Citation: | LI Xin, CAO Hong, GENG Wei, SUN Zhilei, ZHANG Xilin, YAN Dawei, QIN Shuangshuang, XU Cuiling, ZHANG Xianrong, ZHAI Bin, WANG Libo. Research progress in carbonate associated sulfate[J]. Marine Geology & Quaternary Geology, 2020, 40(3): 119-131. DOI: 10.16562/j.cnki.0256-1492.2019090801 |
[1] |
Kampschulte S, Strauss H. The sulfur isotopic evolution of Phanerozoic seawater based on the analysis of structurally substituted sulfate in carbonates [J]. Chemical Geology, 2004, 204(3-4): 255-286. doi: 10.1016/j.chemgeo.2003.11.013
|
[2] |
Wotte T, Strauss H, Fugmann A, et al. Paired δ34S data from carbonate-associated sulfate and chromium-reducible sulfur across the traditional Lower-Middle Cambrian boundary of W-Gondwana [J]. Geochimica et Cosmochimica Acta, 2012, 85: 228-253. doi: 10.1016/j.gca.2012.02.013
|
[3] |
Riccardi A L, Arthur M A, Kump L R. Sulfur isotopic evidence for chemocline upward excursions during the end-Permian mass extinction [J]. Geochimica et Cosmochimica Acta, 2006, 70(23): 5740-5752. doi: 10.1016/j.gca.2006.08.005
|
[4] |
Staudt W J, Schoonen M A A. Sulfate incorporation into sedimentary carbonates[M]//Vairavamurthy M A, Schoonen M A A, Eglinton T I, et al. Geochemical Transformations of Sedimentary Sulfur. Washington, DC: American Chemical Society, 1995: 332-345.
|
[5] |
Li C, Love G D, Lyons T W, et al. A stratified redox model for the Ediacaran ocean [J]. Science, 2010, 328(5974): 80-83. doi: 10.1126/science.1182369
|
[6] |
Tostevin R, He T C, Turchyn A V, et al. Constraints on the late Ediacaran sulfur cycle from carbonate associated sulfate [J]. Precambrian Research, 2017, 290: 113-125. doi: 10.1016/j.precamres.2017.01.004
|
[7] |
Guo Q J, Strauss H, Kaufman A J, et al. Reconstructing Earth’s surface oxidation across the Archean-Proterozoic transition [J]. Geology, 2009, 37(5): 399-402. doi: 10.1130/G25423A.1
|
[8] |
Schulz H D. Quantification of early diagenesis: Dissolved constituents in pore water and signals in the solid phase[M]//Schulz H D, Zabel M. Marine Geochemistry. Berlin, Heidelberg: Springer, 2006: 73-124.
|
[9] |
Canfield D E. Isotope fractionation by natural populations of sulfate-reducing bacteria [J]. Geochimica et Cosmochimica Acta, 2001, 65(7): 1117-1124. doi: 10.1016/S0016-7037(00)00584-6
|
[10] |
Milliman J D. Marine Carbonates[M]. Berlin: Springer-Verlag, 1974.
|
[11] |
Mackenzie F T, Bischoff W D, Bishop F C, et al. Magnesian calcites: low temperature occurrence, solubility and solid-solution behavior[M]//Reeder R J. Carbonates: Mineralogy and Chemistry of Reviews in Mineralogy. Washington, DC: Mineralogical Society of America, 1983: 97-144.
|
[12] |
Takano B. Geochemical implications of sulfate in sedimentary carbonates [J]. Chemical Geology, 1985, 49(4): 393-403. doi: 10.1016/0009-2541(85)90001-4
|
[13] |
Burdett J W, Arthur M A, Richardson M. A Neogene seawater sulfur isotope age curve from calcareous Pelagic microfossils [J]. Earth and Planetary Science Letters, 1989, 94(3-4): 189-198. doi: 10.1016/0012-821X(89)90138-6
|
[14] |
Pingitore Jr N E, Meitzner G, Love K M. Identification of sulfate in natural carbonates by x-ray absorption spectroscopy [J]. Geochimica et Cosmochimica Acta, 1995, 59(12): 2477-2483. doi: 10.1016/0016-7037(95)00142-5
|
[15] |
Kah L C, Lyons T W, Frank T D. Low marine sulphate and protracted oxygenation of the Proterozoic biosphere [J]. Nature, 2004, 431(7010): 834-838. doi: 10.1038/nature02974
|
[16] |
Halverson G P, Hurtgen M T. Ediacaran growth of the marine sulfate reservoir [J]. Earth and Planetary Science Letters, 2007, 263(1-2): 32-44. doi: 10.1016/j.jpgl.2007.08.022
|
[17] |
Claypool G E, Holser W T, Kaplan I R, et al. The age curves of sulfur and oxygen isotopes in marine sulfate and their mutual interpretation [J]. Chemical Geology, 1980, 28: 199-260. doi: 10.1016/0009-2541(80)90047-9
|
[18] |
Bottrell S H, Newton R J. Reconstruction of changes in global sulfur cycling from marine sulfate isotopes [J]. Earth-Science Reviews, 2006, 75(1-4): 59-83. doi: 10.1016/j.earscirev.2005.10.004
|
[19] |
Garrels R M, Lerman A. Coupling of the sedimentary sulfur and carbon cycles; an improved model [J]. American Journal of Science, 1984, 284(9): 989-1007. doi: 10.2475/ajs.284.9.989
|
[20] |
Wu N P, Farquhar J, Strauss H, et al. Evaluating the S-isotope fractionation associated with Phanerozoic pyrite burial [J]. Geochimica et Cosmochimica Acta, 2010, 74(7): 2053-2071. doi: 10.1016/j.gca.2009.12.012
|
[21] |
Goldberg T, Shields G A, Newton R J. Analytical constraints on the measurement of the sulfur isotopic composition and concentration of trace sulfate in Phosphorites: implications for sulfur isotope studies of carbonate and phosphate rocks [J]. Geostandards and Geoanalytical Research, 2011, 35(2): 161-174. doi: 10.1111/j.1751-908X.2010.00102.x
|
[22] |
Llyod R M. Oxygen-18 composition of oceanic sulfate [J]. Science, 1967, 156(3779): 1228-1231. doi: 10.1126/science.156.3779.1228
|
[23] |
Turchyn A V, Schrag D P, Coccioni R, et al. Stable isotope analysis of the Cretaceous sulfur cycle [J]. Earth and Planetary Science Letters, 2009, 285(1-2): 115-123. doi: 10.1016/j.jpgl.2009.06.002
|
[24] |
Maharjan D, Jiang G Q, Peng Y B, et al. Sulfur isotope change across the Early Mississippian K-O (Kinderhookian-Osagean) δ13C excursion [J]. Earth and Planetary Science Letters, 2018, 494: 202-215. doi: 10.1016/j.jpgl.2018.04.043
|
[25] |
Gischler E, Heindel K, Birgel D, et al. Cryptic biostalactites in a submerged karst cave of the Belize Barrier Reef revisited: pendant bioconstructions cemented by microbial micrite [J]. Palaeogeography, Palaeoclimatology, Palaeoecology, 2017, 468: 34-51. doi: 10.1016/j.palaeo.2016.11.042
|
[26] |
Peng Y B, Bao H M, Pratt L M, et al. Widespread contamination of carbonate-associated sulfate by present-day secondary atmospheric sulfate: evidence from triple oxygen isotopes [J]. Geology, 2014, 42(9): 815-818. doi: 10.1130/G35852.1
|
[27] |
Shields G, Veizer J. Precambrian marine carbonate isotope database: version 1.1 [J]. Geochemistry, Geophysics, Geosystems, 2002, 3(6): 1 of 12-12 of 12. doi: 10.1029/2001GC000266
|
[28] |
Shen B, Xiao S H, Bao H M, et al. Carbon, sulfur, and oxygen isotope evidence for a strong depth gradient and oceanic oxidation after the Ediacaran Hankalchough glaciation [J]. Geochimica et Cosmochimica Acta, 2011, 75(5): 1357-1373. doi: 10.1016/j.gca.2010.12.015
|
[29] |
Chu X L, Zhang T, Strauss H, et al. Dynamic ocean chemistry around the Marinoan glaciation - isotopic evidence from cap carbonates [J]. Geochmica et Cosmochimica Acta, 2005.
|
[30] |
Zhang T G, Chu X L, Zhang Q R, et al. Variations of sulfur and carbon isotopes in seawater during the Doushantuo stage in late Neoproterozoic [J]. Chinese Science Bulletin, 2003, 48(13): 1375-1380. doi: 10.1007/BF03184182
|
[31] |
Wotte T, Shields-Zhou G A, Strauss H. Carbonate-associated sulfate: experimental comparisons of common extraction methods and recommendations toward a standard analytical protocol [J]. Chemical Geology, 2012, 326-327: 132-144. doi: 10.1016/j.chemgeo.2012.07.020
|
[32] |
Labotka D M, Panno S V, Locke R A. A sulfate conundrum: dissolved sulfates of deep-saline brines and carbonate-associated sulfates [J]. Geochimica et Cosmochimica Acta, 2016, 190: 53-71. doi: 10.1016/j.gca.2016.06.033
|
[33] |
Tostevin R, Shields G A, Tarbuck G M, et al. Effective use of cerium anomalies as a redox proxy in carbonate-dominated marine settings [J]. Chemical Geology, 2016, 438: 146-162. doi: 10.1016/j.chemgeo.2016.06.027
|
[34] |
Prantl L, Schreml S, Fichtner-Feigl S, et al. Clinical and morphological conditions in capsular contracture formed around silicone breast implants [J]. Plastic and Reconstructive Surgery, 2007, 120(1): 275-284. doi: 10.1097/01.prs.0000264398.85652.9a
|
[35] |
Wu N P, Farquhar J, Strauss H. δ34S and Δ33S records of Paleozoic seawater sulfate based on the analysis of carbonate associated sulfate [J]. Earth and Planetary Science Letters, 2014, 399: 44-51. doi: 10.1016/j.jpgl.2014.05.004
|
[36] |
Gill B C, Lyons T W, Jenkyns H C. A global perturbation to the sulfur cycle during the Toarcian Oceanic Anoxic Event [J]. Earth and Planetary Science Letters, 2011, 312(3-4): 484-496. doi: 10.1016/j.jpgl.2011.10.030
|
[37] |
Paris G, Fehrenbacher J S, Sessions A L, et al. Experimental determination of carbonate-associated sulfate δ34S in planktonic foraminifera shells [J]. Geochemistry, Geophysics, Geosystems, 2014, 15(4): 1452-1461. doi: 10.1002/2014GC005295
|
[38] |
Theiling B P, Coleman M. Refining the extraction methodology of carbonate associated sulfate: evidence from synthetic and natural carbonate samples [J]. Chemical Geology, 2015, 411: 36-48. doi: 10.1016/j.chemgeo.2015.06.018
|
[39] |
Kaiho K, Kajiwara Y, Nakano T, et al. End-Permian catastrophe by a bolide impact: evidence of a gigantic release of sulfur from the mantle [J]. Geology, 2001, 29(9): 815-818. doi: 10.1130/0091-7613(2001)029<0815:EPCBAB>2.0.CO;2
|
[40] |
Marenco P J, Corsetti F A, Hammond D E, et al. Oxidation of pyrite during extraction of carbonate associated sulfate [J]. Chemical Geology, 2008, 247(1-2): 124-132. doi: 10.1016/j.chemgeo.2007.10.006
|
[41] |
Fichtner V, Strauss H, Mavromatis V, et al. Incorporation and subsequent diagenetic alteration of sulfur in Arctica islandica [J]. Chemical Geology, 2018, 482: 72-90. doi: 10.1016/j.chemgeo.2018.01.035
|
[42] |
Aharon P, Fu B S. Microbial sulfate reduction rates and sulfur and oxygen isotope fractionations at oil and gas seeps in deepwater Gulf of Mexico [J]. Geochimica et Cosmochimica Acta, 2000, 64(2): 233-246. doi: 10.1016/S0016-7037(99)00292-6
|
[43] |
Gill B C, Lyons T W, Frank T D. Behavior of carbonate-associated sulfate during meteoric diagenesis and implications for the sulfur isotope paleoproxy [J]. Geochimica et Cosmochimica Acta, 2008, 72(19): 4699-4711. doi: 10.1016/j.gca.2008.07.001
|
[44] |
梅洪明. 一个多层的早期成岩作用模型[J]. 科学通报, 1997, 42(16):1385-1387. [MEI Hongming. A multi-layer model for early diagenesis [J]. Chinese Science Bulletin, 1997, 42(16): 1385-1387.
|
[45] |
Chopin C. Ultrahigh-pressure metamorphism: tracing continental crust into the mantle [J]. Earth and Planetary Science Letters, 2003, 212(1-2): 1-14. doi: 10.1016/S0012-821X(03)00261-9
|
[46] |
Dogramaci S S, Herczeg A L, Schiff S L, et al. Controls on δ34S and δ18O of dissolved sulfate in aquifers of the Murray Basin, Australia and their use as indicators of flow processes [J]. Applied Geochemistry, 2001, 16(4): 475-488. doi: 10.1016/S0883-2927(00)00052-4
|
[47] |
Marenco P J, Corsetti F A, Kaufman A J, et al. Environmental and diagenetic variations in carbonate associated sulfate: an investigation of CAS in the Lower Triassic of the western USA [J]. Geochimica et Cosmochimica Acta, 2008, 72(6): 1570-1582. doi: 10.1016/j.gca.2007.10.033
|
[48] |
Feng D, Peng Y B, Bao H M, et al. A carbonate-based proxy for sulfate-driven anaerobic oxidation of methane [J]. Geology, 2016, 44(12): 999-1002. doi: 10.1130/G38233.1
|
[49] |
Antler G, Turchyn A V, Herut B, et al. A unique isotopic fingerprint of sulfate-driven anaerobic oxidation of methane [J]. Geology, 2015, 43(7): 619-622. doi: 10.1130/G36688.1
|
[50] |
Rennie V C F, Turchyn A V. The preservation of δ34SSO4 and δ18OSO4 in carbonate-associated sulfate during marine diagenesis: a 25 Myr test case using marine sediments [J]. Earth and Planetary Science Letters, 2014, 395: 13-23. doi: 10.1016/j.jpgl.2014.03.025
|
[51] |
Mazumdar A, Goldberg T, Strauss H. Abiotic oxidation of pyrite by Fe(III) in acidic media and its implications for sulfur isotope measurements of lattice-bound sulfate in sediments [J]. Chemical Geology, 2008, 253(1-2): 30-37. doi: 10.1016/j.chemgeo.2008.03.014
|
[52] |
Chavagnac V, Monnin C, Ceuleneer G, et al. Characterization of hyperalkaline fluids produced by low-temperature serpentinization of mantle peridotites in the Oman and Ligurian ophiolites [J]. Geochemistry, Geophysics, Geosystems, 2013, 14(7): 2496-2522. doi: 10.1002/ggge.20147
|
[53] |
James N P, Choquette P W. Diagenesis 9. Limestones- the meteoric diagenetic environment[M]//Scholle P A, James N P, Read J F. Carbonate Sedimentology and Petrology, Volume 4. Washington, DC: American Geophysical Union, 2013.
|
[54] |
Paytan A, Kastner M, Campbell D, et al. Sulfur isotopic composition of Cenozoic seawater sulfate [J]. Science, 1998, 282(5393): 1459-1462. doi: 10.1126/science.282.5393.1459
|
[55] |
Flügel E, Munnecke A. Microfacies of Carbonate Rocks: Analysis, Interpretation and Application[M]. 2nd ed. Berlin, New York: Springer-Verlag, 2010.
|
[56] |
Jones D S, Fike D A. Dynamic sulfur and carbon cycling through the end-Ordovician extinction revealed by paired sulfate-pyrite δ34S [J]. Earth and Planetary Science Letters, 2013, 363: 144-155. doi: 10.1016/j.jpgl.2012.12.015
|
[57] |
Present T M, Paris G, Burke A, et al. Large Carbonate Associated Sulfate isotopic variability between brachiopods, micrite, and other sedimentary components in Late Ordovician strata [J]. Earth and Planetary Science Letters, 2015, 432: 187-198. doi: 10.1016/j.jpgl.2015.10.005
|
[58] |
Howell K J, Bao H M. Caliche as a geological repository for atmospheric sulfate [J]. Geophysical Research Letters, 2006, 33(13): L13816. doi: 10.1029/2006GL026518
|
[59] |
Jenkins K A, Bao H M. Multiple oxygen and sulfur isotope compositions of atmospheric sulfate in Baton Rouge, LA, USA [J]. Atmospheric Environment, 2006, 40(24): 4528-4537. doi: 10.1016/j.atmosenv.2006.04.010
|
[60] |
Shen B, Xiao S H, Kaufman A J, et al. Stratification and mixing of a post-glacial Neoproterozoic ocean: evidence from carbon and sulfur isotopes in a cap dolostone from Northwest China [J]. Earth and Planetary Science Letters, 2008, 265(1-2): 209-228. doi: 10.1016/j.jpgl.2007.10.005
|
[61] |
Savarino J, Lee C C W, Thiemens M H. Laboratory oxygen isotopic study of sulfur (IV) oxidation: origin of the mass-independent oxygen isotopic anomaly in atmospheric sulfates and sulfate mineral deposits on Earth [J]. Journal of Geophysical Research, 2000, 105(D23): 29079-29088. doi: 10.1029/2000JD900456
|
[62] |
Boetius A, Ravenschlag K, Schubert C J, et al. A marine microbial consortium apparently mediating anaerobic oxidation of methane [J]. Nature, 2000, 407(6804): 623-626. doi: 10.1038/35036572
|
[63] |
Böttcher M E, Parafiniuk J. Methane-derived carbonates in a native sulfur deposit: stable isotope and trace element discriminations related to the transformation of aragonite to calcite [J]. Isotopes in Environmental and Health Studies, 1998, 34(1-2): 177-190. doi: 10.1080/10256019708036345
|
[64] |
He T C, Zhu M Y, Mills B J W, et al. Possible links between extreme oxygen perturbations and the Cambrian radiation of animals [J]. Nature Geoscience, 2019, 12(6): 468-474. doi: 10.1038/s41561-019-0357-z
|
[65] |
Knittel K, Boetius A. Anaerobic oxidation of methane: progress with an unknown process [J]. Annual Review of Microbiology, 2009, 63: 311-334. doi: 10.1146/annurev.micro.61.080706.093130
|
[66] |
Niewöhner C, Hensen C, Kasten S, et al. Deep sulfate reduction completely mediated by anaerobic methane oxidation in sediments of the upwelling area off Namibia [J]. Geochimica et Cosmochimica Acta, 1998, 62(3): 455-464. doi: 10.1016/S0016-7037(98)00055-6
|
[67] |
Sun Z L, Cao H, Yin X J, et al. Precipitation and subsequent preservation of hydrothermal Fe-Mn oxides in distal plume sediments on Juan de Fuca Ridge [J]. Journal of Marine Systems, 2018, 187: 128-140. doi: 10.1016/j.jmarsys.2018.06.014
|
[68] |
Emsbo P, Johnson C A. Formation of modern and Paleozoic stratiform barite at cold methane seeps on continental margins: comment and reply: COMMENT [J]. Geology, 2004, 32(1): e64. doi: 10.1130/0091-7613-32.1.e64
|
[69] |
Campbell K A. Hydrocarbon seep and hydrothermal vent paleoenvironments and paleontology: Past developments and future research directions [J]. Palaeogeography, Palaeoclimatology, Palaeoecology, 2006, 232(2-4): 362-407. doi: 10.1016/j.palaeo.2005.06.018
|
[70] |
Liang Q Y, Hu Y, Feng D, et al. Authigenic carbonates from newly discovered active cold seeps on the northwestern slope of the South China Sea: constraints on fluid sources, formation environments, and seepage dynamics [J]. Deep Sea Research Part I: Oceanographic Research Papers, 2017, 124: 31-41. doi: 10.1016/j.dsr.2017.04.015
|
[71] |
Fritz P, Basharmal G M, Drimmie R J, et al. Oxygen isotope exchange between sulphate and water during bacterial reduction of sulphate [J]. Chemical Geology: Isotope Geoscience, 1989, 79(2): 99-105. doi: 10.1016/0168-9622(89)90012-2
|
[72] |
Crémière A, Lepland A, Chand S, et al. Fluid source and methane-related diagenetic processes recorded in cold seep carbonates from the Alvheim channel, central North Sea [J]. Chemical Geology, 2016, 432: 16-33. doi: 10.1016/j.chemgeo.2016.03.019
|
[73] |
Aharon P, Fu B S. Sulfur and oxygen isotopes of coeval sulfate-sulfide in pore fluids of cold seep sediments with sharp redox gradients [J]. Chemical Geology, 2003, 195(1-4): 201-218. doi: 10.1016/S0009-2541(02)00395-9
|
[74] |
Hurtgen M T, Arthur M A, Suits N S, et al. The sulfur isotopic composition of Neoproterozoic seawater sulfate: implications for a snowball earth? [J]. Earth and Planetary Science Letters, 2002, 203(1): 413-429. doi: 10.1016/S0012-821X(02)00804-X
|
[75] |
Newton R J, Pevitt E L, Wignall P B, et al. Large shifts in the isotopic composition of seawater sulphate across the Permo-Triassic boundary in northern Italy [J]. Earth and Planetary Science Letters, 2004, 218(3-4): 331-345. doi: 10.1016/S0012-821X(03)00676-9
|
[76] |
Dupraz C, Strasser A. Nutritional modes in coral: microbialite reefs (Jurassic, Oxfordian, Switzerland): evolution of trophic structure as a response to environmental change [J]. PALAIOS, 2002, 17(5): 449-471. doi: 10.1669/0883-1351(2002)017<0449:NMICMR>2.0.CO;2
|
[77] |
Cirilli S, Iannace A, Jadoul F, et al. Microbial-serpulid build-ups in the Norian-Rhaetian of the western Mediterranean area: ecological response of shelf margin communities to stressed environments [J]. Terra Nova, 1999, 11(5): 195-202. doi: 10.1046/j.1365-3121.1999.00245.x
|
[78] |
Rommerskirchen F, Eglinton G, Dupont L, et al. Glacial/interglacial changes in southern Africa: compound‐specific δ13C land plant biomarker and pollen records from southeast Atlantic continental margin sediments [J]. Geochemistry, Geophysics, Geosystems, 2006, 7(8): Q08010.
|
[79] |
Riding R, Martin J M, Braga J C. Coral‐stromatolite reef framework, Upper Miocene, Almería, Spain [J]. Sedimentology, 1991, 38(5): 799-818. doi: 10.1111/j.1365-3091.1991.tb01873.x
|
[80] |
Benson L. Fluctuation in the level of pluvial Lake Lahontan during the last 40, 000 years [J]. Quaternary Research, 1978, 9(3): 300-318. doi: 10.1016/0033-5894(78)90035-2
|
[81] |
Beutel M W, Horne A J, Roth J C, et al. Limnological effects of anthropogenic desiccation of a large, saline lake, Walker Lake, Nevada [J]. Hydrobiologia, 2001, 466(1-3): 91-105.
|
[82] |
Berelson W, Corsetti F, Johnson B, et al. Carbonate-associated sulfate as a proxy for lake level fluctuations: a proof of concept for Walker Lake, Nevada [J]. Journal of Paleolimnology, 2009, 42(1): 25-36. doi: 10.1007/s10933-008-9245-z
|
[83] |
Chang H J, Chu X L, Huang J, et al. Terminal Ediacaran oceanic anoxia: evidence from framboidal pyrites in the cherts of Laobao Formation (South China) [J]. Geochimica et Cosmochimica Acta Supplement, 2009, 73(13): A208.
|
[84] |
Egger M, Riedinger N, Mogollón J M, et al. Global diffusive fluxes of methane in marine sediments [J]. Nature Geoscience, 2018, 11(6): 421-425. doi: 10.1038/s41561-018-0122-8
|
[85] |
Sun Z L, Wu N Y, Cao H, et al. Hydrothermal metal supplies enhance the benthic methane filter in oceans: an example from the Okinawa Trough [J]. Chemical Geology, 2019, 525: 190-209. doi: 10.1016/j.chemgeo.2019.07.025
|