的抬升现象,不利于礁体的生长。上新世以后,S-1和XK-1的构造沉降速率又明显增大。上述分析显示,与模拟井的构造沉降曲线类似,礼乐盆地实钻井的构造沉降史总体上也可以分为快-慢-快3个阶段,其中晚渐新世—早中新世平均构造沉降速率低于前后两个阶段,而中中新世以后S-1孔与XK-1井构造沉降的同步变化,表明该区中中新世以来的构造沉降变化主要受控于南海区域事件的影响。

    图  9  2口实钻井的沉降史曲线和沉降速率柱状图
    S-1和XK-1钻井位置见图1,绿线、蓝线和黑线分别是古水深、构造沉降和总沉降曲线。
    Figure  9.  Subsidence history and subsidence rate diagrams of two commercial wells

    礼乐滩不同位置发育的碳酸盐岩礁体厚度与其构造沉降量和下伏地层厚度有关。6口实钻井揭示的碳酸盐岩礁体厚度为1500~2500 m,而图8a显示晚渐新世以来,这些钻井所在区域构造沉降量较为一致,为580~900 m。晚渐新世以来,K-1和B-1孔的构造沉降量较大,分别是870和900 m,发育的礁体厚度也最大,达到了2500 m左右,而A-1孔的构造沉降量最小,约为580 m,发育的礁体厚度约为1500 m,而位置相近的S-1、S-2和S-3a的构造沉降量为770~800 m,发育的礁体厚度也比较一致,为2 000~2100 m。因此,礼乐滩发育的碳酸盐岩礁体厚度与其构造沉降有关。详细分析表明,礁体厚度与其下伏沉积层的厚度也密切相关。在条件适宜的海域,如果下伏地层厚度较大,压实后可提供礁体生长的沉积空间也越大,发育的碳酸盐岩礁体厚度也将更大。

    上述分析表明,礼乐盆地新生代构造沉降史具有快-慢-快3段特征。这3个阶段正好对应于礼乐盆地的张裂、漂移和拗陷3个构造演化阶段[1]。张裂阶段(T100-T70),礼乐地块与南海北部陆缘相连,并一起构成华南大陆边缘和古南海被动大陆边缘。古近纪华南大陆边缘在古太平洋俯冲带后撤及随后的古南海向南俯冲拖曳作用下,包括礼乐地块在内的华南大陆边缘经历了强烈的张裂作用,导致现今南海北部大陆边缘、礼乐地块等区域地壳强烈减薄和发生快速构造沉降。构造沉降量和沉降速率大小与地壳拉张减薄程度密切相关,该阶段的构造沉降量分布类似于图4中地壳厚度分布,构造沉降中心位于地壳强烈减薄的盆地东南部,如南部坳陷沉降中心位于坳陷东南部,最大构造沉降速率约为60 m/Ma。北部坳陷中,北1凹陷东南部构造沉降速率较大,最大构造沉降速率可达80 m/Ma,凹陷西北部构造沉降速率约为17 m/Ma;北部低凸起和北1凹陷北部礁体发育区,现今地壳厚度一般为25~28 km,地壳减薄程度较低,构造沉降速率一般小于40 m/Ma。在地块裂离前后,礼乐盆地一般具有晚始新世构造沉降速率降低、早渐新世构造沉降速率增高的特点。珠江口盆地在晚始新世—早渐新世也表现出类似的构造沉降特征,如珠江口盆地白云凹陷及其南侧深水区晚始新世低构造沉降速率和早渐新世高构造沉降速率的特征[29]。晚始新世—早渐新世这种沉降特征可能反映了地块裂离前陆缘张裂-破裂过程中的基底垂向运动:晚始新世礼乐盆地沉降作用可能受到了岩石圈破裂前后深部热物质强烈上涌的影响,而早渐新世地块裂离后构造沉降作用得到了加强。图69显示,张裂阶段礼乐盆地沉积负载沉降速率总体上与构造沉降速率相当,早渐新世负载沉降速率甚至大于构造沉降速率,说明地块裂离前后,礼乐盆地物源丰富,沉积物堆积速率较高。

    漂移阶段(T70-T50),虽然礼乐地块早渐新世可能已经与北部陆缘发生了裂离,但是28.4 Ma左右以后礼乐地块才远离北部陆缘,沉积物源急剧减少。该阶段一直延续到早中新世末礼乐地块-巴拉望等大陆块体和南侧块体发生碰撞而停靠在现今位置为止。漂移阶段礼乐盆地断裂作用明显减弱[3],盆地总体进入裂后热沉降的早期阶段。礼乐盆地构造沉降量一般为0~300 m,构造沉降速率一般不超过25 m/Ma,表现为盆地整体缓慢沉降的异常特征。缓慢的构造沉降和远离物源环境有助于礼乐盆地在浅水区域发育碳酸盐岩台地和礁灰岩,如在局部浅水区域如裂谷肩部、海山和礼乐滩等发育碳酸盐岩台地和礁灰岩[15-16, 18, 30]。随着南海海底扩张和古南海向南俯冲削减,礼乐地块不断靠近南侧块体,现今东南巴拉望和巴拉望海槽则因南侧块体仰冲加载而发生挠曲上隆,为碳酸盐岩台地和生物礁体发育提供了得天独厚的地质条件[18],使得礼乐盆地东南侧的巴拉望西北陆架和巴拉望海槽区晚渐新世—早中新世广泛发育了Nido碳酸盐岩[31-32]

    拗陷阶段(T50至今),中中新世以后,礼乐盆地进入了快速构造沉降阶段,北1凹陷和南部坳陷平均构造沉降速率达到120 m/Ma,南部坳陷和北1凹陷南部表现为整体的快速沉降,构造沉降量为1500~2500 m。在地壳厚度较大的北部低凸起和北1凹陷礁体发育区构造沉降量为0~1500 m,平均沉降速率约为25 m/Ma,高于其漂移阶段的构造沉降速率。拗陷阶段这种快速沉降作用导致大部分区域礼乐盆地碳酸盐岩台地和生物礁灰岩停止发育,仅在裂谷肩部、海山和北部低凸起等浅水区域继续发育碳酸盐岩台地和生物礁。由于拗陷阶段地层没有细分,因此,模拟井无法提供该阶段的构造沉降速率变化。而实钻井S-1的沉降分析显示拗陷阶段的构造沉降可以进一步分为中中新世快速沉降、晚中新世缓慢沉降和上新世以来的快速沉降等多个幕式变化(图9)。拗陷阶段的这种幕式沉降变化很可能不是礼乐盆地独有的。位于西沙石岛的XK-1井与S-1井中中新世以后的构造沉降速率变化基本上是同步的(图9)。珠江口盆地在中中新世也发育一幕快速的构造沉降[33-34]。因此,礼乐盆地拗陷阶段这种幕式沉降变化不是局部构造事件的结果,而很可能反映了南海地区深部地质过程对表层垂向运动的影响[15-16, 35-36]

    裂陷盆地构造沉降曲线一般可以分为张裂阶段和裂后阶段。依据有限时间均匀拉张模型[37],裂后阶段构造沉降速率逐渐变小,沉降曲线逐渐变缓(图10)。礼乐盆地构造沉降的快-慢-快3段特征与理论模型预测结果并不一致。图10是3个模拟井和1个实钻井的构造沉降曲线及其对应理论构造沉降曲线。3个模拟井分别位于南部坳陷和北部坳陷北1凹陷、北部低凸起。理论构造沉降曲线是根据图4中各代表钻井处的拉张因子,利用有限时间均匀拉张模型[37-38],计算得到了各钻井的理论构造沉降曲线。图10显示,在地块裂离前后和漂移阶段的构造沉降量明显小于理论模型预测的构造沉降量,而拗陷阶段的构造沉降量明显大于同期的理论构造沉降量。其他站位也有类似的沉降异常特征。在分析的43个站位中,有17个站位现今总构造沉降量与其理论构造沉降量基本一致(如图10中红色、蓝色曲线),其他站位现今总构造沉降与其理论构造沉降量有一定程度的偏差(如图10中黑色、绿色曲线)。考虑到地壳厚度、沉积层厚度以及相关计算参数等的不确定性,可以认为礼乐盆地的现今总构造沉降量与理论模型预测结果是相当的,亦即说明张裂期沉降不足与裂后期异常沉降量在量级上存在互补性,中中新世以来的快速构造沉降很可能只是补偿早期沉降的不足。这种早期沉降亏损、晚期发生补偿性快速沉降以及现今总构造沉降与根据地壳减薄程度预测的理论结果基本一致的“先抑后扬”的沉降特征在南海其他区域如琼东南盆地也有明显表现[36, 39],说明这种沉降特征是南海区域的普遍现象。我们认为,在地块裂离前后和漂移阶段,热的软流圈物质上涌加热,使得包括礼乐盆地在内的南海区域受到深部热物质的浮力支撑而表现出缓慢沉降的现象[36],前述礼乐盆地在地块裂离前后表现出的晚始新世缓慢沉降和早渐新世快速沉降的构造沉降现象,只是在构造沉降亏损的大背景下发生的次级沉降现象。早中新世末—中中新世早期,随着南海海盆的停止扩张以及古南海的俯冲消亡,区域内深部热物质上涌不再活跃,礼乐地块失去深部热物质的浮力支持,从而发生快速构造沉降,以补偿地块裂离前后和漂移阶段亏损的构造沉降量。根据前述S-1钻井和XK-1钻井分析,礼乐盆地拗陷阶段这种快速沉降是幕式发生的,表现为中中新世快速沉降、晚中新世缓慢沉降和上新世以来快速沉降等多个幕式变化,沉积盆地这种幕式沉降变化可能暗示着南海区域下伏深部地质过程也存在幕式变化。

    图  10  礼乐盆地4口代表井的构造沉降史曲线与理论构造沉降史曲线图
    实线为回剥得到的构造沉降史曲线,虚线为理论构造沉降史曲线;红、黑、绿线分别是图6d(南部坳陷)、图7d(北1凹陷)和图8d(北部低凸起)黄色圆点的构造沉降史曲线,蓝线是图1b钻井B-1的构造沉降史曲线。
    Figure  10.  Representative and theoretical tectonic subsidence curves of the 4 representative wells in the Liyue Basin

    (1)新生代礼乐盆地构造演化经历的张裂、漂移和拗陷阶段分别具有快速构造沉降、缓慢构造沉降和快速构造沉降的特点;张裂阶段的构造沉降中心区与地壳强烈减薄区域基本一致,北部坳陷最大构造沉降量大于南部坳陷;漂移阶段,礼乐盆地构造沉降量一般为0~300 m,整体进入缓慢的构造沉降;拗陷阶段,南部坳陷和北1凹陷南部构造沉降量为1500~2500 m,表现为整体的快速构造沉降,而厚度较大的北部低凸起,构造沉降量为0~1500 m。

    (2)礼乐盆地的构造沉降史具有“先抑后扬”的特征。礼乐地块裂离前后和漂移阶段,可能受到海底扩张激发的深部软流圈热物质上涌产生的浮力作用,礼乐盆地构造沉降出现明显亏损,拗陷阶段随着南海海盆扩张的停止以及古南海俯冲消亡,区内深部热物质上涌不再活跃,礼乐地块失去深部支持,从而发生幕式的快速构造沉降,以补偿前期亏损的构造沉降量。

    (3)根据已钻井资料,礼乐滩礁体发育区晚渐新世以来构造沉降量为580~900 m,发育的碳酸盐岩礁体厚度不仅取决于构造沉降量,而且还与下伏新生代沉积层可压实厚度有关。

  • 图  1   下扬子陆域-南黄海地区中二叠统孤峰组沉积相及烃源岩厚度分布预测图

    Figure  1.   Prediction of sedimentary facies and thickness of hydrocarbon source rocks of the Mid-Permian Gufeng Formation in the Lower Yangtze – South Yellow Sea Area

    图  4   下扬子-南黄海地区中二叠统孤峰组烃源岩连井对比图

    井位见图1。

    Figure  4.   Inter-well comparison of source rocks in the Middle Permian Gufeng Formation in the Lower Yangtze–South Yellow Sea area

    See Fig.1 for locations of the wells.

    图  2   下扬子-南黄海地区孤峰组页岩矿物组成三端元图解

    图版据文献[56] 。

    Figure  2.   Ternary diagram of shale mineral composition

    Template is from reference [56].

    图  3   下扬子-南黄海地区孤峰组烃源岩生烃潜力、有机质成熟度及有机质类型评价

    Figure  3.   Evaluation of hydrocarbon generation potential, organic matter type, and organic matter maturity of source rocks in the Gufeng Formation of the Lower Yangtze – South Yellow Sea area

    图  5   下扬子-南黄海地区中二叠统孤峰组硅质岩沉积环境判别图解

    图版据文献[64] 。

    Figure  5.   Discrimination of sedimentary environment of siliceous rocks in the Middle Permian Gufeng Formation in Lower Yangtze – South Yellow Sea area

    Template is from reference [64].

    图  6   下扬子-南黄海地区中二叠统孤峰组硅质岩的UEF-MoEF协变及Mo-TOC相关关系图解

    底图据文献[67, 70]。

    Figure  6.   Covariant diagram of UEF vs MoEF and correlation diagram of Mo vs TOC of siliceous rocks in the Mid-Permian Gufeng Formation in the Lower Yangtze – South Yellow Sea area

    Template is from references [67, 70].

    图  7   下扬子-南黄海地区中二叠统孤峰组硅质岩的成因判别图解

    图版据文献[73]。

    Figure  7.   Ternary discrimination of Al-Fe-Mn and Al2O3-SiO2 for siliceous rocks in the Mid-Permian Gufeng Formation in the Lower Yangtze-Southern Yellow Sea area

    Template is from reference[73].

    图  8   下扬子-南黄海地区孤峰组硅质岩与秘鲁洋流沉积物的元素富集系数、元素含量类比

    Figure  8.   Comparison in elemental enrichment coefficient and content between the siliceous rocks of Gufeng Formation in Lower Yangtze–South Yellow Sea area and the deposits of Peru upwelling

    图  9   下扬子-南黄海地区孤峰组硅质岩Co×Mn和Al含量、CoEF×MnEF和Al含量相关关系

    底图据文献[78] 。

    Figure  9.   Relationship between Co×Mn or CoEF×MnEF and Al in siliceous rocks of the Gufeng Formation in the Lower Yangtze–South Yellow Sea areas

    Template is from reference[78].

    图  10   下扬子-南黄海地区孤峰组硅质岩的A-CN-K图解 [72]、Sr/Cu、气候指数C值判别古气候

    Figure  10.   Discrimination of paleoclimate by A-CN-K ternary diagram [72], Sr/Cu ratio, and value of climate index C during the deposition of siliceous rocks in the Gufeng Formation in the Lower Yangtze–South Yellow Sea area

    图  11   下扬子-南黄海地区孤峰组硅质烃源岩的Cd/Mo-Co×Mn联合图版 [78]及Cuxs、U/Th、Zr/Rb与TOC的相关关系

    Figure  11.   Cd/Mo-Co×Mn joint chart [78] and correlation among Cuxs, U/Th, Zr/Rb, and TOC of the siliceous source rocks of Gufeng Formation in the Lower Yangtze–South Yellow Sea area

    图  12   南黄海地区孤峰组硅质烃源岩成因模式图

    Figure  12.   Genesis model of siliceous source rocks in Gufeng Formation of South Yellow Sea area

    表  1   CSDP-2井孤峰组硅质烃源岩的有机碳、岩石热解及全岩矿物分析数据

    Table  1   Analytical data of TOC, Rock-Eval, and whole-rock mineral composition of siliceous source rocks in the Gufeng Formation in Well CSDP-2

    样品号深度/m岩性TOC/%S1+S2
    /(mg/g)
    Tmax/℃矿物含量/%
    石英长石碳酸盐黄铁矿黏土矿物
    DP2-11633.9硅质岩11.41.18548.375.111.501.711.7
    DP2-21634.5硅质泥岩10.92.19504.710.319.206.364.2
    DP2-31635.1硅质岩11.51.62527.889.30.002.28.5
    DP2-41636.3硅质泥岩12.21.18514.724.111.5014.350.1
    DP2-51636.0硅质岩67.610.40022.0
    DP2-61637.0硅质岩142.18529.786.4001.811.8
    DP2-71638硅质岩77.3002.620.1
    DP2-81638.9硅质岩11.41.9553582.10.702.414.8
    DP2-91639.7硅质泥岩13.52.00533.144.616.303.435.7
    DP2-101640.4硅质岩7.921.11531.775.62.72.73.415.6
    DP2-111641.2硅质泥岩9.082.16529.662.13.9192.612.4
    DP2-121642.2硅质泥岩9.582.18520.866.81.544.523.2
    DP2-131642.5硅质岩13.32.23526.373.11.904.420.6
    DP2-141644.4硅质岩2.970.42540.577.12.310.33.27.1
    DP2-151645.7硅质泥岩16.32.03533.845.56.09.27.931.4
    下载: 导出CSV

    表  2   HX井与CSDP-2井孤峰组硅质岩的主量元素百分含量

    Table  2   Mass percentage fractions of the main elements of siliceous rocks in the Gufeng Formation in Wells HX and CSDP-2

    井位样品号岩性深度/mTOC
    /%
    主量元素/%
    SiO2TiO2Al2O3TFe2O3MnOMgOCaONa2OK2OP2O5
    CDSP-2井DP2-3硅质岩1635.111.581.620.112.851.150.0050.340.330.260.390.148
    DP2-6硅质岩1637.01482.330.102.541.050.0030.310.390.270.350.21
    DP2-8硅质岩1638.911.476.330.143.621.330.0040.300.280.280.500.174
    DP2-9硅质泥岩1639.713.564.530.149.451.760.0322.713.170.820.770.11
    DP2-10硅质岩1640.47.9273.860.205.171.880.0050.520.530.540.750.138
    DP2-11硅质泥岩1641.29.0866.780.164.451.510.0343.094.380.890.530.104
    DP2-12硅质泥岩1642.29.5867.370.225.692.700.0091.061.700.691.000.31
    DP2-13硅质岩1642.513.372.010.215.702.500.0050.370.470.580.980.109
    DP2-14硅质岩1644.42.9775.190.123.781.970.0090.493.970.380.720.19
    DP2-15硅质泥岩1645.716.354.710.369.083.880.020.864.260.841.690.34
    DP2-16硅质泥岩1644.010.451.990.268.542.780.017.0310.701.440.890.10
    DP2-17硅质泥岩1644.21262.540.256.533.500.001.837.801.350.930.25
    HX井HX0-12硅质岩1320.410.385.310.0842.350.30.0020.330.50.130.210.043
    HX0-8硅质岩1320.111.480.290.1062.721.230.0010.220.760.090.310.212
    HX0-7硅质岩1320.011.974.530.2114.71.880.0020.460.420.130.690.057
    HX0-3硅质岩1319.514.763.780.1895.131.820.0040.564.910.140.640.069
    HX0-1硅质岩1319.311.972.550.0792.220.270.0070.339.230.150.240.043
    HX1-2硅质岩1319.03.982.120.0461.350.10.0010.355.550.120.110.035
    HX1-13硅质岩1317.33.382.670.0521.560.50.0021.4540.120.130.037
    HX1-15硅质岩1317.06.173.380.0661.80.410.0052.535.950.070.170.041
    HX1-25硅质岩1315.5767.40.051.481.510.0083.598.950.110.130.039
    HX1-28硅质岩1315.02.481.940.0781.981.880.0030.824.410.180.220.049
    HX1-1硅质泥岩1319.212.369.640.2075.931.410.0080.533.520.060.580.065
    HX1-3硅质泥岩1318.812.465.940.1414.510.870.0020.56.080.150.460.062
    HX1-6硅质泥岩1318.412.656.810.2347.227.950.0080.633.370.090.750.084
    HX1-8硅质泥岩1318.11366.380.1443.931.940.0040.476.30.10.470.075
    HX1-9硅质泥岩1317.915.559.630.1926.143.70.0040.753.90.170.650.08
    HX1-10硅质泥岩1317.811.654.660.3069.214.040.0131.754.950.121.160.207
    HX1-11硅质泥岩1317.512650.1374.823.120.0040.664.90.10.450.079
    HX1-14硅质泥岩1317.215.165.910.2137.193.060.0040.71.840.120.710.086
    HX1-17硅质泥岩1316.715.763.80.2837.923.240.0070.91.320.130.970.102
    HX1-21硅质泥岩1316.114.352.790.2747.3310.530.0110.651.440.110.920.14
    HX1-23硅质泥岩1315.813.664.580.1835.742.060.0020.683.830.070.620.083
    HX1-27硅质泥岩1315.211.564.810.1987.045.480.0030.661.220.130.70.077
    HX1-31硅质泥岩1314.614.955.220.249.162.960.0071.114.990.1410.155
    注:HX井样品数据引自文献[14];DP2-16、DP2-17号样品数据引自文献[28]。
    下载: 导出CSV

    表  3   HX井与CSDP-2井孤峰组硅质岩的微量元素含量

    Table  3   Mass fractions of the trace elements of siliceous rocks in the Gufeng Formation from Wells HX and CSDP-2

    井位样品号微量元素/×10−6Cd/MoLaN/CeNCIAC
    VCrCoNiCuZnUMoCdThSrZrRb
    CSDP-2井DP2-37863913.6218635.236940.376.251.61.6675.444.316.50.681.4468.920.97
    DP2-610044234.2121843.339866.611065.51.810135.316.70.601.4766.570.92
    DP2-816726495.4730466.265437.42201142.4362.762.722.50.521.5071.311.17
    DP2-910933653.31564125719.411859.614.440368.329.80.511.1672.810.27
    DP2-1010593836.5727952.526428.221884.74.4778.571.531.30.391.1866.660.86
    DP2-118003174.9418937.726519.610856.33.5317768.122.60.521.2355.870.20
    DP2-1211917758.5824380.531710511479.95.281587439.30.701.3563.030.66
    DP2-1311266978.8829185.53371490.566.54.3379.850.638.60.731.2566.641.08
    DP2-142891935.9510135.211933.147.425.72.122545.619.30.541.0664.980.36
    DP2-15107376314.424715129227.812495.86.6634311061.60.771.4966.400.52
    DP2-166.057.075.616.335.959.960.14
    DP2-175.083.0154.015.976.354.500.29
    HX井HX0-12191.3264.51.7115.334.9168.37.218.214.81.5748.540.920.70.811.3178.190.32
    HX0-8619.2386.84.5164.658.9210.220.462.450.772.3665.074.331.90.811.4581.130.96
    HX0-7917.7857.35.5198.776.6401.715.249.243.863.1881.343.030.80.891.2779.981.20
    HX0-31324.5419.47.7213.066.6237.918.192.781.843.45261.052.131.50.881.5381.620.33
    HX0-1399.5146.81.882.127.4136.52.621.934.421.6347.228.171.571.2674.650.04
    HX1-2293.1119.70.957.914.854.03.922.615.581.0319.560.691.4772.420.03
    HX1-13337.7104.42.356.816.895.64.432.816.231.31148.521.17.20.491.2074.430.10
    HX1-15504.8192.51.685.121.7210.54.744.837.371.32110.724.18.50.831.3281.270.06
    HX1-25950.9114.68.480.428.8120.16.250.825.191.3222.163.817.60.501.3274.630.13
    HX1-28325.8115.57.475.723.4105.58.2948.722.991.6232.628.111.30.471.2370.440.34
    HX1-11382.1371.85.6135.460.8195.37.644.776.974.54198.263.562.21.722.6287.760.35
    HX1-31081.1450.44.1177.551.5136.611.357.146.353.83244.243.822.70.811.5781.960.15
    HX1-61486.8373.228.7273.395.7225.221.1140.349.466.18228.453.836.60.351.2186.681.65
    HX1-81569.4233.08.2170.556.1161.18.066.470.652.55300.785.849.91.061.8882.410.29
    HX1-91465.0463.216.1286.0115.5679.522.4151.4121.894.51247.255.831.90.811.4382.920.72
    HX1-101300.9361.610219.993.6362.043.2109.2119.567.1348.976.752.61.091.3684.780.53
    HX1-112233.9313.210.2193.866.5241.37.475.883.853.83270.583.349.11.111.3485.500.56
    HX1-143299.3607.711.1216.581268.59.276.699.266.3156.665.556.61.301.1986.051.05
    HX1-173086.0488.411.323792.8361.610.373.2116.775.62155.491.050.41.601.2584.251.10
    HX1-2131105454.940173105.8407.711.7150.1119.776.86151.782.448.70.801.1884.353.38
    HX1-231256.0523.95.7218.678.6572314.280.31074.27225.255.031.21.331.2686.410.44
    HX1-271277.5423.722.0252.688.6394.621.4104.968.487.22128.855.335.20.651.1685.572.05
    HX1-314403.5488.79.8236.388.8259.415.59196.369.27317.972.748.91.061.4285.560.50
    注:LaN/CeN是样品经过北美上地壳页岩组合的元素含量[71]标准化后计算的比值,计算公式为LaN/CeN=(Las样品/LaAUCC)/(Ce样品/CeAUCC);元素富集系数按照XEF=(X/Al)样品/(X/Al)AUCC公式计算,过剩Cuxs=Cu样品−Al样品×(Cu/Al)AUCC;CIA指数计算方法见文献[72];C指数计算方法见文献[28]。
    下载: 导出CSV
  • [1] 谈昕, 邱振, 卢斌, 等. 华南地区不同时代硅质岩地球化学特征及地质意义[J]. 科学技术与工程, 2018, 18(2):7-19

    TAN Xin, QIU Zhen, LU Bin, et al. Geochemical characteristics for siliceous rocks of different ages in south china and their geological significance [J]. Science Technology and Engineering, 2018, 18(2): 7-19.

    [2] 姚旭, 周瑶琪, 李素, 等. 硅质岩与二叠纪硅质沉积事件研究现状及进展[J]. 地球科学进展, 2013, 28(11):1189-1200

    YAO Xu, ZHOU Yaoqi, LI Su, et al. Research status and advances in chert and Permian chert event [J]. Advances in Earth Science, 2013, 28(11): 1189-1200.

    [3]

    Murchey B L, Jones D L. A mid-Permian chert event: widespread deposition of biogenic siliceous sediments in coastal, island arc and oceanic basins [J]. Palaeogeography, Palaeoclimatology, Palaeoecology, 1992, 96(1-2): 161-174. doi: 10.1016/0031-0182(92)90066-E

    [4] 程成, 李双应, 赵大千, 等. 扬子地台北缘中上二叠统层状硅质岩的地球化学特征及其对古地理、古海洋演化的响应[J]. 矿物岩石地球化学通报, 2015, 34(1):155-166 doi: 10.3969/j.issn.1007-2802.2015.01.018

    CHENG Cheng, LI Shuangying, ZHAO Daqian, et al. Geochemical characteristics of the middle-upper Permian bedded cherts in the northern margin of the Yangtze block and its response to the evolution of paleogeography and Paleo-Ocean [J]. Bulletin of Mineralogy, Petrology and Geochemistry, 2015, 34(1): 155-166. doi: 10.3969/j.issn.1007-2802.2015.01.018

    [5] 吴勘, 马强分, 冯庆来. 扬子板块北缘孤峰组地层划分及空间分布特征[J]. 地层学杂志, 2015, 39(1):33-39 doi: 10.19839/j.cnki.dcxzz.2015.01.003

    WU Kan, MA Qiangfen, FENG Qinglai. Stratigraphic division and spatial distribution of the Middle Permian KuhFeng Formation in the Northern Yangtze Block [J]. Journal of Stratigraphy, 2015, 39(1): 33-39. doi: 10.19839/j.cnki.dcxzz.2015.01.003

    [6] 杨玉卿, 冯增昭. 华南下二叠统层状硅岩的形成及意义[J]. 岩石学报, 1997, 13(1):112-120

    YANG Yuqing, FENG Zengzhao. Formation and Significance of the Bedded Siliceous Rocks of the Lower Permian in South China [J]. Acta Petrologica Sinica, 1997, 13(1): 112-120.

    [7] 夏邦栋, 钟立荣, 方中, 等. 下扬子区早二叠世孤峰组层状硅质岩成因[J]. 地质学报, 1995, 69(2):125-137

    XIA Bangdong, ZHONG Lirong, FANG Zhong, et al. The origin of cherts of the Early Permian Gufeng Formation in the Lower Yangtze Area, Eastern China [J]. Acta Geologica Sinica, 1995, 69(2): 125-137.

    [8] 加娜提古丽·吾斯曼, 周瑶琪, 姚旭, 等. 安徽省巢湖地区二叠纪栖霞组、孤峰组硅质岩地球化学特征对比及大地构造背景分析[J]. 现代地质, 2017, 31(4):734-745

    JIANATIGULI W, ZHOU Yaoqi, YAO Xu, et al. Geochemical characteristics comparison and tectonic background analysis of siliceous rocks from Qixia Formation and Gufeng Formation of Permian in Chaohu Area, Anhui Province [J]. Geoscience, 2017, 31(4): 734-745.

    [9] 韩宗珠, 肖楠, 李安龙, 等. 安徽巢湖下二叠统孤峰组硅质岩沉积地球化学特征与沉积环境分析[J]. 中国海洋大学学报, 2014, 44(4):78-85,99

    HAN Zongzhu, XIAO Nan, LI Anlong, et al. Geochemistry and sedimentary environments analysis of siliceous rocks from the Gufeng Formation of Lower Permian in Chaohu Region, Anhui Province [J]. Periodical of Ocean University of China, 2014, 44(4): 78-85,99.

    [10] 李红敬, 林正良, 解习农. 下扬子地区古生界硅岩地球化学特征及成因[J]. 岩性油气藏, 2015, 27(5):232-239

    LI Hongjing, LIN Zhengliang, XIE Xinong. Geochemical characteristics and origin of Palaeozoic siliceous rocks in Lower Yangtze area [J]. Lithologic Reservoirs, 2015, 27(5): 232-239.

    [11] 吕炳全, 瞿建忠. 下扬子地区早二叠世海进和上升流形成的缺氧环境的沉积[J]. 科学通报, 1990, 35(14):1193-1198

    LV Bingquan, QU Jianzhong. Sedimentation of anoxic environments under transgression and upwelling process in Early Permian in Lower Yangtze area [J]. Chinese Science Bulletin, 1990, 35(14): 1193-1198.

    [12] 鄢菲, 胡望水, 吕炳全, 等. 下扬子中二叠统上升流相与烃源岩的关系研究[J]. 海洋石油, 2008, 28(2):62-67 doi: 10.3969/j.issn.1008-2336.2008.02.011

    YAN Fei, HU Wangshui, LV Bingquan, et al. Relationship between middle Permian upwelling facies and hydrocarbon in lower Yangtze area [J]. Offshore Oil, 2008, 28(2): 62-67. doi: 10.3969/j.issn.1008-2336.2008.02.011

    [13]

    Kametaka M, Takebe M, Nagai H, et al. Sedimentary environments of the Middle Permian phosphorite–chert complex from the northeastern Yangtze platform, China; the Gufeng Formation: a continental shelf radiolarian chert [J]. Sedimentary Geology, 2005, 174(3-4): 197-222. doi: 10.1016/j.sedgeo.2004.12.005

    [14]

    Zhang B L, Yao S P, Wignall P, et al. Widespread coastal upwelling along the Eastern Paleo-Tethys Margin (South China) during the Middle Permian (Guadalupian): Implications for organic matter accumulation [J]. Marine and Petroleum Geology, 2018, 97: 113-126. doi: 10.1016/j.marpetgeo.2018.06.025

    [15] 姚旭. 东古特提斯洋大陆边缘二叠纪硅质岩成因研究[D]. 中国石油大学(华东)博士学位论文, 2016

    YAO Xu. Research on origin of Permian cherts from continental marginal sea of eastern Paleo-Tethys ocean[D]. Doctor Dissertation of China University of Petroleum (East China), 2016.

    [16] 赵振洋, 李双建, 王根厚. 中下扬子北缘中二叠统孤峰组层状硅质岩沉积环境、成因及硅质来源探讨[J]. 地球科学进展, 2020, 35(2):137-153 doi: 10.11867/j.issn.1001-8166.2020.003

    ZHAO Zhenyang, LI Shuangjian, WANG Genhou. Discussion on sedimentary environments, origin and source of Middle Permian Gufeng Formation bedded cherts in the northern margin of the Middle-Lower Yangtze area [J]. Advances in Earth Science, 2020, 35(2): 137-153. doi: 10.11867/j.issn.1001-8166.2020.003

    [17]

    Shi L, Feng Q L, Shen J, et al. Proliferation of shallow-water radiolarians coinciding with enhanced oceanic productivity in reducing conditions during the Middle Permian, South China: evidence from the Gufeng Formation of western Hubei Province [J]. Palaeogeography, Palaeoclimatology, Palaeoecology, 2016, 444: 1-14. doi: 10.1016/j.palaeo.2015.11.031

    [18]

    Yao X, Zhou Y Q, Hinnov L A. Astronomical forcing of a Middle Permian chert sequence in Chaohu, South China [J]. Earth and Planetary Science Letters, 2015, 422: 206-221. doi: 10.1016/j.jpgl.2015.04.017

    [19]

    Ito T, Takahashi K, Matsuoka A, et al. The Guadalupian (Permian) Gufeng formation on the north margin of the South China block: a review of the Lithostratigraphy, Radiolarian biostratigraphy, and geochemical characteristics [J]. Paleontological Research, 2019, 23(4): 261-280. doi: 10.2517/2018PR025

    [20] 吕炳全, 王红罡, 胡望水, 等. 扬子地块东南古生代上升流沉积相及其与烃源岩的关系[J]. 海洋地质与第四纪地质, 2004, 24(4):29-35 doi: 10.16562/j.cnki.0256-1492.2004.04.005

    LV Bingquan, WANG Honggang, HU Wangshui, et al. Relationship between Paleozoic upwelling Facies and hydrocarbon in Southeastern Marginal Yangtze Block [J]. Marine Geology & Quaternary Geology, 2004, 24(4): 29-35. doi: 10.16562/j.cnki.0256-1492.2004.04.005

    [21] 张水昌, 张宝民, 边立曾, 等. 中国海相烃源岩发育控制因素[J]. 地学前缘, 2005, 12(3):39-48

    ZHANG Shuichang, ZHANG Baomin, BIAN Lizeng, et al. Development constraints of marine source rocks in China [J]. Earth Science Frontiers, 2005, 12(3): 39-48.

    [22] 王汝建, 沈高平, SASHIDA K. 苏皖地区孤峰组放射虫动物群及其古环境意义[J]. 同济大学学报, 1997, 25(5):559-564

    WANG Rujian, SHEN Gaoping, SASHIDA K. Studies on radiolarian fauna from Gufeng formation in Anhui and Jiangsu provinces, East China and its paleoenvironmental significance [J]. Journal of Tongji University, 1997, 25(5): 559-564.

    [23] 张尚锋, 许光彩, 朱锐, 等. 上升流沉积的研究现状和发展趋势[J]. 石油天然气学报, 2012, 34(1):7-11,30 doi: 10.3969/j.issn.1000-9752.2012.01.002

    ZHANG Shangfeng, XU Guangcai, ZHU Rui, et al. Research status and development tendency of upwelling sediments [J]. Journal of Oil and Gas Technology, 2012, 34(1): 7-11,30. doi: 10.3969/j.issn.1000-9752.2012.01.002

    [24] 翟刚毅, 王玉芳, 刘国恒, 等. 中国二叠系海陆交互相页岩气富集成藏特征及前景分析[J]. 沉积与特提斯地质, 2020, 40(3):102-117 doi: 10.19826/j.cnki.1009-3850.2020.07003

    ZHAI Gangyi, WANG Yufang, LIU Guoheng, et al. Enrichment and accumulation characteristics and prospect analysis of the Permian marine conticental multiphase shale gas in China [J]. Sedimentary Geology and Tethyan Geology, 2020, 40(3): 102-117. doi: 10.19826/j.cnki.1009-3850.2020.07003

    [25] 廖圣兵, 石刚, 李建青, 等. 安徽望江地区WWD1井钻遇二叠系孤峰组页岩气[J]. 中国地质, 2021, 48(5):1657-1658

    LIAO Shengbing, SHI Gang, LI Jianqing, et al. Shale gas drilled by well WWD1 in the Wangjiang area of Anhui Province [J]. Geology in China, 2021, 48(5): 1657-1658.

    [26] 陈建文, 雷宝华, 梁杰, 等. 南黄海盆地油气资源调查新进展[J]. 海洋地质与第四纪地质, 2018, 38(3):1-23 doi: 10.16562/j.cnki.0256-1492.2018.03.001

    CHEN Jianwen, LEI Baohua, LIANG Jie, et al. New progress of petroleum resources survey in South Yellow Sea basin [J]. Marine Geology & Quaternary Geology, 2018, 38(3): 1-23. doi: 10.16562/j.cnki.0256-1492.2018.03.001

    [27]

    Cai L X, Xiao G L, Guo X W, et al. Assessment of Mesozoic and Upper Paleozoic source rocks in the South Yellow Sea Basin based on the continuous borehole CSDP-2 [J]. Marine and Petroleum Geology, 2019, 101: 30-42. doi: 10.1016/j.marpetgeo.2018.11.028

    [28]

    Chen G, Chang X C, Guo X W, et al. Geochemical characteristics and organic matter enrichment mechanism of Permian black mudstone in the South Yellow Sea Basin, China [J]. Journal of Petroleum Science and Engineering, 2022, 208: 109248. doi: 10.1016/j.petrol.2021.109248

    [29] 叶舟, 马力, 梁兴, 等. 下扬子独立地块与中生代改造型残留盆地[J]. 地质科学, 2006, 41(1):81-101 doi: 10.3321/j.issn:0563-5020.2006.01.008

    YE Zhou, MA Li, LIANG Xing, et al. The independent Lower Yangtze block and Mesozoic reformed residual basins [J]. Chinese Journal of Geology, 2006, 41(1): 81-101. doi: 10.3321/j.issn:0563-5020.2006.01.008

    [30] 蔡乾忠. 中国东部与朝鲜大地构造单元对应划分[J]. 海洋地质与第四纪地质, 1995, 15(1):7-24 doi: 10.16562/j.cnki.0256-1492.1995.01.001

    CAI Qianzhong. Corresponding division of geotectonic units of eastern China and Korea [J]. Marine Geology & Quaternary Geology, 1995, 15(1): 7-24. doi: 10.16562/j.cnki.0256-1492.1995.01.001

    [31] 吴根耀, 陈焕疆, 马力, 等. 苏皖地块: 特提斯演化阶段独立的构造单元[J]. 古地理学报, 2002, 4(2):77-87 doi: 10.7605/gdlxb.2002.02.010

    WU Genyao, CHEN Huanjiang, MA Li, et al. Su-Wan block: an independent tectonic unit during period of Tethyan evolution [J]. Journal of Palaeogeography, 2002, 4(2): 77-87. doi: 10.7605/gdlxb.2002.02.010

    [32] 陈建文, 张银国, 欧光习, 等. 南黄海古生界油气多期成藏的包体证据[J]. 海洋地质前沿, 2018, 34(2):69-70 doi: 10.16028/j.1009-2722.2018.02010

    CHEN Jianwen, ZHANG Yinguo, OU Guangxi, et al. Inclusion evidence of multi-stage hydrocarbon accumulation in the Paleozoic of South Yellow Sea [J]. Marine Geology Frontiers, 2018, 34(2): 69-70. doi: 10.16028/j.1009-2722.2018.02010

    [33] 高顺莉, 谭思哲, 陈春峰, 等. 下扬子-南黄海二叠纪岩相古地理特征及油气勘探启示[J]. 海洋地质前沿, 2021, 37(4):53-60 doi: 10.16028/j.1009-2722.2021.019

    GAO Shunli, TAN Sizhe, CHEN Chunfeng, et al. Permian Lithofacies paleogeography of the South Yellow Sea area, Lower Yangtze plate and its implications for petroleum exploration [J]. Marine Geology Frontiers, 2021, 37(4): 53-60. doi: 10.16028/j.1009-2722.2021.019

    [34] 郭念发, 赵红格, 陈红, 等. 下扬子地区海相地层油气赋存条件分析及选区评价[J]. 西北大学学报:自然科学版, 2002, 32(5):526-530

    GUO Nianfa, ZHAO Hongge, CHEN Hong, et al. Oil-gas occurrence conditions and evaluation of chosen belts of the marine strata in Yangtze Area [J]. Journal of Northwest University:Natural Science Edition, 2002, 32(5): 526-530.

    [35] 顾忠安, 郑荣才, 黄建良, 等. 苏皖地区二叠系页岩气成藏地质条件[J]. 成都理工大学学报:自然科学版, 2014, 41(3):274-282

    GU Zhong’an, ZHENG Rongcai, HUANG Jianliang, et al. Geological conditions of Permian shale gas accumulation in Jiangsu-Anhui of China [J]. Journal of Chengdu University of Technology:Science & Technology Edition, 2014, 41(3): 274-282.

    [36] 金之钧, 刘光祥, 方成名, 等. 下扬子区海相油气勘探选区评价研究[J]. 石油实验地质, 2013, 35(5):473-479,486 doi: 10.11781/sysydz201305473

    JIN Zhijun, LIU Guangxiang, FANG Chengming, et al. Evaluation of selected areas for petroleum exploration in marine strata of Lower Yangtze region [J]. Petroleum Geology and Experiment, 2013, 35(5): 473-479,486. doi: 10.11781/sysydz201305473

    [37] 冯增昭, 杨玉卿, 金振奎, 等. 中国南方二叠纪岩相古地理[J]. 沉积学报, 1996, 14(2):1-11 doi: 10.14027/j.cnki.cjxb.1996.02.001

    FENG Zengzhao, YANG Yuqing, JIN Zhenkui, et al. Lithofacies paleogeography of the Permian of South China [J]. Acta Sedimentologica Sinica, 1996, 14(2): 1-11. doi: 10.14027/j.cnki.cjxb.1996.02.001

    [38] 朱光, 徐嘉炜, 刘国生, 等. 下扬子地区前陆变形构造格局及其动力学机制[J]. 中国区域地质, 1999, 18(1):73-79

    ZHU Guang, XU Jiawei, LIU Guosheng, et al. Tectonic pattern and dynamic mechanism of the foreland deformation in the Lower Yangtze Region [J]. Regional Geology of China, 1999, 18(1): 73-79.

    [39] 郭彤楼. 下扬子地区中古生界叠加改造特征与多源多期成藏[J]. 石油实验地质, 2004, 26(4):319-323 doi: 10.3969/j.issn.1001-6112.2004.04.002

    GUO Tonglou. Superimposition and modification of the Mesozoic and Paleozoic Basins and multi-stages of hydrocarbon accumulation with multiple source rocks in Lower Yangtze area [J]. Petroleum Geology & Experiment, 2004, 26(4): 319-323. doi: 10.3969/j.issn.1001-6112.2004.04.002

    [40] 姚永坚, 夏斌, 冯志强, 等. 南黄海古生代以来构造演化[J]. 石油实验地质, 2005, 27(2):124-128 doi: 10.3969/j.issn.1001-6112.2005.02.005

    YAO Yongjian, XIA Bin, FENG Zhiqiang, et al. Tectonic evolution of the South Yellow Sea since the Paleozoic [J]. Petroleum Geology & Experiment, 2005, 27(2): 124-128. doi: 10.3969/j.issn.1001-6112.2005.02.005

    [41] 罗志立, 金以钟, 朱夔玉, 等. 试论上扬子地台的峨眉地裂运动[J]. 地质论评, 1988, 34(1):11-24 doi: 10.3321/j.issn:0371-5736.1988.01.002

    LUO Zhili, JIN Yizhong, ZHU Kuiyu, et al. On Emei taphrogenesis of the Upper Yangtze platform [J]. Geological Review, 1988, 34(1): 11-24. doi: 10.3321/j.issn:0371-5736.1988.01.002

    [42] 杜叶龙, 李双应, 孔为伦, 等. 安徽泾县-南陵地区二叠纪沉积相与沉积环境分析[J]. 地层学杂志, 2010, 34(4):431-444

    DU Yelong, LI Shuangying, KONG Weilun, et al. The Permian sedimentary facies and depositional environment analysis in the Jingxian-Nanling region of Anhui [J]. Journal of Stratigraphy, 2010, 34(4): 431-444.

    [43] 朱文博, 张训华, 周道容, 等. 下扬子地区二叠系海相页岩孔隙特征新认识及页岩气勘探启示[J]. 天然气工业, 2021, 41(7):41-55 doi: 10.3787/j.issn.1000-0976.2021.07.005

    ZHU Wenbo, ZHANG Xunhua, ZHOU Daorong, et al. New cognition on pore structure characteristics of Permian marine shale in the Lower Yangtze Region and its implications for shale gas exploration [J]. Natural Gas Industry, 2021, 41(7): 41-55. doi: 10.3787/j.issn.1000-0976.2021.07.005

    [44] 胡世忠. 对孤峰组的新认识[J]. 火山地质与矿产, 2000, 21(1):63-68

    HU Shizhong. New consideration of Gufong Formation by stratigraphy check up [J]. Volcanology & Mineral Resources, 2000, 21(1): 63-68.

    [45] 廖志伟. 下扬子地区二叠纪晚期沉积环境演化与烃源岩发育特征研究[D]. 南京大学博士学位论文, 2016

    LIAO Zhiwei. A study of source rock features and sedimentary environmental evolution during the late Permian in the Lower Yangtze Region, Southeastern China[D]. Doctor Dissertation of Nanjing University, 2016.

    [46] 庞玉茂. 基于CSDP-2井的南黄海中部隆起构造热演化史研究[D]. 中国科学院大学博士学位论文, 2017

    PANG Yumao. Tectonic thermal evolution history of the central uplift of the South Yellow Sea Basin from CSDP-2 drilling well[D]. Doctor Dissertation of University of Chinese Academy of Sciences, 2017.

    [47] 顾忠安. 苏皖地区二叠系页岩气成藏地质条件分析[D]. 成都理工大学硕士学位论文, 2014

    GU Zhong’an. Geological conditions of Permian shale gas accumulation in Jiangsu-Anhui area[D]. Master Dissertation of Chengdu University of Technology, 2014.

    [48] 祁江豪, 温珍河, 张训华, 等. 南黄海地区与上扬子地区海相中—古生界岩性地层对比[J]. 海洋地质与第四纪地质, 2013, 33(1):109-119

    QI Jianghao, WEN Zhenhe, ZHANG Xunhua, et al. Lithostratigraphic correlation of Mesozoic and Palaeozoic Marine strata between South Yellow Sea and Upper Yangtze region [J]. Marine Geology & Quaternary Geology, 2013, 33(1): 109-119.

    [49] 付小东, 陈娅娜, 罗冰, 等. 四川盆地北部中二叠统茅口组孤峰段优质烃源岩特征及其油气地质意义[J]. 地质学报, 2021, 95(6):1903-1920 doi: 10.3969/j.issn.0001-5717.2021.06.016

    FU Xiaodong, CHEN Ya’na, LUO Bing, et al. Characteristics and petroleum geological significance of the high-quality source rocks in the Gufeng Member of the Middle Permian Maokou Formation in the northern Sichuan basin [J]. Acta Geologica Sinica, 2021, 95(6): 1903-1920. doi: 10.3969/j.issn.0001-5717.2021.06.016

    [50] 马永生, 陈洪德, 王国力, 等. 中国南方层序地层与古地理[M]. 北京: 科学出版社, 2009

    MA Yongsheng, CHEN Hongde, WANG Guoli, et al. Sequence stratigraphy and paleogeography of Southern China[M]. Beijing: Science Press, 2009.

    [51] 白卢恒, 石万忠, 张晓明, 等. 下扬子皖南宣泾地区二叠系海相页岩特征及其沉积环境[J]. 地球科学, 2021, 46(6):2204-2217

    BAI Luheng, SHI Wanzhong, ZHANG Xiaoming, et al. Characteristics of Permian marine shale and its sedimentary environment in Xuanjing Area, South Anhui province, Lower Yangtze area [J]. Earth Science, 2021, 46(6): 2204-2217.

    [52] 邱振, 王清晨. 湘黔桂地区中上二叠统硅质岩的地球化学特征及沉积背景[J]. 岩石学报, 2010, 26(12):3612-3628

    QIU Zhen, WANG Qingchen. Geochemistry and sedimentary background of the Middle-Upper Permian cherts in the Xiang-Qian-Gui region [J]. Acta Petrologica Sinica, 2010, 26(12): 3612-3628.

    [53] 姚素平, 吴聿元, 余文端, 等. 下扬子区孤峰组—大隆组露头剖面特征与岩相变化[J]. 油气藏评价与开发, 2022, 12(1):215-232,245 doi: 10.13809/j.cnki.cn32-1825/te.2022.01.019

    YAO Suping, WU Yuyuan, YU Wenduan, et al. Outcrop characteristic and lithofacies changes of both Gufeng and Dalong Formations in Lower Yangtze Region [J]. Petroleum Reservoir Evaluation and Development, 2022, 12(1): 215-232,245. doi: 10.13809/j.cnki.cn32-1825/te.2022.01.019

    [54] 袁飞. 下扬子巢湖-宣城地区二叠系泥页岩储层特征研究[D]. 长江大学硕士学位论文, 2018

    YUAN Fei. Study on the characteristics of Permian shale reservoir in the lower Yangtze Chaohu-Xuancheng area[D]. Master Dissertation of Yangtze University, 2018.

    [55] 曹涛涛, 宋之光, 罗厚勇, 等. 下扬子地区二叠系海陆过渡相页岩孔隙体系特征[J]. 天然气地球科学, 2016, 27(7):1332-1345 doi: 10.11764/j.issn.1672-1926.2016.07.1332

    CAO Taotao, SONG Zhiguang, LUO Houyong, et al. Pore system characteristics of Permian transitional shale reservoir in the Lower Yangtze region, China [J]. Natural Gas Geoscience, 2016, 27(7): 1332-1345. doi: 10.11764/j.issn.1672-1926.2016.07.1332

    [56] 梁峰. 中上扬子地区五峰组—龙马溪组页岩气富集模式及有利区优选评价[D]. 中国矿业大学(北京)博士学位论文, 2018

    LIANG Feng. The research on shale gas enrichment pattern and the favorable area optimizing of Wufeng-Longmaxi shale in middle and upper Yangtze Region[D]. Doctor Dissertation of China University of Mining & Technology, Beijing, 2018.

    [57] 陈建平, 梁狄刚, 张水昌, 等. 中国古生界海相烃源岩生烃潜力评价标准与方法[J]. 地质学报, 2012, 86(7):1132-1142

    CHEN Jianping, LIANG Digang, ZHANG Shuichang, et al. Evaluation criterion and methods of the hydrocarbon generation potential for China's Paleozoic marine source rocks [J]. Acta Geologica Sinica, 2012, 86(7): 1132-1142.

    [58] 傅宁, 刘英丽, 熊斌辉, 等. CZ35-2-1井古生界烃源岩地球化学参数异常分析[J]. 中国海上油气(地质), 2003, 17(2):93-98

    FU Ning, LIU Yingli, XIONG Binhui, et al. An Analysis of abnormal geochemical parameters of Palaeozoic source rocks in CZ35-2-1 well, the Southern Yellow Sea [J]. China Offshore Oil and Gas (Geology), 2003, 17(2): 93-98.

    [59] 赵青芳, 王建强, 陈建文, 等. 下扬子区海相古生界高成熟烃源岩评价指标的优选[J]. 地质通报, 2021, 40(2-3):330-340

    ZHAO Qingfang, WANG Jianqiang, CHEN Jianwen, et al. Optimization of evaluation index of Paleozoic high mature marine source rock in the Lower Yangze region [J]. Geological Bulletin of China, 2021, 40(2-3): 330-340.

    [60] 白帆. 下扬子西部地区中二叠统孤峰组气源岩发育特征及控制因素[J]. 石油实验地质, 2021, 43(3):468-475 doi: 10.11781/sysydz202103468

    BAI Fan. Characteristics and controlling factors of natural gas source rocks of Middle Permian Gufeng Formation in western part of Lower Yangtze Platform, China [J]. Petroleum Geology and Experiment, 2021, 43(3): 468-475. doi: 10.11781/sysydz202103468

    [61] 梁狄刚, 郭彤楼, 陈建平, 等. 中国南方海相生烃成藏研究的若干新进展(一): 南方四套区域性海相烃源岩的分布[J]. 海相油气地质, 2008, 13(2):1-16 doi: 10.3969/j.issn.1672-9854.2008.02.001

    LIANG Digang, GUO Tonglou, CHEN Jianping, et al. Some progresses on studies of hydrocarbon generation and accumulation in marine sedimentary regions, Southern China (Part 1): distribution of four suits of regional marine source rocks [J]. Marine Origin Petroleum Geology, 2008, 13(2): 1-16. doi: 10.3969/j.issn.1672-9854.2008.02.001

    [62]

    Boström K, Kraemer T, Gartner S. Provenance and accumulation rates of opaline silica, Al, Ti, Fe, Mn, Cu, Ni and Co in Pacific pelagic sediments [J]. Chemical Geology, 1973, 11(2): 123-148. doi: 10.1016/0009-2541(73)90049-1

    [63]

    Murray R W, Ten Brink M R B, Gerlach D C, et al. Rare earth, major, and trace elements in chert from the Franciscan Complex and Monterey Group, California: Assessing REE sources to fine-grained marine sediments [J]. Geochimica et Cosmochimica Acta, 1991, 55(7): 1875-1895. doi: 10.1016/0016-7037(91)90030-9

    [64]

    Murray R W. Chemical criteria to identify the depositional environment of chert: general principles and applications [J]. Sedimentary Geology, 1994, 90(3-4): 213-232. doi: 10.1016/0037-0738(94)90039-6

    [65] 肖斌, 刘树根, 冉波, 等. 基于元素Mn、Co、Cd、Mo的海相沉积岩有机质富集因素判别指标在四川盆地北缘的应用[J]. 地质论评, 2019, 65(6):1316-1330 doi: 10.16509/j.georeview.2019.06.002

    XIAO Bin, LIU Shugen, RAN Bo, et al. Identification of organic matter enrichment factors in marine sedimentary rocks based on elements Mn, Co, Cd and Mo: application in the northern margin of Sichuan Basin, South China [J]. Geological Review, 2019, 65(6): 1316-1330. doi: 10.16509/j.georeview.2019.06.002

    [66]

    Algeo T J, Tribovillard N. Environmental analysis of paleoceanographic systems based on molybdenum-uranium covariation [J]. Chemical Geology, 2009, 268(3-4): 211-225. doi: 10.1016/j.chemgeo.2009.09.001

    [67]

    Algeo T, Lyons T. Mo-total organic carbon covariation in modern anoxic marine environments: Implications for analysis of paleoredox and paleohydrographic conditions [J]. Paleoceanography, 2006, 21(1): PA1016.

    [68]

    Scott C, Lyons T. Contrasting molybdenum cycling and isotopic properties in euxinic versus non-euxinic sediments and sedimentary rocks: Refining the paleoproxies [J]. Chemical Geology, 2012, 324-325: 19-27. doi: 10.1016/j.chemgeo.2012.05.012

    [69]

    Paulmier A, Ruiz-Pino D. Oxygen minimum zones (OMZs) in the modern ocean [J]. Progress in Oceanography, 2009, 80(3-4): 113-128. doi: 10.1016/j.pocean.2008.08.001

    [70]

    Tribovillard N, Algeo T J, Baudin F, et al. Analysis of marine environmental conditions based onmolybdenum–uranium covariation—Applications to Mesozoic paleoceanography [J]. Chemical Geology, 2012, 324-325: 46-58. doi: 10.1016/j.chemgeo.2011.09.009

    [71]

    Mclennan S M. Relationships between the trace element composition of sedimentary rocks and upper continental crust [J]. Geochemistry, Geophysics, Geosystems, 2001, 2(4): 1021.

    [72] 牟传龙, 葛祥英, 余谦, 等. 川西南地区五峰—龙马溪组黑色页岩古气候及物源特征: 来自新地2井地球化学记录[J]. 古地理学报, 2019, 21(5):835-854 doi: 10.7605/gdlxb.2019.05.057

    MOU Chuanlong, GE Xiangying, YU Qian, et al. Palaeoclimatology and provenance of black shales from Wufeng-Longmaxi Formations in southwestern Sichuan Province: From geochemical records of Well Xindi-2 [J]. Journal of Palaeogeography, 2019, 21(5): 835-854. doi: 10.7605/gdlxb.2019.05.057

    [73]

    Adachi M, Yamamoto K, Sugisaki R. Hydrothermal chert and associated siliceous rocks from the northern Pacific their geological significance as indication of ocean ridge activity [J]. Sedimentary Geology, 1986, 47(1-2): 125-148. doi: 10.1016/0037-0738(86)90075-8

    [74]

    Dean W E, Leinen M, Stow D A V. Classification of deep-sea, fine-grained sediments [J]. Journal of Sedimentary Research, 1985, 55(2): 250-256.

    [75] 朱如凯, 李梦莹, 杨静儒, 等. 细粒沉积学研究进展与发展方向[J]. 石油与天然气地质, 2022, 43(2):251-264 doi: 10.11743/ogg20220201

    ZHU Rukai, LI Mengying, YANG Jingru, et al. Advances and trends of fine-grained sedimentology [J]. Oil & Gas Geology, 2022, 43(2): 251-264. doi: 10.11743/ogg20220201

    [76]

    Böning P, Brumsack H J, Böttcher M E, et al. Geochemistry of Peruvian near-surface sediments [J]. Geochimica et Cosmochimica Acta, 2004, 68(21): 4429-4451. doi: 10.1016/j.gca.2004.04.027

    [77]

    Zhang B L, Wignall P, Yao S P, et al. Collapsed upwelling and intensified euxinia in response to climate warming during the Capitanian (Middle Permian) mass extinction [J]. Gondwana Research, 2021, 89: 31-46. doi: 10.1016/j.gr.2020.09.003

    [78]

    Sweere T, Van Den Boorn S, Dickson A J, et al. Definition of new trace-metal proxies for the controls on organic matter enrichment in marine sediments based on Mn, Co, Mo and Cd concentration [J]. Chemical Geology, 2016, 441: 235-245. doi: 10.1016/j.chemgeo.2016.08.028

    [79]

    Nesbitt H W, Young G M. Early Proterozoic climates and plate motions inferred from major element chemistry of lutites [J]. Nature, 1982, 299(5885): 715-717. doi: 10.1038/299715a0

    [80]

    Nesbitt H W, Young G M. Prediction of some weathering trends of plutonic and volcanic rocks based on thermodynamic and kinetic considerations [J]. Geochimica et Cosmochimica Acta, 1984, 48(7): 1523-1534. doi: 10.1016/0016-7037(84)90408-3

    [81] 赵占仑, 温小浩, 汤连生, 等. 化学蚀变指数指示古气候变化的适用性探讨[J]. 沉积学报, 2018, 36(2):343-353 doi: 10.14027/j.issn.1000-0550.2018.026

    ZHAO Zhanlun, WEN Xiaohao, TANG Liansheng, et al. Applicability of chemical alteration index to indication of paleoclimate change by different sedimentary facies [J]. Acta Sedimentologica Sinica, 2018, 36(2): 343-353. doi: 10.14027/j.issn.1000-0550.2018.026

    [82] 颜佳新, 赵坤. 二叠-三叠纪东特提斯地区古地理、古气候和、古海洋演化与地球表层多圈层事件耦合[J]. 中国科学(D辑), 2001, 44(11):968-978 doi: 10.1007/BF02875390

    YAN Jiaxin, ZHAO Kun. Permo-Triassic paleogeographic, paleoclimatic and paleoceanographic evolutions in eastern Tethys and their coupling [J]. Science in China Series D:Earth Sciences, 2001, 44(11): 968-978. doi: 10.1007/BF02875390

    [83]

    Zhang B L, Yao S P, Hu W X, et al. Development of a high-productivity and anoxic-euxinic condition during the late Guadalupian in the Lower Yangtze region: Implications for the mid-Capitanian extinction event [J]. Palaeogeography, Palaeoclimatology, Palaeoecology, 2019, 531: 108630. doi: 10.1016/j.palaeo.2018.01.021

    [84]

    Jones B, Manning D. Comparison of geochemical indices used for the interpretation of palaeoredox conditions in ancient mudstones [J]. Chemical Geology, 1994, 111(1-4): 111-129. doi: 10.1016/0009-2541(94)90085-X

    [85] 秦建中, 腾格尔, 付小东. 海相优质烃源层评价与形成条件研究[J]. 石油实验地质, 2009, 31(4):366-372,378 doi: 10.3969/j.issn.1001-6112.2009.04.010

    QIN Jianzhong, TENGER, FU Xiaodong. Study of forming condition on marine excellent source rocks and its evaluation [J]. Petroleum Geology & Experiment, 2009, 31(4): 366-372,378. doi: 10.3969/j.issn.1001-6112.2009.04.010

    [86] 腾格尔, 刘文汇, 徐永昌, 等. 海相地层无机参数与烃源岩发育环境的相关研究: 以鄂尔多斯盆地为例[J]. 石油与天然气地质, 2005, 26(4):411-421 doi: 10.11743/ogg20050403

    TENGER, LIU Wenhui, XU Yongchang, et al. Study on relation between inorganic parameters in marine deposits and developmental environment of hydrocarbon source rocks: taking Ordos basin as an example [J]. Oil & Gas Geology, 2005, 26(4): 411-421. doi: 10.11743/ogg20050403

    [87] 刘喜停, 颜佳新, 薛武强, 等. 华南中二叠统栖霞组海相烃源岩形成的地球生物学过程[J]. 中国科学:地球科学, 2014, 57(5):957-964 doi: 10.1007/s11430-013-4764-5

    LIU Xiting, YAN Jiaxin, XUE Wuqiang, et al. The geobiological formation process of the marine source rocks in the Middle Permian Chihsia Formation of South China [J]. Science China Earth Sciences, 2014, 57(5): 957-964. doi: 10.1007/s11430-013-4764-5

    [88] 朱伟林, 陈春峰, 张伯成, 等. 南黄海古生代盆地原型演变与烃源岩发育特征[J]. 石油实验地质, 2020, 42(5):728-741 doi: 10.11781/sysydz202005728

    ZHU Weilin, CHEN Chunfeng, ZHANG Bocheng, et al. Paleozoic basin prototype evolution and source rock development in the South Yellow Sea [J]. Petroleum Geology & Experiment, 2020, 42(5): 728-741. doi: 10.11781/sysydz202005728

    [89] 陈建文, 龚建明, 李刚, 等. 南黄海海相中-古生界油气资源潜力巨大[J]. 海洋地质前言, 2016, 32(1):1-7

    CHEN Jianwen, GONG Jianming, LI Gang, et al. Great Resources potential of the Marine Mesozoic-Paleozoic in the South Yellow Sea Basin [J]. Marine Geology Frontiers, 2016, 32(1): 1-7.

    [90] 陈建文, 梁杰, 张银国, 等. 中国海域油气资源潜力分析与黄东海海域油气资源调查进展[J]. 海洋地质与第四纪地质, 2019, 39(6):1-29 doi: 10.16562/j.cnki.0256-1492.2019112001

    CHEN Jianwen, LIANG Jie, ZHANG Yinguo, et al. Regional evaluation of oil and gas resources in offshore China and exploration of marine Paleo-Mesozoic oil and gas in the Yellow Sea and East China Sea [J]. Marine Geology & Quaternary Geology, 2019, 39(6): 1-29. doi: 10.16562/j.cnki.0256-1492.2019112001

    [91] 陈建文, 杨长清, 张莉, 等. 中国海域前新生代地层分布及其油气勘探方向[J]. 海洋地质与第四纪地质, 2022, 42(1):1-25

    CHEN Jianwen, YANG Changqing, ZHANG Li, et al. Distribution of Pre-Cenozoic strata and petroleum prospecting directions in China Seas [J]. Marine Geology & Quaternary Geology, 2022, 42(1): 1-25.

  • 期刊类型引用(5)

    1. 袁勇,陈建文,骆迪,李清,梁杰,蓝天宇,王建强,曹珂,赵化淋. 南黄海盆地烟台坳陷新生界二氧化碳封存地质条件与封存前景. 海洋地质前沿. 2025(03): 35-47 . 百度学术
    2. 张逍姬,胡修棉,李娟,许艺炜. 下扬子地区早二叠世末期碳酸盐台地死亡事件的沉积学与碳同位素记录. 高校地质学报. 2024(04): 379-396 . 百度学术
    3. 王嘉伟,谢通,金思丁,曹海洋. 鄂西地区晚二叠世温室期轨道控制下的有机质富集机制. 第四纪研究. 2024(05): 1108-1126 . 百度学术
    4. 王琦,苗迪. 白山市上青沟石英砂岩矿地球化学特征及成矿环境. 吉林地质. 2024(03): 70-77 . 百度学术
    5. 吴飘,陈建文,赵青芳,张银国,梁杰,蓝天宇,薛路,可行. 南黄海盆地二叠系高-过成熟烃源岩的生物标志化合物特征及其地质意义. 海洋地质与第四纪地质. 2023(04): 150-166 . 本站查看

    其他类型引用(1)

图(12)  /  表(3)
计量
  • 文章访问数:  2678
  • HTML全文浏览量:  590
  • PDF下载量:  124
  • 被引次数: 6
出版历程
  • 收稿日期:  2022-06-14
  • 修回日期:  2022-09-22
  • 录用日期:  2022-09-22
  • 网络出版日期:  2023-01-10
  • 刊出日期:  2023-02-27

目录

/

返回文章
返回