WANG Yong-hong, Heron M L, Ridd Peter. PROGRESS IN MEASURING SEA SURFACE SALINITY BY USING AIRBORNE MICROWAVE REMOTE SENSING SYSTEM[J]. Marine Geology & Quaternary Geology, 2007, 27(1): 139-145.
Citation: WANG Yong-hong, Heron M L, Ridd Peter. PROGRESS IN MEASURING SEA SURFACE SALINITY BY USING AIRBORNE MICROWAVE REMOTE SENSING SYSTEM[J]. Marine Geology & Quaternary Geology, 2007, 27(1): 139-145.

PROGRESS IN MEASURING SEA SURFACE SALINITY BY USING AIRBORNE MICROWAVE REMOTE SENSING SYSTEM

More Information
  • Received Date: June 29, 2006
  • Revised Date: November 29, 2006
  • Salinity is a fundamental property of seawater. It plays an important role in measuring the sea surface salinity in the open ocean and coastal zone. At present, salinity is routinely measured by traditional methods of collection of water with bottles and analyses done with a laboratory salinometer, or by direct in situ CTD measurements, and by airborne microwave remote sensing system.
    The study of airborne microwave remote sensing technology began in 1960s, and great progress has been made in the past 10 years. The passive L-band microwave radiometer is mounted underneath the fuselage of an airplane and used to measure the sea water surface salinity and therefore the surface salinity can be obtained rapidly and synchronically in a large area. At present there are various microwave radiometers applied in different countries and areas such as ESTAR,SLFMR,STARRS,PALS, and PLMR. The accuracy and precision of surface salinity data obtained by the airborne microwave radiometers can reach 1~1.5 psu in a resolution of 1 km2. It is expected that the accuracy and precision of the new microwave radiometer PLMR will be within 1 psu.
  • [1]
    Debye P. Polar molecules[M]. New York:The Chemical Catalog Co, 1929.
    [2]
    Klein L A, Swift C T. An improved model for the dielectric constant of sea water at microwave frequencies[J]. IEEE Journal of Oceanic Engineering, OE, 1977, 2(1):104-111.
    [3]
    Blume H J C, Kendall B M, Fedors J C. Measurement of ocean temperature and salinity via microwave radiometry[J]. Boundary-Layer Meteorology, 1978, 13:295-308.
    [4]
    Hollinger J P, Lo R C. Low Frequency Microwave Radiometer for N-ROSS[R]. NRL report, 1981, 481-27.
    [5]
    Ulaby F T, Moore R K, Fung A K. Microwave Remote Sensing:Active and Passive[M]. Dedham:Artech House, Inc., 1986:21-62.
    [6]
    Gabarro C J, Font A C, MVall L. Retrieved surface salinity and wind speed from L-band measurements for WISE and EuroSTARRS campaigns[C]//Proceedings of the First Results Workshop on EuroSTARRS, WISE, LOSAC Campaigns. EAS, SP-525, 2003:163-171.
    [7]
    Sirounian V. Effect of temperature, angle of observation, salinity, and thin ice on microwave emission of water[J]. Journal of Geophysical Research, 1968, 73:4481-4486.
    [8]
    Paris J F. Microwave radiometry and its applications to marine meteorology and oceanography[C]//In:Texas:College Station (Texas A & M Project 286-13), 1969:120-129.
    [9]
    McPhaden M J, Frietag H P, Shephard A J. Moored salinity time series measurements at 0-140 W[J]. J. Atmos. Ocean. Tech., 1990, 7:569-575.
    [10]
    Thomann G C. Remote measurement of salinity in an estuarine environment[J]. Remote Sensing of Environment, 1973, 2:249-259.
    [11]
    Goodberlet M A, Swift C T, Kevin K P, et al. Microwave remote sensing of coastal zone salinity[J]. Journal of Coastal Research, 1997, 13(2):363-372.
    [12]
    Skou N. Microwave Radiometer Systems:Design and Analysis[M]. Norwood, MA:Artech House, 1989.
    [13]
    Le Vine D M, Griffis A, Swift C T, et al. ESTAR:a synthetic aperture microwave radiometer for remote sensing applications[C]//Proc. IEEE., 1994, 82(12):1787-1798.
    [14]
    Le Vine D M, Kao M, Garvine R W, et al. Remote sensing of ocean salinity:results from the Delaware Coastal Current experiment[J]. Journal of Atmospheric and Oceanic Technology, 1998, 15:1478-1484.
    [15]
    Goodberlet M A, Swift C T. A remote sensing system for measuring estuarine and coastal ocean surface salinity[R]. Progress Report #2 prepared for NOAA under contract 50-DKNA-1-00119 to US Dept. of Commerce, 1993, 111(Quadrant Engineering, Hadley, MA).
    [18]
    Wilson J W, Simon H Y, Steven J D, et al. Passive active L-and S-band(PALS)microwave sensor for ocean salinity and soil moisture measurements[J]. IEEE Trans. Geosci. Remote Sensing, 2001, 39(5):1039-1049.
    [19]
    Wilson J W, Simon H Y, Steve J D, et al. High-stability L-band radiometer measurements of saltwater[J]. IEEE Trans. Geosci. Remote Sensing, 2004, 42(9):1829-1835.
    [20]
    Miller J L, Goodberlet M A, Zaitzeff J B. Remote sensing of salinity in the coastal zone[J]. EOS, Transactions of AGU, 1998, 79(14):3.
    [21]
    Burrage D M, Heron M L, Hacker J M, et al. Structure and influence of tropical river plumes in the Great Barrier Reef:application and performance of an airborne sea surface salinity mapping system[J]. Remote Sensing of Environment, 2003, 85:204-220.
    [22]
    Prytz A, Heron M L, Burrage D M, et al. Calibration of Scanning Low Frequency Microwave Radiometer[R]. IEEE Oceans 2002, CEROM, 2003-2007.
  • Cited by

    Periodical cited type(5)

    1. 杨艳秋,李森,梁杰,孙晶. 南黄海盆地南部海相构造层研究新进展. 海洋地质前沿. 2025(02): 12-20 .
    2. 袁勇,陈建文,骆迪,李清,梁杰,蓝天宇,王建强,曹珂,赵化淋. 南黄海盆地烟台坳陷新生界二氧化碳封存地质条件与封存前景. 海洋地质前沿. 2025(03): 35-47 .
    3. 党鹏飞,王文博,李亚东,崔杰. 流体地质作用与资源环境效应——基于第八届流体地球科学与矿产资源及环境灾害学术研讨会的综述. 地球科学与环境学报. 2023(02): 322-337 .
    4. 李双林,赵青芳,王建强,董贺平. 南黄海盆地崂山隆起中南部海底沉积物饱和烃类地球化学特征与热成因烃类输入. 地质通报. 2023(05): 669-679 .
    5. 吴飘,陈建文,赵青芳,张银国,梁杰,蓝天宇,薛路,可行. 南黄海盆地二叠系高-过成熟烃源岩的生物标志化合物特征及其地质意义. 海洋地质与第四纪地质. 2023(04): 150-166 . 本站查看

    Other cited types(0)

Catalog

    Article views (1587) PDF downloads (12) Cited by(5)

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return