Progress in marine oil and gas survey in Qingdao Institute of Marine Geology over the past 45 Years
-
摘要:
石油和天然气资源是重要的能源矿产和战略性资源,海洋蕴含着丰富的油气资源,青岛海洋地质研究所(简称青岛所)自1979年重建始,便开启了海域油气资源调查、研究与评价工作的序幕。45年来,青岛所持续开展了海域及邻区含油气盆地对比、黄东海新区新层系油气资源调查评价、中国海域和海丝路海域油气勘探开发形势分析,并于2019和2021年开展了2个航次的北印度洋重点海域联合地质科学考查。本文回顾了45年以来青岛所海域油气调查与研究历史,梳理了取得的主要进展,重点介绍了海域新区新层系油气资源调查技术、东部海域新区新层系油气地质新认识、印度扇近海盆地的科学考查发现与认识、海域油气资源勘探开发总体形势与战略性方向,梳理了面临的主要挑战,同时展望了油气调查主要领域和方向,这对进一步摸清海域油气资源家底、服务海域油气矿政管理和国家能源资源安全保障具有重要意义。
Abstract:Oil and natural gas resources are important energy minerals and strategic resources. The ocean contains abundant oil and gas resources. Since its reconstruction in 1979, the Qingdao Institute of Marine Geology (the Qingdao Institute in short) has begun the investigation, research, and evaluation of marine oil and gas resources. Over the past 45 years, the Qingdao Institute has been continuing to carry out the studies in the correlation of oil and gas bearing basins in the sea area and adjacent areas, the investigation and evaluation of oil and gas resources in new area and new strata in the Yellow Sea and the East China Sea, the analysis of oil and gas exploration and development situation in China's sea area and the Sea Silk Road sea area, and the joint geological and scientific survey of key marine areas in the North Indian Ocean. This article reviews the 45-year history of oil and gas exploration and research in the sea area by the Qingdao Institute, summarizes the main achievement, and focuses on introducing the investigation techniques for oil and gas resources in the new areas and new strata, the new geological understanding of oil and gas in the new areas and new strata of the eastern sea area, the scientific research findings and understanding of the Indus Fan basin, the exploration and development situation, and strategic direction of oil and gas resources in the sea area; and puts forward the main challenges faced. At the same time, it looks forward to the main fields and directions of future oil and gas investigation, which is of great significance for further understanding of the wealth of oil and gas resources in the sea area, serving the management of oil and gas mining in the sea area, and ensuring national energy security.
-
海水悬浮体(SPM)主要由非生物(矿物)和生物(浮游植物、碎屑、部分浮游细菌、孢子)颗粒构成[1]。在海洋环境中,SPM不仅是陆架和洋盆沉积的主要物质来源,同时也作为主要的反应物质或催化剂参与生物地球化学过程[1]。海水中SPM含量受水动力条件、物理化学过程、生物过程等控制,是进行海洋沉积过程、物质循环研究的可靠材料[2-3]。
北冰洋拥有巨大的河水径流流量[4],河流将风化产生的颗粒和溶解物质转移到海洋[5],使得大量SPM汇入北冰洋。前人对北冰洋陆架区域的SPM进行了大量的研究,取得了丰硕的成果。在楚科奇海南部SPM以硅藻为主,其分布受到经白令海峡西侧流入的富营养盐的阿纳德尔流影响[6],反映出SPM中颗粒组分的分布与河流、洋流有着密切的联系。在喀拉海中部和西部的SPM浓度最低,鄂毕河和叶尼塞河河口SPM浓度最高,且鄂毕河口SPM浓度高于叶尼塞河,大多数侵蚀物质被困在20 km的近岸海域,SPM主要向东传播[7]。无冰期的拉普捷夫海SPM浓度分别由南至北、由东至西减小[8],而且汇入的三条河流中SPM的Sr浓度分布差别很大[9]。
本文以2019年中俄北极联合考察(AMK78航次)期间所获取的喀拉海、拉普捷夫海、东西伯利亚海表层海水SPM为素材,开展了SPM的浓度、颗粒组成、岩石磁学研究,通过分析SPM在空间上的分布差异探讨其在各海域的分布规律,并围绕洋流、径流、海岸侵蚀等多种因素对海域表层海水SPM分布特征的影响,探究SPM分布的控制因素。该研究成果对该海域现代沉积过程具有重要意义。
1. 区域概况
喀拉海、拉普捷夫海、东西伯利亚海是位于俄罗斯北部的北冰洋边缘海(图1a),分布在西伯利亚大陆架上。喀拉海接收了整个欧亚北极地区约50%的河流径流,大部分流量由鄂毕河(Ob)和叶尼塞河(Yenisei)贡献[7],两者流量表现出强烈的季节和年际变化。在6月观察到两条河流最大的排放速率,大约有45%~65%的年淡水径流和80%的年SPM被释放[10]。拉普捷夫海被5个向北和西北方向的海底通道切割,是保持北冰洋淡水和冰态平衡的关键区域[11]。勒那河(Lena)流入拉普捷夫海东部,春季的淡水和河流泥沙输入最高[8]。东西伯利亚海具有世界上最宽阔的大陆架,海底冻土广泛发育。流入东西伯利亚海最大的两条河流是因迪吉尔卡河(Indigirka)和科雷马河(Kolyma)。汇入拉普捷夫海的勒那河虽没有直接注入东西伯利亚海,但由于其巨大的径流量与输沙量,在西伯利亚沿岸流的影响下,可以向东西伯利亚海西部供应沉积物[12]。
巴伦支海分流(Barents Sea Branch,BSB)由北大西洋水经淡水输入、海冰融化和净降水等过程改造而来[13],一部分沿海岸进入新地岛以南的喀拉海,另一部分沿新地岛北部向东与西斯匹次卑尔根洋流在喀拉海北部合并[14-15](图1a)。西伯利亚沿岸流(Siberian Coastal Current,SCC)发源于东西伯利亚海西部,受到风力和浮力的驱动,向东通过德米特里拉普捷夫海峡(图1a)。拉普捷夫海海水与勒那河河水交汇流入德米特里拉普捷夫海峡,与东西伯利亚海的因迪吉尔卡河、科雷马河河水合并沿陆架向东穿过朗格海峡流至楚科奇海[16]。
2. 材料
中俄北极联合考察AMK78航次于2019年在喀拉海、拉普捷夫海、东西伯利亚海的海区共进行了50个站位的悬浮体调查。采样站位分别为P1—P46站位以及6489、6495、6498、6500站位(图1b)。各站位表层海水样品由船上表层海水温室气体实时分析的采水系统采集。水样选用提前称量至恒重的直径47 mm、孔径0.45 µm的Millipore醋酸纤维滤膜进行抽滤,过滤后的滤膜放置在−20 ℃的环境中保存。由于P38站位在采集时见大量暗色碎屑,可能为管路堵塞后的沉渣,不能表示该站位SPM的特征,故本研究中将该站位样品予以剔除。
3. 研究方法
3.1 浓度计算
为了测量SPM质量浓度,在过滤前后分别使用Sartorius电子天平(精度为0.01 mg)称量冷冻干燥后的滤膜。海水中SPM浓度(ρ,单位mg/L):
$$ \rho=\frac{M_{\rm p}-M_{\rm s}}{V} $$ 式中Mp为滤后膜重的平均值(mg);Ms为滤前膜重的平均值(mg);V为过滤水样的体积(L)。
3.2 扫描电镜实验
为了观察SPM的形貌特征,在自然资源部第三海洋研究所使用FEI Quanta 450型环境扫描电镜(scanning electron microscope,SEM)对滤膜上SPM的形态特征进行图像扫描。
3.3 磁学实验
磁学实验在中国地质大学(北京)古地磁与环境磁学实验室及中国地震局岩石磁学实验室完成。将空白滤膜和带有SPM的滤膜置于已完成磁化率测试的8 cm3无磁性的塑料方盒中。用MFK1-FA卡帕桥磁化率仪分别进行低频(976 Hz)磁化率与高频(15616 Hz)磁化率测试,扣除样品盒体积磁化率以及空白滤膜体积磁化率后,分别获得SPM的低频体积磁化率(κlf)与高频体积磁化率(κhf)。对体积磁化率进行质量浓度归一化后获得低频和高频质量磁化率(χlf和χhf),并计算获得SPM的频率磁化率百分比(χfd%=(χlf–χhf)/χlf×100%)。使用配套有CS-3温度控制系统的KLY-4S卡帕桥磁化率仪测定SPM磁化率随温度变化(κ-T)曲线,温度变化为–195 ℃至室温,升温速度为5 ℃/min。
SPM样品的天然剩磁(natural remanent magnetization,NRM)在磁屏蔽室(<300 nT)内用755-4K低温超导磁力仪测量获得。使用MicroMag 3900变梯度振动磁力仪测试SPM的磁滞回线(Loop)、等温剩磁(isothermal remanent magnetization,IRM)获得曲线及反向场退磁曲线,最大外加磁场为1 T。从Loop测试数据中读取样品矫顽力(coercivity,Bc)、饱和磁化强度(saturation magnetization,Ms)以及饱和剩余磁化强度(saturation remanent magnetization,Mrs)参数。剩磁矫顽力(coercivity of remanence,Bcr)参数从反向场退磁曲线中读取。
4. 结果
4.1 SPM含量分布
AMK78航次各站位表层海水SPM浓度为0.18~32.25 mg/L(图2)。浓度高值主要分布在两个区域,分别是位于新西伯利亚群岛与西伯利亚大陆之间的德米特里拉普捷夫海峡和位于喀拉海的叶尼塞河和鄂毕河河口。其中在德米特里拉普捷夫海峡SPM浓度自西向东逐渐增加,在其东部的P15站位达到最高值32.25 mg/L。从拉普捷夫海勒那河三角洲向大陆架北部延伸SPM浓度逐渐降低,直到P31站位达到最低值0.22 mg/L。新西伯利亚群岛以北、泰梅尔半岛以西、亚马尔半岛以西SPM浓度均为低值。
4.2 SPM颗粒组分特征
对不同区域采集的悬浮体滤膜进行扫描电镜分析发现,SPM由陆源碎屑颗粒和硅质生物碎屑(硅藻和鞭毛藻)(图3)组成。在远离岸线的海域,如P1和P10站位,滤膜上的SPM零散分布,硅质生物碎屑在SPM中的占比高(图3a—d)。在近岸和海峡海域,SPM含量高,完全覆盖滤膜,SPM中硅质生物碎屑的占比相对较低,SPM以陆源碎屑颗粒为主。以位于德米特里拉普捷夫海峡东侧的P15站位为例,其SPM多为不同粒径的片状矿物,硅质生物碎屑含量极少(图3e)。位于叶尼塞河河口北侧的P39站位,其SPM也以陆源碎屑颗粒为主,硅质生物碎屑含量少于15%(图3f、g)。位于鄂毕河口北侧的P42站位,仍以陆源碎屑矿物为主,但硅藻含量较叶尼塞河口外侧多(图3h、i)。
4.3 SPM磁学特征
4.3.1 SPM岩石磁学特征
磁化率随温度变化曲线可以根据磁性矿物特有的相变温度来鉴别磁性矿物类型[19]。本文对悬浮体进行了低温κ-T测试(图4),结果显示从−192℃开始温度上升磁化率值急剧下降,在−150℃左右出现一个高值,之后磁化率值保持稳定。在−150~−149℃(120~124 K)时,磁铁矿晶体结构中电子热能减小使得铁离子被冻结在各自的位置上,导致整个晶体不再对称,变为单斜结构,这个温度点称为Verwey转换温度(Tv)[20]。低温κ-T测试表明样品中存在磁铁矿。
Loop形态及其相关的磁滞参数可以用来判别样品磁性矿物颗粒的类型和粒径大小[21]。图5显示,顺磁矫正前样品显示了顺磁性矿物(图5中P17、P42站位)和抗磁性矿物(图5中P5、P33站位)的不同影响,其中抗磁性主要受醋酸纤维材质滤膜的影响。顺磁矫正后的Loop形态基本一致,在400 mT时曲线均趋于闭合,整体呈现为中间宽而两头窄的“粗腰型”形态。样品的Bcr在34~43 mT范围内,表明样品中磁性矿物矫顽力较低,存在单畴的磁铁矿。
Day图可以指示磁性矿物的磁畴状态[22]。将获得的磁滞参数Mrs/Ms、Bcr/Bc两组比值投到Day图上[23-24],结果表明表层海水SPM中磁性矿物的磁畴状态为单畴(single domain,SD)、多畴(multidomain,MD)混合(图6)。
4.3.2 SPM磁学参数空间分布特征
磁化率的大小主要取决于磁性矿物含量的多少[25]。表层海水SPM的χlf值为−4.21×10−6~4.87×10−6 m3/kg(图7)。磁化率高值区域位于泰梅尔半岛以西,其中P41站位磁化率最高,为4.87×10−6 m3/kg。磁化率低值区域位于勒那河三角洲和新西伯利亚群岛以东,拉普捷夫海大部分海域及亚马尔半岛以西悬浮体磁化率值介于中间。SPM磁化率的空间分布反映了从喀拉海到拉普捷夫海再到东西伯利亚海悬浮体中磁性矿物含量呈减少趋势。频率磁化率反映从单畴到超顺磁磁铁矿的存在,指示样品中较细磁性矿物的含量[26]。表层海水SPM的χfd%值为(–3.25×106~2.47×105)%(图8),位于德米特里拉普捷夫海峡的P19站位值最低,位于拉普捷夫海大陆架边缘的P30站位次之,整体分布均匀,说明超顺磁矿物含量变化不明显。
NRM的数值反映了样品中亚铁磁性矿物的含量。表层悬浮体的NRM为4.60×10−6~1.32×10−3 A/m(图9),最高值在P26站位,位于拉普捷夫海中部,位于鄂毕河口的P41站位次之,最低值在更靠近河口的P42站位,更靠近河口。在其他海域NRM数值均较低。表示亚铁磁性矿物主要集中于拉普捷夫海中部。
5. 讨论
5.1 喀拉海SPM分布特征
喀拉海SPM含量在河口区域较高,磁性矿物含量较多,磁性矿物粒径较细。在鄂毕河河口的P41站位SPM含量最高,亚铁磁性矿物含量最多,SPM中以陆源碎屑颗粒为主。P41站位相较于叶尼塞河河口的P39站位硅藻含量多,可能是由于P39站位距离河口较远,营养盐较少导致生物碎屑少。而距离鄂毕河河口较近的P42站位SPM含量低于P41站位,亚铁磁性矿物含量最低,推测该处河流流速较快,河水径流将陆源物质继续向海水里输送。喀拉海东部和西部海域陆源输入较少,SPM含量普遍较少。
5.2 拉普捷夫海SPM分布特征
拉普捷夫海SPM含量普遍低,亚铁磁性矿物在中部聚集,磁性矿物粒径较细,但在外陆架P31站位甲烷渗漏区粒径较粗。SPM含量从勒那河河口向中部海域逐渐降低,亚铁磁性矿物集中在中部海域的P26站位,北部海域含量最低。北部海域的SPM中硅质生物碎屑占比较高,与其离岸远有关。沿勒那河河口向东部海域SPM含量逐渐升高,磁性矿物含量降低,磁性矿物粒径逐渐变粗。
5.3 东西伯利亚海西部SPM分布特征
东西伯利亚海西部的SPM含量,最高值位于德米特里拉普捷夫海峡的东部P15站位,SPM以陆源碎屑颗粒为主,硅质生物碎屑的占比极低,磁性矿物含量在海峡附近较高,粒径较粗。在其他海域,SPM含量相对较低,磁性矿物含量相对较少,粒径相对较粗,P10站位由于距离海岸远SPM中硅质碎屑占比较高。
5.4 河水径流对SPM分布的影响
喀拉海SPM含量在河口区域P41站位较高,这是由于在河口河流流速降低,淡水与盐水混合(盐度2~10),细颗粒SPM在絮凝作用下发生快速积累(沉淀),大多数河流SPM被困在河口[10]。叶尼塞河的SPM来自于普托拉纳地块广泛分布的三叠纪高原玄武岩和凝灰岩沉积物;而鄂毕河的SPM来源于西伯利亚低地,相比于叶尼塞河,磁化率值非常低[10]。但由于叶尼塞河口的P39站位和P40站位距离河口较远,SPM困在河口较近的区域,与海水混合后SPM含量较P41站位低。随着与河口距离的增加,SPM中陆源碎屑颗粒也随之减少,而河口丰富的营养盐会使得站位中的生物碎屑相对较多。
晚全新世以来,勒那河三角洲逐渐突出河口向东偏转[27],勒那河河口向东至德米特里拉普捷夫海峡SPM含量逐渐增加,但勒那河河口外侧SPM含量整体较低。德米特里拉普捷夫海峡SPM磁性矿物的粒径较粗,反映出德米特里拉普捷夫海峡及其东侧的高浓度SPM是海岸侵蚀作用形成的,而非来自勒那河搬运入海的颗粒物。
5.5 洋流对SPM分布的影响
受BSB影响,维利基茨基海峡西部SPM磁性矿物的含量与BSB方向一致,随洋流运移呈现出不断递减的趋势。由于海峡全年浮冰覆盖,自西向东的BSB表层洋流流速变缓,SPM在此聚集导致含量较高,亚铁磁性矿物含量较多。
从勒那河河口向东至德米特里拉普捷夫海峡SPM含量逐渐增加,磁性矿物粒径也较粗,是由于该处受到了强烈的SCC对海岸的侵蚀。
6. 结论
(1)SPM中组分主要来自陆源碎屑及硅质浮游生物。SPM含量由南向北逐渐递减,由陆向海扩散。陆源碎屑集中分布在近岸和河流入海口附近海域,离海岸和河口较远海域SPM中硅质生物碎屑的占比升高。
(2)SPM中磁性矿物为单畴、多畴磁铁矿,磁性矿物与流域内岩石类型有关,通过河流输送至海洋中。
(3)SPM分布受控于河水径流、沿岸流等因素,河口处浓度高、磁性矿物多,磁性矿物集中在表层流流速缓慢的区域,粒径普遍较细,主要受到SCC的影响。粒径较粗的磁性矿物分布在沿岸地区,可能与海岸侵蚀有关。
致谢:感谢2019年中俄北极联合考察的全体科考队员。
-
图 1 南黄海海相中—古生界地震层序及地质属性标定图
据参考文献[39]修改。S1—S7为海相中—古生界地震层序,T2相当于新近系底界,B1—B3为三套典型地震反射标志层组.
Figure 1. Paleozoic-Mesozoic seismic sequence and geological attributes correlation in the South Yellow Sea
Modified from reference [39]. S1 to S7 are the seismic sequences of marine Paleozoic-Mesozoic. T2 is the bottom boundary of Neogene. The B1 to B3 are the three typical seismic marker layers.
图 5 东海盆地南部中生代构造单元[87]
Figure 5. Mesozoic tectonic units in the southern part of the East China Sea Basin
图 6 东海盆地南部地震解释剖面[87]
Figure 6. Seismic interpretation profile of the southern part of the East China Sea Basin
-
[1] 杨有星, 高永进, 周新桂, 等. 新疆地区公益性油气调查进展与主要成果[J]. 中国地质调查, 2023, 10(3):1-15 YANG Youxing, GAO Yongjin, ZHOU Xingui, et al. Progress and main achievements of public welfare oil and gas survey in Xinjiang[J]. Geological Survey of China, 2023, 10(3):1-15.]
[2] 姜亭, 周俊林, 牛亚卓, 等. 西北公益性油气地质调查进展和展望[J]. 西北地质, 2022, 55(3):64-80 JIANG Ting, ZHOU Junlin, NIU Yazhuo, et al. Progress and prospect of public petroleum geological survey in Northwest China[J]. Northwestern Geology, 2022, 55(3):64-80.]
[3] 王海明. 全球海洋油气勘探开发特征及前景[J]. 化学工程与装备, 2022(12):212-213,167 WANG Haiming. Characteristics and prospects of global offshore oil and gas exploration and development[J]. Chemical Engineering & Equipment, 2022(12):212-213,167.]
[4] 陈建文, 梁杰, 张银国, 等. 中国海域油气资源潜力分析与黄东海海域油气资源调查进展[J]. 海洋地质与第四纪地质, 2019, 39(6):1-29 CHEN Jianwen, LIANG Jie, ZHANG Yinguo, et al. Regional evaluation of oil and gas resources in offshore China and exploration of marine Paleo-Mesozoic oil and gas in the Yellow Sea and East China Sea[J]. Marine Geology & Quaternary Geology, 2019, 39(6):1-29.]
[5] 蔡乾忠. 论鲁东地体的形成机制及其归属[J]. 海洋地质与第四纪地质, 1989, 9(1):5-15 CAI Qianzhong. Formation mechanism of Ludong (eastern Shandong province) terrane and its actual subordinativeness[J]. Marine Geology & Quaternary Geology, 1989, 9(1):5-15.]
[6] 蔡乾忠. 中国东部与朝鲜大地构造单元对应划分[J]. 海洋地质与第四纪地质, 1995, 15(1):7-24 CAI Qianzhong. Corresponding division of geotectonic units of eastern China and Korea[J]. Marine Geology & Quaternary Geology, 1995, 15(1):7-24.]
[7] 陈国威. 中国海域含油气盆地的基本特征[J]. 海洋地质与第四纪地质, 1986, 6(4):31-36 CHEN Guowei. Main characteristics of hydrocarbon-bearing basins in China seas[J]. Marine Geology & Quaternary Geology, 1986, 6(4):31-36.]
[8] 彭世福. 中国近海早第三纪海侵层序及地层对比[J]. 海洋地质与第四纪地质, 1992, 12(1):41-56 PENG Shifu. Tertiary transgressive sequences and stratigraphic correlation in China offshore area[J]. Marine Geology & Quaternary Geology, 1992, 12(1):41-56.]
[9] 彭世福. 浅析中国近海第三纪海侵及其与油气关系[J]. 海洋地质与第四纪地质, 1986, 6(4):67-78 PENG Shifu. Preliminary study on relation between tertiary transgression and hydrocarbon in China offshore[J]. Marine Geology & Quaternary Geology, 1986, 6(4):67-78.]
[10] 郭振轩. 中国近海新生代沉积盆地生油层发育特征[J]. 海洋地质与第四纪地质, 1986, 6(4):79-85 GUO Zhenxuan. Characteristics of source beds for the major Cenozoic sedimentary basin in China offshore[J]. Marine Geology & Quaternary Geology, 1986, 6(4):79-85.]
[11] 蔡乾忠. 中国海域及邻区主要含油气盆地与成藏地质条件[J]. 海洋地质与第四纪地质, 1998, 18(4):1-10 CAI Qianzhong. Primary hydrocarbon bearing basins and the pool forming conditions in China seas and adjacent regions[J]. Marine Geology & Quaternary Geology, 1998, 18(4):1-10.]
[12] 戴春山. 中国海域含油气盆地群和早期评价技术[M]. 北京: 海洋出版社, 2011 DAI Chunshan. Oil Gas Basin Group of China Seas and Early Resource Assessment Techniques[M]. Beijing: Ocean Press, 2011.]
[13] 戴春山, 刘伊克, 陈建文, 等. 海上油气资源区域快速综合评价技术[J]. 海洋地质与第四纪地质, 2001, 21(4):79-82 DAI Chunshan, LIU Yike, CHEN Jianwen, et al. Fast comprehensive assessment techniques for offshore hydrocarbon resources[J]. Marine Geology & Quaternary Geology, 2001, 21(4):79-82.]
[14] Dai C S, Lin F, Chen J W, et al. Techniques for Quick, Comprehensive Assessment of Offshore Petroleum Resources, in Offshore Geology of China[M]. Beijing: China Ocean Press, 2003: 173-178.
[15] 陈建文. 南黄海北部油气资源评价研究[R]. 青岛: 青岛海洋地质研究所, 2004 CHEN Jianwen. Petroleum and gas evaluation of northern South Yellow Sea basin[R]. Qingdao: Qingdao Institute of Marine Geology, 2004.]
[16] 彭世福, 郭振轩. 中国海域油气勘探开发形势图说明书[R]. 青岛: 地质矿产部海洋地质研究所, 1984 PENG Shifu, GUO Zhenxuan. Specification of situation map of oil and gas exploration and development in the China sea[R]. Qingdao: Institute of Marine geology, Ministry of Geology and Mineral Resources, 1984.]
[17] 郭振轩. 新生代盆地图[M]//刘光鼎. 中国海区及邻域地质地球物理图集. 北京: 科学出版社, 1993: 74-75 GUO Zhenxuan. Cenozoic basin maps[M]//LIU Guangding. Geological and Geophysical Maps in China Sea and around Area. Beijing: Science Press, 1993: 74-75.]
[18] 肖国林. 应用GIS建立中国海域油气资源地理信息系统的思路[J]. 海洋地质动态, 1999(4):1-3,5 XIAO Guolin. The thinking of geographic information system of oil and gas resources with GIS in China seas[J]. Marine Geology Letters, 1999(4):1-3,5.]
[19] 肖国林. 基于GIS技术的中国海域油气资源可视化数据库的设计与实现: 以黄海盆地油气勘查可视化数据库为例[J]. 海洋地质动态, 2002, 18(11):39-42 XIAO Guolin. Design and realization of visualized dataset of China sea area petroleum resources on the basis of GIS technique[J]. Marine Geology Letters, 2002, 18(11):39-42.]
[20] 陈建文, 肖国林, 刘守全, 等. 中国海域油气资源勘查战略研究[J]. 海洋地质与第四纪地质, 2003, 23(4):77-82 CHEN Jianwen, XIAO Guolin, LIU Shouquan, et al. Strategy of oil and gas resources explorations in China seas[J]. Marine Geology & Quaternary Geology, 2003, 23(4):77-82.]
[21] 蔡乾忠, 刘守全, 莫杰. 寻找海相油气新领域: 从南海北部“残留特提斯”谈起[J]. 中国海上油气(地质), 2000, 14(3):157-162 CAI Qianzhong, LIU Shouquan, MO Jie, et al. Search for new domains of marine-origin petroleum: "remained Tethys" in the northern South China Sea[J]. China Offshore Oil and Gas (Geology), 2000, 14(3):157-162.]
[22] 蔡乾忠. 特提斯与海相油气: 开拓我国海域油气新领域[J]. 海洋地质动态, 1999(7):1-7 CAI Qianzhong. Tethys and marine oil and gas-opening up a new area of oil and gas in China's sea area[J]. Marine Geological Performance, 1999(7):1-7.]
[23] 蔡乾忠. “残留特提斯”的猜想: 从中国近海域发现海相中生界: 古新统谈起[J]. 中国地质, 1998(4):39-41 CAI Qianzhong. The conjecture of "residual Tethys" begins with the discovery of the Mesozoic Paleocene Series in the waters near China[J]. Geology of China, 1998(4):39-41.]
[24] 简晓玲, 刘金萍, 王改云. 北黄海东部次盆地中新生代原型盆地分析[J]. 中国海上油气, 2019, 31(1):22-31 JIAN Xiaoling, LIU Jinping, WANG Gaiyun. Analysis of Meso-Cenozoic prototype basins in the East Sub-basin, northern Yellow Sea[J]. China Offshore Oil and Gas, 2019, 31(1):22-31.]
[25] 刘金萍, 王改云, 王嘹亮, 等. 北黄海东部次盆地油气成藏主控因素[J]. 石油与天然气地质, 2015, 36(6):888-896 LIU Jinping, WANG Gaiyun, WANG Liaoliang, et al. Main controlling factors of hydrocarbon accumulation in the eastern Sub-basin, North Yellow Sea[J]. Oil & Gas Geology, 2015, 36(6):888-896.]
[26] 蔡来星, 肖国林, 董贺平, 等. 北黄海盆地东部坳陷中生界烃源岩特征及其指示的油气勘探方向[J]. 地球科学, 2020, 45(2):583-601 CAI Laixing, XIAO Guolin, DONG Heping, et al. Characteristics of Mesozoic source rocks and exploration direction of oil and gas in the eastern depression, North Yellow Sea Basin[J]. Earth Science, 2020, 45(2):583-601.]
[27] 肖国林, 蔡来星, 郭兴伟, 等. 北黄海盆地东部坳陷勘探突破对我国近海残留“黑色侏罗系”油气勘探的启示[J]. 吉林大学学报:地球科学版, 2019, 49(1):115-130 XIAO Guolin, CAI Laixing, GUO Xingwei, et al. Exploration enlightenment on residual “black Jurassic” in Chinese offshore from exploration breakthrough in eastern sag of the North Yellow Sea Basin[J]. Journal of Jilin University (Earth Science Edition), 2019, 49(1):115-130.]
[28] 王改云, 刘金萍, 简晓玲, 等. 北黄海盆地中生界沉积充填及有利生储盖组合[J]. 地质与勘探, 2016, 52(1):191-198 WANG Gaiyun, LIU Jinping, JIAN Xiaoling, et al. Sedimentary filling and favorable source-reservoir-seal rock assemblage of Mesozoic in the North Yellow Sea Basin[J]. Geology and Exploration, 2016, 52(1):191-198.]
[29] 陈建文, 张异彪, 刘俊, 等. 南黄海“高富强”地震勘查技术及其应用[J]. 海洋地质前沿, 2016, 32(10):9-17 CHEN Jianwen, ZHANG Yibiao, LIU Jun, et al. The “HRS” seismic exploration technology and its application in the South Yellow Sea Basin[J]. Marine Geology Frontiers, 2016, 32(10):9-17.]
[30] 张敏强, 漆滨汶, 高顺莉, 等. 南黄海中古生界勘探进展及油气潜力[J]. 海洋地质前沿, 2016, 32(3):7-15 ZHANG Minqiang, QI Binwen, GAO Shunli, et al. New exploration progress and hydrocarbon potential of the Meso-Paleozoic systems in the South Yellow Sea[J]. Marine Geology Frontiers, 2016, 32(3):7-15.]
[31] 陈建文. 南黄海前第三系油气前景研究项目设计书(2005年)[R]. 青岛: 青岛海洋地质研究所, 2005 CHEN Jianwen. Project design document of oil and gas prospects of Pre-Tertiary in South Yellow Sea (2005)[R]. Qingdao: Qingdao Institute of Marine Geology, 2005.]
[32] 陈建文, 吴志强, 李慧君, 等. 南黄海前第三系油气前景研究2006年工作总结[R]. 青岛: 青岛海洋地质研究所, 2007 CHEN Jianwen, WU Zhiqiang, LI Huijun, et al. 2006 work summary of oil and gas prospects of Pre-tertiary in South Yellow Sea[R]. Qingdao: Qingdao Institute of Marine Geology, 2007.]
[33] 雷宝华, 陈建文, 梁杰, 等. 印支运动以来南黄海盆地的构造变形与演化[J]. 海洋地质与第四纪地质, 2018, 38(3):45-54 LEI Baohua, CHEN Jianwen, LIANG Jie, et al. Tectonic deformation and evolution of the South Yellow Sea basin since Indosinian movement[J]. Marine Geology & Quaternary Geology, 2018, 38(3):45-54.]
[34] 陈建文, 吴志强, 李慧君, 等. 南黄海前第三系油气前景研究2007年工作总结[R]. 青岛: 青岛海洋地质研究所, 2008 CHEN Jianwen, WU Zhiqiang, LI Huijun, et al. 2007 work summary of oil and gas prospects of Pre-tertiary in South Yellow Sea[R]. Qingdao: Qingdao Institute of Marine Geology, 2008.]
[35] 陈春峰, 施剑, 徐东浩, 等. 南黄海崂山隆起形成演化及对油气成藏的影响[J]. 海洋地质与第四纪地质, 2018, 38(3):55-65 CHEN Chunfeng, SHI Jian, XU Donghao, et al. Formation and tectonic evolution of Laoshan uplift of South Yellow Sea basin and its effect on hydrocarbon accumulation[J]. Marine Geology & Quaternary Geology, 2018, 38(3):55-65.]
[36] 张海啟, 陈建文, 李刚, 等. 地震调查在南黄海崂山隆起的发现及其石油地质意义[J]. 海洋地质与第四纪地质, 2009, 29(3):107-113 ZHANG Haiqi, CHEN Jianwen, LI Gang, et al. Discovery from seismic survey in Laoshan uplift of the south Yellow Sea and the significance[J]. Marine Geology & Quaternary Geology, 2009, 29(3):107-113.]
[37] 陈建文, 梁杰, 施剑, 等. 南黄海海相中-古生界地震探测技术突破技术瓶颈[J]. 中国地质调查成果快讯, 2016, 3(4):18-21 CHEN Jianwen, LIANG Jie, SHI Jian, et al. Breakthrough of the seismic exploration technology of the marine Mesozoic-Paleozoic strata in the South Yellow Sea Basin[J]. Results Express of China Geological Survey, 2016, 3(4):18-21.]
[38] 陈建文, 施剑, 张异彪, 等. 地震调查技术突破南黄海海相中—古生界成像技术瓶颈[J]. 地球学报, 2017, 38(6):847-858 CHEN Jianwen, SHI Jian, ZHANG Yibiao, et al. The application of “HRS” seismic exploration technology to making breakthrough of the seismic imaging “Bottleneck” of the marine Mesozoic-Paleozoic strata in the South Yellow Sea Basin[J]. Acta Geoscientica Sinica, 2017, 38(6):847-858.]
[39] 陈建文, 雷宝华, 梁杰, 等. 南黄海盆地油气资源调查新进展[J]. 海洋地质与第四纪地质, 2018, 38(3):1-23 CHEN Jianwen, LEI Baohua, LIANG Jie, et al. New progress of petroleum resources survey in South Yellow Sea Basin[J]. Marine Geology & Quaternary Geology, 2018, 38(3):1-23.]
[40] 陈建文. 南黄海海相中生界—古生界具有形成大型油气田的物质基础[J]. 中国地质调查成果快讯, 2016, 2(12):6-10 CHEN Jianwen. Material base of great resources in marine Mesozoic-Paleozoic in the South Yellow Sea Basin[J]. Results Express of China Geological Survey, 2016, 2(12):6-10.]
[41] 陈建文, 龚建明, 李刚, 等. 南黄海盆地海相中—古生界油气资源潜力巨大[J]. 海洋地质前沿, 2016, 32(1):1-7 CHEN Jianwen, GONG Jianming, LI Gang, et al. Great resources potential of the marine Mesozoic-Paleozoic in the South Yellow Sea Basin[J]. Marine Geology Frontiers, 2016, 32(1):1-7.]
[42] 陈建文, 何玉华, 肖国林, 等. 南黄海海域油气资源普查成果报告[R]. 青岛: 青岛海洋地质研究所, 2017 CHEN Jianwen, HE Yuhua, XIAO Guolin, et al. Oil and gas resource general survey of the South Yellow Sea[R]. Qingdao: Qingdao Institute of Marine Geology, 2017.]
[43] 陈建文. 南黄海崂山隆起海相中—古生界发现多个大型圈闭构造[J]. 海洋地质前沿, 2016, 32(4):69-70 CHEN Jianwen. Many large trap structures develop in the marine Mesozoic-Paleozoic strata in the South Yellow Sea Basin[J]. Marine Geology Frontiers, 2016, 32(4):69-70.]
[44] 陈建文, 何玉华, 肖国林, 等. 南黄海海域油气资源调查成果报告[R]. 青岛: 青岛海洋地质研究所, 2017 CHEN Jianwen, HE Yuhua, XIAO Guolin, et al. Oil and gas resource survey of the South Yellow Sea[R]. Qingdao: Qingdao Institute of Marine Geology, 2017.]
[45] 陈建文, 何玉华, 肖国林, 等. 南黄海海域油气资源调查成果报告[R]. 青岛: 青岛海洋地质研究所, 2019 CHEN Jianwen, HE Yuhua, XIAO Guolin, et al. Oil and gas resource survey of the South Yellow Sea[R]. Qingdao: Qingdao Institute of Marine Geology, 2019.]
[46] 陈建文, 张银国, 欧光习, 等. 南黄海古生界油气多期成藏的包体证据[J]. 海洋地质前沿, 2018, 34(2):69-70 CHEN Jianwen, ZHANG Yinguo, OU Guangxi, et al. The inclusion evidences of multi-accumulation of Paleozoic in South Yellow Sea[J]. Marine Geology Frontiers, 2018, 34(2):69-70.]
[47] 陈建文, 张银国, 欧光习. 南黄海崂山隆起志留系古油藏的深部烃源证据[J]. 海洋地质前沿, 2019, 35(1):74-76 CHEN Jianwen, ZHANG Yinguo, OU Guangxi. Evidence of deep hydrocarbon sources from the Silurian Paleo-reservoir in the Laoshan uplift of the South Yellow Sea[J]. Marine Geology Frontiers, 2019, 35(1):74-76.]
[48] Zhang Y G, Chen J W, Liang J, et al. Evidence of the existence of paleo reservoirs in Laoshan Uplift of the South Yellow Sea Basin[J]. China Geology, 2018, 1(4):566-567. doi: 10.31035/cg2018067
[49] 李刚, 龚建明, 杨长清, 等. “大东海”中生代地层分布: 值得关注的新领域[J]. 海洋地质与第四纪地质, 2012, 32(3):97-104 LI Gang, GONG Jianming, YANG Changqing, et al. Stratigraphic features of the Mesozoic “great East China Sea”: a new exploration field[J]. Marine Geology & Quaternary Geology, 2012, 32(3):97-104.]
[50] 杨长清, 杨传胜, 孙晶, 等. 东海陆架盆地南部中生代演化与动力学转换过程[J]. 吉林大学学报: 地球科学版, 2019, 49(1):139-153 YANG Changqing, YANG Chuansheng, SUN Jing, et al. Mesozoic evolution and dynamics transition in southern Shelf Basin of the East China Sea[J]. Journal of Jilin University: Earth Science Edition, 2019, 49(1):139-153.]
[51] 金春爽, 乔德武, 须雪豪, 等. 东海陆架盆地南部油气资源前景与选区[J]. 中国地质, 2015, 42(5):1601-1609 JIN Chunshuang, QIAO Dewu, XU Xuehao, et al. Oil and gas potential and target selection in southern East China Sea Shelf Basin[J]. Geology in China, 2015, 42(5):1601-1609.]
[52] 龚建明, 李刚, 杨传胜, 等. 东海陆架盆地南部中生界分布特征与油气勘探前景[J]. 吉林大学学报: 地球科学版, 2013, 43(1):20-27 GONG Jianming, LI Gang, YANG Chuansheng, et al. Hydrocarbon prospecting of Mesozoic Strata in southern East China Sea Shelf Basin[J]. Journal of Jilin University: Earth Science Edition, 2013, 43(1):20-27.]
[53] 杨长清, 李刚, 龚建明, 等. 中国东南海域中生界油气地质条件与勘探前景[J]. 吉林大学学报: 地球科学版, 2015, 45(1):1-12 YANG Changqing, LI Gang, GONG Jianming, et al. Petroleum geological conditions and exploration prospect of the Mesozoic in southeast China sea area[J]. Journal of Jilin University: Earth Science Edition, 2015, 45(1):1-12.]
[54] 杨长清, 韩宝富, 杨艳秋, 等. 东海陆架盆地中生界油气调查进展与面临的挑战[J]. 海洋地质前沿, 2017, 33(4):1-8 YANG Changqing, HAN Baofu, YANG Yanqiu, et al. Oil and gas exploration in the Mesozoic of East China Sea Shelf Basin: progress and challenges[J]. Marine Geology Frontiers, 2017, 33(4):1-8.]
[55] 杨传胜, 杨长清, 李刚, 等. 东海陆架盆地中—新生界油气勘探研究进展与前景分析[J]. 海洋地质与第四纪地质, 2018, 38(2):136-147 YANG Chuansheng, YANG Changqing, LI Gang, et al. Prospecting of Meso-Cenozoic hydrocarbon in the East China Sea Shelf Basin[J]. Marine Geology & Quaternary Geology, 2018, 38(2):136-147.]
[56] 江凯禧, 姚长华, 郭清正, 等. 印度扇深水区古—始新统烃源岩特征及发育模式[J]. 沉积学报, 2016, 34(4):785-793 JIANG Kaixi, YAO Changhua, GUO Qingzheng, et al. Characteristics and depositional model of Paleocene and Eocene Source Rocks in Deepwater Area of Indus Fan[J]. Acta Sedimentologica Sinica, 2016, 34(4):785-793.]
[57] Gong J M, Liao J, Liang J, et al. Exploration prospects of oil and gas in the northwestern part of the Offshore Indus Basin, Pakistan[J]. China Geology, 2020, 3(4):633-642. doi: 10.31035/cg2020051
[58] 龚建明, 廖晶, Khalid M, 等. 巴基斯坦海域油气勘探方向探讨[J]. 海洋地质前沿, 2019, 35(11):1-6 GONG Jianming, LIAO Jing, Khalid M, et al. Preliminary study on the oil and gas exploration targets in offshore pakistan[J]. Marine Geology Frontiers, 2019, 35(11):1-6.]
[59] Chen J W, Xu M, Lei B H, et al. Prospective prediction and exploration situation of marine Mesozoic-Paleozoic oil and gas in the South Yellow Sea[J]. China Geology, 2019, 2(1):67-84. doi: 10.31035/cg2018072
[60] 李双林, 董贺平, 赵青芳, 等. 海洋油气地球化学勘查技术及其应用实践[M]. 北京: 地质出版社, 2022 LI Shuanglin, DONG Heping, ZHAO Qingfang, et al. Offshore Oil and Gas Geochemical Exploration Technology and Its Application[M]. Beijing: Geological Publishing House, 2022.]
[61] 李双林, 赵青芳, 王建强, 等. 南黄海盆地崂山隆起中南部海底沉积物饱和烃类地球化学特征于热成因烃类输入[J]. 地质通报, 2023, 42(5):669-679 LI Shuanglin, ZHAO Qingfang, WANG Jianqiang, et al. Geochemistry of saturated hydrocarbons and thermogenic hydrocarbon input in seabed sediments from the south central Laoshan Uplift in South Yellow Sea Basin[J]. Geological Bulletin of China, 2023, 42(5):669-679.]
[62] 李双林, 赵青芳, 董贺平, 等. 南黄海盆地崂山隆起CSDP-2井中—古生界海相地层吸附烃类气体成因类型与源区特征[J]. 地质通报, 2021, 40(2-3):209-218 LI Shuanglin, ZHAO Qingfang, DONG Heping, et al. Genetic types and source characteristics of hydrocarbon gases adsorbed by Mesozoic-Paleozoic marine strata in well CSDP- 2, Laoshan uplift, South Yellow Sea Basin[J]. Geological Bulletin of China, 2021, 40(2-3):209-218.]
[63] Li X H, Li W X, Li Z X, et al. Amalgamation between the Yangtze and Cathaysia Blocks in South China: constraints from SHRIMP U–Pb zircon ages, geochemistry and Nd–Hf isotopes of the Shuangxiwu volcanic rocks[J]. Precambrian Research, 2009, 174(1-2):117-128. doi: 10.1016/j.precamres.2009.07.004
[64] 周新民, 邹海波, 杨杰东, 等. 安徽歙县伏川蛇绿岩套的Sm-Nd等时线年龄及其地质意义[J]. 科学通报, 1989(16):1243-1245 ZHOU Xinmin, ZOU Haibo, YANG Jiedong, et al. Sm-Nd isochron age and its geological significance of the Fuchuan ophiolite suite in Shexian County, Anhui Province[J]. Chinese Science Bulletin, 1989(16):1243-1245.]
[65] 王存智, 黄志忠, 邢光福, 等. 赣东北蛇绿岩地幔橄榄岩岩石成因及其地质意义[J]. 中国地质, 2016, 43(4):1178-1188 WANG Cunzhi, HUANG Zhizhong, XING Guangfu, et al. The origin of the mantle peridotite from ophiolitite in northeast Jiangxi and its geological implications[J]. Geology in China, 2016, 43(4):1178-1188.]
[66] 邢光福, 姜杨, 陈志洪, 等. 钦杭结合带首次发现加里东期榴闪岩[J]. 资源调查与环境, 2013, 34(4):208 XING Guangfu, JIANG Yang, CHEN Zhihong, et al. Caledonian eclogite amphibolite was discovered for the first time in the Qinhang joint belt[J]. Resources Survey & Environment, 2013, 34(4):208.]
[67] Zhao G C, Wang Y J, Huang B C, et al. Geological reconstructions of the East Asian blocks: from the breakup of Rodinia to the assembly of Pangea[J]. Earth-Science Reviews, 2018, 186:262-286. doi: 10.1016/j.earscirev.2018.10.003
[68] 张银国, 梁杰. 南黄海盆地二叠系至三叠系沉积体系特征及其沉积演化[J]. 吉林大学学报: 地球科学版, 2014, 44(5):1406-1418 ZHANG Yinguo, LIANG Jie. Sedimentary system characteristics and their sedimentary evolution from the Permian to Triassic in the southern Yellow Sea Basin[J]. Journal of Jilin University: Earth Science Edition, 2014, 44(5):1406-1418.]
[69] 郭兴伟, 朱晓青, 牟林, 等. 南黄海中部隆起二叠纪-三叠纪菊石的发现及其意义[J]. 海洋地质与第四纪地质, 2017, 37(3):121-128 GUO Xingwei, ZHU Xiaoqing, MU Lin, et al. Discovery of Permian-Triassic ammonites in the central uplift of the South Yellow Sea and its geological implications[J]. Marine Geology & Quaternary Geology, 2017, 37(3):121-128.]
[70] 蔡来星, 王蛟, 郭兴伟, 等. 南黄海中部隆起中-古生界沉积相及烃源岩特征: 以CSDP-2井为例[J]. 吉林大学学报: 地球科学版, 2017, 47(4):1030-1046 CAI Laixing, WANG Jiao, GUO Xingwei, et al. Characteristics of sedimentary facies and source rocks of Mesozoic-Paleozoic in central uplift of south Yellow Sea: a case study of CSDP-2 coring well[J]. Journal of Jilin University: Earth Science Edition, 2017, 47(4):1030-1046.]
[71] 肖国林, 蔡来星, 郭兴伟, 等. 南黄海中部隆起CSDP-2井中—古生界烃源岩精细评价[J]. 海洋地质前沿, 2017, 33(12):24-36 XIAO Guolin, CAI Laixing, GUO Xingwei, et al. Detailed assessment of Meso-Paleozoic hydrocarbon source rocks: implications from well Csdp-2 on the central uplift of the South Yellow Sea Basin[J]. Marine Geology Frontiers, 2017, 33(12):24-36.]
[72] 张银国, 陈清华, 陈建文, 等. 下扬子海相中—古生界烃源岩发育的控制因素[J]. 海洋地质前沿, 2016, 32(1):8-12 ZHANG Yinguo, CHEN Qinghua, CHEN Jianwen, et al. Controlling factors on the Mesozoic-Paleozoic marine source rocks in the Lower Yangtze platform[J]. Marine Geology Frontiers, 2016, 32(1):8-12.]
[73] 贾东, 胡文瑄, 姚素平, 等. 江苏省下志留统黑色页岩浅井钻探及其页岩气潜力分析[J]. 高校地质学报, 2016, 22(1):127-137 JIA Dong, HU Wenxuan, YAO Suping, et al. Shallow borehole drilling of the lower Silurian black shale in Jiangsu Province and the Shale Gas potential analysis[J]. Geological Journal of China Universities, 2016, 22(1):127-137.]
[74] 袁勇, 陈建文, 梁杰, 等. 海陆对比看南黄海海相中—古生界的生储盖组合特征[J]. 石油实验地质, 2017, 39(2):195-202,212 YUAN Yong, CHEN Jianwen, LIANG Jie, et al. Source-reservoir-seal assemblage of marine Mesozoic-Paleozoic in South Yellow Sea Basin by land-ocean comparison[J]. Petroleum Geology & Experiment, 2017, 39(2):195-202,212.]
[75] 邹才能, 杜金虎, 徐春春, 等. 四川盆地震旦系—寒武系特大型气田形成分布、资源潜力及勘探发现[J]. 石油勘探与开发, 2014, 41(3):278-293 ZOU Caineng, DU Jinhu, XU Chunchun, et al. Formation, distribution, resource potential and discovery of the Sinian-Cambrian giant gas field, Sichuan Basin, SW China[J]. Petroleum Exploration and Development, 2014, 41(3):278-293.]
[76] 罗志立, 韩建辉, 罗超, 等. 四川盆地工业性油气层的发现、成藏特征及远景[J]. 新疆石油地质, 2013, 34(5):504-514,495 LUO Zhili, HAN Jianhui, LUO Chao, et al. The discovery, characteristics and prospects of commercial oil and gas layers/reservoirs in Sichuan Basin[J]. Xinjiang Petroleum Geology, 2013, 34(5):504-514,495.]
[77] 马新华, 杨雨, 文龙, 等. 四川盆地海相碳酸盐岩大中型气田分布规律及勘探方向[J]. 石油勘探与开发, 2019, 46(1):1-13 doi: 10.1016/S1876-3804(19)30001-1 MA Xinhua, YANG Yu, WEN Long, et al. Distribution and exploration direction of medium- and large-sized Marine carbonate gas fields in Sichuan Basin, SW China[J]. Petroleum Exploration and Development, 2019, 46(1):1-13.] doi: 10.1016/S1876-3804(19)30001-1
[78] 刘辉, 韩嵩, 叶茂, 等. 四川盆地大中型气田分布特征及勘探前景[J]. 天然气勘探与开发, 2018, 41(2):55-62 LIU Hui, HAN Song, YE Mao, et al. Medium to large gas fields in Sichuan Basin: distribution characteristics and exploration prospects[J]. Natural Gas Exploration and Development, 2018, 41(2):55-62.]
[79] 韩克猷, 孙玮. 四川盆地海相大气田和气田群成藏条件[J]. 石油与天然气地质, 2014, 35(1):10-18 doi: 10.11743/ogg20140102 HAN Keyou, SUN Wei. Conditions for the formation of large Marine gas fields and gas field clusters in Sichuan Basin[J]. Oil & Gas Geology, 2014, 35(1):10-18.] doi: 10.11743/ogg20140102
[80] 杨长清, 杨艳秋, 孙晶, 等. 东海陆架盆地西部和东南部油气资源调查[R]. 青岛: 青岛海洋地质研究所, 2019 YANG Changqing, YANG Yanqiu, SUN Jing, et al. Oil and gas resources survey in the west and southeast of East China Sea Shelf basin[R]. Qingdao: Qingdao Institute of Marine Geology, 2019.]
[81] 龚建明, 徐立明, 杨艳秋, 等. 从海陆对比探讨东海南部中生代油气勘探前景[J]. 世界地质, 2014, 33(1):171-177,189 doi: 10.3969/j.issn.1004-5589.2014.01.018 GONG Jianming, XU Liming, YANG Yanqiu, et al. Discussion on Mesozoic hydrocarbon potential of sourthern East China Sea based on comparision between offshore and onshore areas[J]. Global Geology, 2014, 33(1):171-177,189.] doi: 10.3969/j.issn.1004-5589.2014.01.018
[82] 陈建文, 杨长清, 张莉, 等. 中国海域前新生代地层分布及其油气勘查方向[J]. 海洋地质与第四纪地质, 2022, 42(1):1-25 CHEN Jianwen, YANG Changqing, ZHANG Li, et al. Distribution of Pre-Cenozoic strata and petroleum prospecting directions in China Seas[J]. Marine Geology & Quaternary Geology, 2022, 42(1):1-25.]
[83] 刘建华, 黎明碧, 方银霞. 东海陆架盆地海相中生界及其与邻近古海洋关系探讨[J]. 热带海洋学报, 2005, 24(2):1-7 doi: 10.3969/j.issn.1009-5470.2005.02.001 LIU Jianhua, LI Mingbi, FANG Yinxia. Mesozoic strata in East China Sea Shelf Basin and their relationship with adjacent Palaeo-seas[J]. Journal of Tropical Oceanography, 2005, 24(2):1-7.] doi: 10.3969/j.issn.1009-5470.2005.02.001
[84] 唐建. 东海及邻近地区中生代沉积地层展布研究[D]. 上海: 同济大学, 2007 TANG Jian. Study on the Mesozoic sedimentary strata distribution of East China and adjacent areas[D]. Shanghai: Tongji University, 2007.]
[85] Shu L S, Zhou X M, Deng P, et al. Mesozoic tectonic evolution of the Southeast China block: new insights from basin analysis[J]. Journal of Asian Earth Sciences, 2009, 34(3):376-391. doi: 10.1016/j.jseaes.2008.06.004
[86] 杨艳秋, 李刚, 戴春山. 东海陆架盆地西部坳陷带中生界分布特征及其有利区探讨[J]. 世界地质, 2011, 30(3):396-403 YANG Yanqiu, LI Gang, DAI Chunshan. Characteristics of Mesozoic distribution and discussion on its favourable area in western depression zone of East China Sea Shelf Basin[J]. Global Geology, 2011, 30(3):396-403.]
[87] 杨长清, 杨传胜, 杨艳秋, 等. 东海陆架盆地南部深部地层格架与油气资源潜力[J]. 海洋地质与第四纪地质, 2022, 42(5):158-171 YANG Changqing, YANG Chuansheng, YANG Yanqiu, et al. Deep stratigraphic framework and hydrocarbon resource potential in the Southern East China Sea Shelf Basin[J]. Marine Geology & Quaternary Geology, 2022, 42(5):158-171.]
[88] 杨长清, 孙晶, 杨传胜, 等. 东海盆地南部中生界油气成藏模式[J]. 海洋地质前沿, 2021, 37(8):89-92 YANG Changqing, SUN Jing, YANG Chuansheng, et al. The Mesozoic hydrocarbon accumulation model in the southern East China Sea basin[J]. Marine Geology Frontiers, 2021, 37(8):89-92.]
[89] Calvès G, Schwab A M, Huuse M, et al. Thermal regime of the northwest Indian rifted margin – comparison with predictions[J]. Marine and Petroleum Geology, 2010, 27(5):1133-1147. doi: 10.1016/j.marpetgeo.2010.02.010
[90] Calvès G, Schwab A M, Huuse M, et al. Seismic volcanostratigraphy of the western Indian rifted margin: the pre-Deccan igneous province[J]. Journal of Geophysical Research: Solid Earth, 2011, 116(B1):B01101.
[91] Carmichael S M, Akhter S, Bennett J K, et al. Geology and hydrocarbon potential of the offshore Indus Basin, Pakistan[J]. Petroleum Geoscience, 2009, 15(2):107-116. doi: 10.1144/1354-079309-826
[92] 刘金萍, 王改云, 简晓玲, 等. 巴基斯坦印度扇近海盆地油气地质条件分析[J]. 地质学刊, 2022, 46(4):351-357 LIU Jinping, WANG Gaiyun, JIAN Xiaoling, et al. Analysis of petroleum geological condition in offshore Indus Basin, Pakistan[J]. Journal of Geology, 2022, 46(4):351-357.]
[93] 陈旭, 刘彩芹, 王红梅, 等. 印度河盆地T区块构造特征与油气成藏[J]. 石油地球物理勘探, 2017, 52(6):1305-1314 CHEN Xu, LIU Caiqin, WANG Hongmei, et al. Tectonic characteristics and hydrocarbon accumulation in the Block T, Indus River Basin[J]. Oil Geophysical Prospecting, 2017, 52(6):1305-1314.]
[94] 廖晶, 龚建明, 陈建文, 等. 印度扇近海盆地重力滑动构造新发现[J]. 海洋地质前沿, 2020, 36(6):76-79 LIAO Jing, GONG Jianming, CHEN Jianwen, et al. New discovery of gravity slip structure in India Fan offshore basin[J]. Marine Geology Frontiers, 2020, 36(6):76-79.]
[95] Rodriguez M, Chamot-Rooke N, Huchon P, et al. The Owen Ridge uplift in the Arabian Sea: implications for the sedimentary record of Indian monsoon in Late Miocene[J]. Earth and Planetary Science Letters, 2014, 394:1-12. doi: 10.1016/j.jpgl.2014.03.011
[96] Shahzad K, Betzler C, Qayyum F. Controls on the Paleogene carbonate platform growth under greenhouse climate conditions (Offshore Indus Basin)[J]. Marine and Petroleum Geology, 2019, 101:519-539. doi: 10.1016/j.marpetgeo.2018.12.025
[97] 郑民, 李建忠, 吴晓智, 等. 我国主要含油气盆地油气资源潜力及未来重点勘探领域[J]. 地球科学, 2019, 44(3):833-847 ZHENG Min, LI Jianzhong, WU Xiaozhi, et al. Potential of oil and gas resources of main Hydrocarbon-Bearing basins and key exploration fields in China[J]. Earth Science, 2019, 44(3):833-847.]
[98] 吴晓智, 柳庄小雪, 王建, 等. 我国油气资源潜力、分布及重点勘探领域[J]. 地学前缘, 2022, 29(6):146-155 WU Xiaozhi, LIU Zhuangxiaoxue, WANG Jian, et al. Petroleum resource potential, distribution and key exploration fields in China[J]. Earth Science Frontiers, 2022, 29(6):146-155.]
[99] 何家雄, 姚永坚, 于俊峰, 等. 中国近海盆地油气地质特征及勘探开发进展[J]. 海洋地质前沿, 2022, 38(11):1-17 HE Jiaxiong, YAO Yongjian, YU Junfeng, et al. Petroleum geological characteristics and progress of exploration and development in offshore basins of China[J]. Marine Geology Frontiers, 2022, 38(11):1-17.]
[100] 谢玉洪. 中国海洋石油总公司油气勘探新进展及展望[J]. 中国石油勘探, 2018, 23(1):26-35 doi: 10.3969/j.issn.1672-7703.2018.01.003 XIE Yuhong. New progress and prospect of oil and gas exploration of China national offshore oil corporation[J]. China Petroleum Exploration, 2018, 23(1):26-35.] doi: 10.3969/j.issn.1672-7703.2018.01.003
[101] 徐长贵, 赖维成, 张新涛, 等. 中国海油油气勘探新进展与未来勘探思考[J]. 中国海上油气, 2023, 35(2):1-12 XU Changgui, LAI Weicheng, ZHANG Xintao, et al. New progress and future exploration thinking of CNOOC oil and gas exploration[J]. China Offshore Oil and Gas, 2023, 35(2):1-12.]
[102] 谢玉洪, 高阳东. 中国海油近期国内勘探进展与勘探方向[J]. 中国石油勘探, 2020, 25(1):20-30 doi: 10.3969/j.issn.1672-7703.2020.01.003 XIE Yuhong, GAO Yangdong. Recent domestic exploration progress and direction of CNOOC[J]. China Petroleum Exploration, 2020, 25(1):20-30.] doi: 10.3969/j.issn.1672-7703.2020.01.003
[103] 谢玉洪. 中国海油“十三五”油气勘探重大成果与“十四五”前景展望[J]. 中国石油勘探, 2021, 26(1):43-54 XIE Yuhong. Major achievements in oil and gas exploration of CNOOC in the 13th Five-Year Plan period and prospects in the 14th Five-Year Plan period[J]. China Petroleum Exploration, 2021, 26(1):43-54.]
[104] 米立军, 周守为, 谢玉洪, 等. 南海北部深水区油气勘探进展与未来展望[J]. 中国工程科学, 2022, 24(3):58-65 doi: 10.15302/J-SSCAE-2022.03.007 MI Lijun, ZHOU Shouwei, XIE Yuhong, et al. Deep-Water oil and gas exploration in northern South China Sea: progress and outlook[J]. Strategic Study of CAE, 2022, 24(3):58-65.] doi: 10.15302/J-SSCAE-2022.03.007
[105] 杨海风, 牛成民, 柳永军, 等. 渤海垦利6-1新近系大型岩性油藏勘探发现与关键技术[J]. 中国石油勘探, 2020, 25(3):24-32 doi: 10.3969/j.issn.1672-7703.2020.03.003 YANG Haifeng, NIU Chengmin, LIU Yongjun, et al. Discovery and key exploration technology of KL6-1 large lithologic oil reservoir of Neogene in the Bohai Bay Basin[J]. China Petroleum Exploration, 2020, 25(3):24-32.] doi: 10.3969/j.issn.1672-7703.2020.03.003
[106] 王昕, 周心怀, 徐国胜, 等. 渤海海域蓬莱9-1花岗岩潜山大型油气田储层发育特征与主控因素[J]. 石油与天然气地质, 2015, 36(2):262-270 doi: 10.11743/ogg20150211 WANG Xin, ZHOU Xinhuai, XU Guosheng, et al. Characteristics and controlling factors of reservoirs in Penglai 9-1 large-scale oilfield in buried granite hills, Bohai Sea[J]. Oil & Gas Geology, 2015, 36(2):262-270.] doi: 10.11743/ogg20150211
[107] IHS Markit. IHS energy: EDIN[EB/OL]. (2023-01-01)[2023-04-31].
[108] 王兆明, 温志新, 贺正军, 等. 全球近10年油气勘探新进展特点与启示[J]. 中国石油勘探, 2022, 27(2):27-37 doi: 10.3969/j.issn.1672-7703.2022.02.003 WANG Zhaoming, WEN Zhixin, HE Zhengjun, et al. Characteristics and enlightenment of new progress in global oil and gas exploration in recent ten years[J]. China Petroleum Exploration, 2022, 27(2):27-37.] doi: 10.3969/j.issn.1672-7703.2022.02.003
[109] 张功成, 屈红军, 张凤廉, 等. 全球深水油气重大新发现及启示[J]. 石油学报, 2019, 40(1):1-34,55 doi: 10.7623/syxb201901001 ZHANG Gongcheng, QU Hongjun, ZHANG Fenglian, et al. Major new discoveries of oil and gas in global deepwaters and enlightenment[J]. Acta Petrolei Sinica, 2019, 40(1):1-34,55.] doi: 10.7623/syxb201901001
[110] 叶德燎. 东南亚石油资源与勘探潜力[J]. 中国石油勘探, 2005, 10(1):55-60,64 doi: 10.3969/j.issn.1672-7703.2005.01.008 YE Deliao. Petroleum resources and exploration potential in Southeast Asia[J]. China Petroleum Exploration, 2005, 10(1):55-60,64.] doi: 10.3969/j.issn.1672-7703.2005.01.008
[111] 王建强, 赵青芳, 梁杰, 等. 海上丝绸之路沿线深水油气资源勘探方向[J]. 地质通报, 2021, 40(2):219-232 WANG Jianqiang, ZHAO Qingfang, LIANG Jie, et al. Exploration guide of deepwater oil and gas resources along the Maritime Silk Road[J]. Geological Bulletin of China, 2021, 40(2):219-232.]
[112] 张义娜, 蔡文杰, 杨松岭, 等. 巴布亚盆地侏罗系陆架边缘三角洲沉积特征及其油气勘探方向[J]. 地学前缘, 2021, 28(1):167-176 ZHANG Yina, CAI Wenjie, YANG Songling, et al. Sedimentary characteristics of the Jurassic shelf-edge delta and oil and gas exploration in the Papuan Basin[J]. Earth Science Frontiers, 2021, 28(1):167-176.]
[113] 康玉柱. 中国古生代海相大油气田形成条件及勘探方向[J]. 新疆石油地质, 2007, 28(3):263-265 doi: 10.3969/j.issn.1001-3873.2007.03.001 KANG Yuzhu. Conditions and explorative directions of marine giant oil-gas fields of Paleozoic in China[J]. Xinjiang Petroleum Geology, 2007, 28(3):263-265.] doi: 10.3969/j.issn.1001-3873.2007.03.001
[114] 徐长贵, 周家雄, 杨海风, 等. 渤海海域油气勘探新领域、新类型及资源潜力[J]. 石油学报, 2024, 45(1):163-182 doi: 10.7623/syxb202401010 XU Changgui, ZHOU Jiaxiong, YANG Haifeng, et al. New fields, new types and resource potentials of oil-gas exploration in Bohai Sea[J]. Acta Petrolei Sinica, 2024, 45(1):163-182.] doi: 10.7623/syxb202401010
[115] 李威, 李友川. 渤海海域渤中19-6构造带油气纵向连续分布形成机理研究[J]. 中国海上油气, 2022, 34(1):74-83 doi: 10.11935/j.issn.1673-1506.2022.01.009 LI Wei, LI Youchuan. Study on formation mechanism of oil and gas longitudinal continuous distribution of BZ19-6 structural belt, Bohai Sea[J]. China Offshore Oil and Gas, 2022, 34(1):74-83.] doi: 10.11935/j.issn.1673-1506.2022.01.009
[116] 薛永安. 认识创新推动渤海海域油气勘探取得新突破: 渤海海域近年主要勘探进展回顾[J]. 中国海上油气, 2018, 30(2):1-8 XUE Yongan. New breakthroughs in hydrocarbon exploration in the Bohai Sea area driven by understanding innovation: a review of major exploration progresses of Bohai Sea are in recent year[J]. China Offshore Oil and Gas, 2018, 30(2):1-8.]
[117] 陈建文, 龚建明, 张银国, 等. 扬子陆域地质考察及其对南黄海油气勘探的启示[M]. 北京: 地质出版社, 2023: 143-170 CHEN Jianwen, GONG Jianming, ZHANG Yinguo, et al. Geological Survey of Yangtze Land Area and Its Inspiration to Oil and Gas Exploration in South Yellow Sea[M]. Beijing: Geology Press, 2023: 143-170.]
[118] 邹才能, 邱振. 中国非常规油气沉积学新进展: “非常规油气沉积学”专辑前言[J]. 沉积学报, 2021, 39(1):1-9 ZOU Caineng, QIU Zhen. Preface: new advances in unconventional petroleum sedimentology in China[J]. Acta Sedimentologica Sinica, 2021, 39(1):1-9.]
-
期刊类型引用(4)
1. 林建伟,魏观渊,游远新,刘国昕,许文彬. 三沙湾悬浮泥沙运移分布及其对海上养殖的影响分析. 渔业研究. 2024(06): 664-674 . 百度学术
2. 杨传训,李勇,杨骥,舒思京. 机器学习模型的珠江口悬浮泥沙遥感反演与规律分析. 测绘通报. 2023(09): 117-123 . 百度学术
3. 甘双庆,朱龙海,张立奎,宋彦,胡日军,白杏,林超然,谢波. 蓬莱近岸海域夏季悬浮泥沙输运及控制因素. 海洋地质前沿. 2023(12): 12-25 . 百度学术
4. 伍先锋,胡兴艺,李广源,谭云辉. 基于红外光传感器的泥沙在线监测方法应用研究. 水利信息化. 2022(04): 41-44+61 . 百度学术
其他类型引用(0)