WANG Pin-xian. ASTRONOMICAL “PENDULUM” FOR GEOLOGICAL CLOCK[J]. Marine Geology & Quaternary Geology, 2006, 26(1): 1-7.
Citation: WANG Pin-xian. ASTRONOMICAL “PENDULUM” FOR GEOLOGICAL CLOCK[J]. Marine Geology & Quaternary Geology, 2006, 26(1): 1-7.

ASTRONOMICAL “PENDULUM” FOR GEOLOGICAL CLOCK

More Information
  • Received Date: January 12, 2006
  • Revised Date: January 15, 2006
  • Development of Earth system science calls for new approaches to time measurement of geological processes. Up to now, the Earth's orbital parameters remain the only periodicities in geology subject to precise calculations and, therefore, may provide new scales for geochronology. The 400-ka long eccentricity is the most stable orbital parameter over the entire geological history and drives long-term periodical changes in the oceanic carbon reservoir through low-latitude processes, at least since the Cenozoic. Being extensively and easily recognizable in geological records, the 400-ka cycles are potentially the astronomical "pendulum" for the geological clock.
  • [2]
    余明. 简明天文学教程[M].北京:科学出版社, 2003:404.[YU Ming. Astronomy[M]. Beijing:Science Press, 2003:404.]
    [3]
    Audoin C, Guinot B. The Measurement of Time. Time, Frequency and the Atomic Clock[M]. Cambridge University Press, 2001:335.
    [4]
    Hays J D, Imbrie J,Shackleton N J.Variations in the Earth's orbit:Pacemaker of the ice age[J]. Science, 1976, 194:1121-1132.
    [5]
    Tian J, Wang P, Cheng X, et al. Astronomically tuned Plio-Pleistocene benthic δ18O record from South China Sea and Atlantic-Pacific comparison[J]. Earth and Planetary Science Letters, 2002, 203:1015-1029.
    [6]
    Short D A, Mengel J G, Crowley T J, et al. Filtering of Milankovitch cycles by Earth's geography[J]. Quaternary Research, 1991, 35:157-173.
    [7]
    Ruddiman W F. Earth's Climate. Past and Future[M]. Freeman & Co., N.Y., 2001:465.
    [8]
    Rossignol-Stick M, Nesteroff V, Olive P,et al. After the deluge:Mediterranean stagnation and sapropel formation[J]. Nature, 1982, 295:105-110.
    [9]
    Hilgen F J. Astronomical calibration of Gauss to Matuyama sapropels in the Mediterranean and implication for the Geomagnetic Polarity Time Scale[J]. Earth and Planetary Science Letters, 1991, 104:226-244.
    [10]
    Hilgen F J. Extention of astronomically calibrated (polarity) time scale to the Miocene/Pliocene boundary[J]. Earth and Planetary Science Letters, 1991, 107:349-368.
    [11]
    Lourens L J, Antonarakou A, Hilgen F J, et al. Evaluation of the Plio-Pleistocene astronomical timescale[J]. Paleoceanography, 1996, 11:391-413.
    [12]
    Berger A, Loutre M F, Laskar J. Stability of the astronomical frequencies over the Earth's history for paleoclimate studies[J]. Science, 1992, 255:560-566.
    [13]
    Lourens L J, Wehausen R, Brumsack H J. Geological constraints on tidal dissipation and dynamical ellipticity of the Earth over the past three million years[J]. Nature, 2001, 409:1029-1033.
    [14]
    Laskar J. The limits of Earth orbital calculations for geological time-scale use[J]. Philos. Trans., Royal Soc. London, 1999, A1757:1735-1759.
    [15]
    汪品先, 田军, 成鑫荣,等. 探索大洋碳储库的演变周期[J].科学通报,2003, 48:2216-2227.[WANG Pin-xian, TIAN Jun, CHENG Xin-rong, et al. Exploring cyclic changes of the ocean carbon reservoir[J]. Chinese Science Bulletin, 2003

    , 48:2536-2548.]
    [16]
    Wang P, Tian J, Cheng X, et al. Carbon reservoir change preceded major ice-sheet expansion at the Mid-Brunhes event[J]. Geology, 2003, 31:239-242.
    [17]
    Wang P, Tian J, Cheng X, et al. Major Pleistocene stages in a carbon perspective:The South China Sea record and its global comparison[J]. Paleoceanography, 2004, 19, PA 4005, doc.10.1029/2003PA000991.
    [18]
    Cramer B S. Deconvolving the carbon isotope record (Abstract)[C]. Eos. Trans. AGU, 2003, 84(46), F213.
    [19]
    Wade B S, P like H. Oligocene climate dynamics[J]. Paleoceanography,2004,19,PA4019,dio:10.1029/2004 PA001042.
    [20]
    Cramer B S, Wright J D, Kent D V, et al. Orbital climate forcing of δ13C excursions in the late Paleocene-early Eocene (chrons C24n-C25n)[J]. Paleoceanography,2003,18(4):1097, doi: 10.1029/2003PA000909.
    [21]
    Matthews R K, Froelich C. Maximum flooding surfaces and sequence boundaries:comparisons between observations and orbital forcing in the Cretaceous and Jurassic (65~190 Ma)[J]. GeoArabia, Middle East Petroleum Geosciences, 2002, 7(3):503-538.
    [22]
    Olsen P E. Periodicity of lake-level cycles in the Late Triassic Lochatong Formation of the Newark Basin (Newark Supergroup, New Jersey and Pennsylvania)[M]//In:Berger A, Imbrie J, Hays J, et al(Eds.). Milankovitch and Climate. NATO ASI, 1984:C126:129-146.
    [23]
    Kashiwaya K, Ochiai S, Sakai H, et al. Orbit-related long-term climate cycles revealed in a 12-Myr continental record from Lake Baikal[J]. Nature, 2001, 410:71-74.
    [24]
    李前裕,田军,汪品先.认识偏心率周期的地层古气候意义[J].地球科学——中国地质大学学报,2005, 30(5):519-528.

    [LI Qian-yu, Tian Jun, WANG Pin-xian. Recognizing the stratigraphic and paleoclimatic significance of eccentricity cycles[J]. Earth Science-Journal of China University of Geosciences,30(5):519-528.]
    [25]
    Matthews R K, Froelich C,Duffy A. Orbital forcing of global change throughout the Phanerozoic:A possible stratigraphic solution to the eccentricity phase problem[J]. Geology, 1997, 25:807-810.
    [26]
    Abels H A, Hilgen F J, Krijgsman W, et al. Long-period orbital control on middle Miocene global cooling:Integrated stratigraphy and astronomical tuning of the Blue Clay Formation on Malta[J]. Paleoceanography, 2005, 20:PA4012, doi: 1029/2004PA001129.
    [27]
    Handoh I C, Lenton T M. Periodic mid-Cretaceaous oceanic anoxic events linked by oscillations of the phosphorus and oxygen biogeochemical cycles[J]. Global Beigeochemical Cycles, 2003,17(4):1092, doi: 10.1029/2003GB002039.
    [28]
    Lourens L J, Wehausen R, Brumsack H L. Geological constraints on tidal dissipation and dynamical ellipticity of the Earth over the past three million years[J]. Nature, 2001, 409:1029-1033.
    [29]
    Pälike H, Laskar J, Shackleton N J. Geologic constraints on the chaotic diffusion of the solar system[J]. Geology, 2004, 32:929-932.
    [30]
    Laskar J, Levrard B, Mustard J F. Orbital forcing of the martian polar layered deposits[J]. Nature, 2002, 419:375-377.
  • Related Articles

    [1]LIU Bingjin, HUANG Enqing, TIAN Jun. Precession forcing of the Holocene moisture transfer between tropical western Pacific and Indian Ocean[J]. Marine Geology & Quaternary Geology, 2023, 43(4): 56-70. DOI: 10.16562/j.cnki.0256-1492.2023042001
    [2]DENG Xinyi, NIE Junsheng, REN Xueping. Obliquity-driven moisture changes in Qaidam Basin in Late Miocene during low eccentricity period[J]. Marine Geology & Quaternary Geology, 2022, 42(6): 193-199. DOI: 10.16562/j.cnki.0256-1492.2022052601
    [3]ZHAO Qiang, LI Xishuang, WU Yonghua, LIU Jianxing. Second-order climatic cycles in the Chinese Loess Plateau and their bearing on precession driving[J]. Marine Geology & Quaternary Geology, 2020, 40(1): 136-159. DOI: 10.16562/j.cnki.0256-1492.2018110501
    [4]ZHAO Hanqing, ZHANG Jianmin, LI Shuanbao, XUE Mingxing, ZHOU Liye. Sedimentary evolution of a shallow-water delta in a long-term semi-cycle of base-level falling and its application to oilfield development—taking Oilfield A of Baohai Basin as an example[J]. Marine Geology & Quaternary Geology, 2018, 38(5): 71-79. DOI: 10.16562/j.cnki.0256-1492.2018.05.007
    [5]ZHAO Qi, AN Ping, YU Lupeng, XU Shujian. PROGRESS OF CHRONOLOGY RESEARCH FOR LOESS IN SHANDONG:PROBLEMS AND SOLUTIONS[J]. Marine Geology & Quaternary Geology, 2017, 37(2): 139-148. DOI: 10.16562/j.cnki.0256-1492.2017.02.014
    [6]GAO Shunli, ZHANG Minqiang, CHENG Hua. A LARGE-SCALE SEISMIC SOURCE, DEEP GUN AND CABLE SINKING AND LONG CABLE PENGTH APPLICATION IN MESOZOIC-PALEOZOIC BASIN IN THE SOUTH HUANGHAI SEA[J]. Marine Geology & Quaternary Geology, 2014, 34(1): 95-101. DOI: 10.3724/SP.J.1140.2014.01095
    [7]WU Weizhen, TIAN Jie, ZHAO Chen, LI Jinlin, GU Juan, HE Chansheng. MULTI-SCALE ANALYSIS OF THE LONG-TERM TREND OF THE HYDROMETEOROLOGICAL VARIABLES IN THE UPPER REACH OF THE HEIHE RIVER, NORTHWEST CHINA[J]. Marine Geology & Quaternary Geology, 2013, 33(4): 37-44. DOI: 10.3724/SP.J.1140.2013.04037
    [8]NAN Qingyun, LI Tiegang, CHEN Jinxia, SUN Hanjie. CHROMATOGRAPHIC QUALIFICATIONS AND THEIR EFFECTS ON RELIABILITY OF LOW-LATITUDE TRACE LONG-CHAIN ALKENONE AS A TEMPERATURE INDICATOR[J]. Marine Geology & Quaternary Geology, 2012, 32(4): 91-96. DOI: 10.3724/SP.J.1140.2012.04091
    [9]HE Juan, LI Li, WANG Hui, ZHAO Meixun. LATE QUATERNARY COCCOLITH PRODUCTIVITY IN THE NORTHERN SOUTH CHINA SEA[J]. Marine Geology & Quaternary Geology, 2012, 32(4): 9-16. DOI: 10.3724/SP.J.1140.2012.04009
    [10]SHI Zhengguo, LIU Xiaodong, CHENG Xiaoxia. INVERSE PHASE BETWEEN SOUTH ASIAN AND EAST ASIAN SUMMER MONSOONS AND ITS RELATION WITH ENSO: FROM INTERANNUAL TO ORBITAL SCALE[J]. Marine Geology & Quaternary Geology, 2009, 29(5): 83-88. DOI: 10.3724/SP.J.1140.2009.05083
  • Cited by

    Periodical cited type(3)

    1. 张兰,何贤科,段冬平,常吟善,汪文基,刘英辉. 东海陆架盆地西湖凹陷平湖斜坡带平湖组煤系地层地震沉积学研究. 海洋地质与第四纪地质. 2023(04): 140-149 . 本站查看
    2. 吕鹏,雷蕾,孙莉,王健伟,闫华,林立新,刘世鹏,葛家旺,吴文雯. 东海盆地西湖凹陷W气田平湖组煤系潮控砂体储层地震预测. 海洋地质前沿. 2023(10): 66-76 .
    3. 江东辉,杜学斌,李昆,周锋. 东海西湖凹陷保俶斜坡带平湖组“古地貌—古水系—古坡折”特征及其对沉积体系的控制. 石油实验地质. 2022(05): 771-779+789 .

    Other cited types(1)

Catalog

    Article views (1637) PDF downloads (21) Cited by(4)

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return