WANG Pin-xian. ASTRONOMICAL “PENDULUM” FOR GEOLOGICAL CLOCK[J]. Marine Geology & Quaternary Geology, 2006, 26(1): 1-7.
Citation: WANG Pin-xian. ASTRONOMICAL “PENDULUM” FOR GEOLOGICAL CLOCK[J]. Marine Geology & Quaternary Geology, 2006, 26(1): 1-7.

ASTRONOMICAL “PENDULUM” FOR GEOLOGICAL CLOCK

More Information
  • Received Date: January 12, 2006
  • Revised Date: January 15, 2006
  • Development of Earth system science calls for new approaches to time measurement of geological processes. Up to now, the Earth's orbital parameters remain the only periodicities in geology subject to precise calculations and, therefore, may provide new scales for geochronology. The 400-ka long eccentricity is the most stable orbital parameter over the entire geological history and drives long-term periodical changes in the oceanic carbon reservoir through low-latitude processes, at least since the Cenozoic. Being extensively and easily recognizable in geological records, the 400-ka cycles are potentially the astronomical "pendulum" for the geological clock.
  • [2]
    余明. 简明天文学教程[M].北京:科学出版社, 2003:404.[YU Ming. Astronomy[M]. Beijing:Science Press, 2003:404.]
    [3]
    Audoin C, Guinot B. The Measurement of Time. Time, Frequency and the Atomic Clock[M]. Cambridge University Press, 2001:335.
    [4]
    Hays J D, Imbrie J,Shackleton N J.Variations in the Earth's orbit:Pacemaker of the ice age[J]. Science, 1976, 194:1121-1132.
    [5]
    Tian J, Wang P, Cheng X, et al. Astronomically tuned Plio-Pleistocene benthic δ18O record from South China Sea and Atlantic-Pacific comparison[J]. Earth and Planetary Science Letters, 2002, 203:1015-1029.
    [6]
    Short D A, Mengel J G, Crowley T J, et al. Filtering of Milankovitch cycles by Earth's geography[J]. Quaternary Research, 1991, 35:157-173.
    [7]
    Ruddiman W F. Earth's Climate. Past and Future[M]. Freeman & Co., N.Y., 2001:465.
    [8]
    Rossignol-Stick M, Nesteroff V, Olive P,et al. After the deluge:Mediterranean stagnation and sapropel formation[J]. Nature, 1982, 295:105-110.
    [9]
    Hilgen F J. Astronomical calibration of Gauss to Matuyama sapropels in the Mediterranean and implication for the Geomagnetic Polarity Time Scale[J]. Earth and Planetary Science Letters, 1991, 104:226-244.
    [10]
    Hilgen F J. Extention of astronomically calibrated (polarity) time scale to the Miocene/Pliocene boundary[J]. Earth and Planetary Science Letters, 1991, 107:349-368.
    [11]
    Lourens L J, Antonarakou A, Hilgen F J, et al. Evaluation of the Plio-Pleistocene astronomical timescale[J]. Paleoceanography, 1996, 11:391-413.
    [12]
    Berger A, Loutre M F, Laskar J. Stability of the astronomical frequencies over the Earth's history for paleoclimate studies[J]. Science, 1992, 255:560-566.
    [13]
    Lourens L J, Wehausen R, Brumsack H J. Geological constraints on tidal dissipation and dynamical ellipticity of the Earth over the past three million years[J]. Nature, 2001, 409:1029-1033.
    [14]
    Laskar J. The limits of Earth orbital calculations for geological time-scale use[J]. Philos. Trans., Royal Soc. London, 1999, A1757:1735-1759.
    [15]
    汪品先, 田军, 成鑫荣,等. 探索大洋碳储库的演变周期[J].科学通报,2003, 48:2216-2227.[WANG Pin-xian, TIAN Jun, CHENG Xin-rong, et al. Exploring cyclic changes of the ocean carbon reservoir[J]. Chinese Science Bulletin, 2003

    , 48:2536-2548.]
    [16]
    Wang P, Tian J, Cheng X, et al. Carbon reservoir change preceded major ice-sheet expansion at the Mid-Brunhes event[J]. Geology, 2003, 31:239-242.
    [17]
    Wang P, Tian J, Cheng X, et al. Major Pleistocene stages in a carbon perspective:The South China Sea record and its global comparison[J]. Paleoceanography, 2004, 19, PA 4005, doc.10.1029/2003PA000991.
    [18]
    Cramer B S. Deconvolving the carbon isotope record (Abstract)[C]. Eos. Trans. AGU, 2003, 84(46), F213.
    [19]
    Wade B S, P like H. Oligocene climate dynamics[J]. Paleoceanography,2004,19,PA4019,dio:10.1029/2004 PA001042.
    [20]
    Cramer B S, Wright J D, Kent D V, et al. Orbital climate forcing of δ13C excursions in the late Paleocene-early Eocene (chrons C24n-C25n)[J]. Paleoceanography,2003,18(4):1097, doi: 10.1029/2003PA000909.
    [21]
    Matthews R K, Froelich C. Maximum flooding surfaces and sequence boundaries:comparisons between observations and orbital forcing in the Cretaceous and Jurassic (65~190 Ma)[J]. GeoArabia, Middle East Petroleum Geosciences, 2002, 7(3):503-538.
    [22]
    Olsen P E. Periodicity of lake-level cycles in the Late Triassic Lochatong Formation of the Newark Basin (Newark Supergroup, New Jersey and Pennsylvania)[M]//In:Berger A, Imbrie J, Hays J, et al(Eds.). Milankovitch and Climate. NATO ASI, 1984:C126:129-146.
    [23]
    Kashiwaya K, Ochiai S, Sakai H, et al. Orbit-related long-term climate cycles revealed in a 12-Myr continental record from Lake Baikal[J]. Nature, 2001, 410:71-74.
    [24]
    李前裕,田军,汪品先.认识偏心率周期的地层古气候意义[J].地球科学——中国地质大学学报,2005, 30(5):519-528.

    [LI Qian-yu, Tian Jun, WANG Pin-xian. Recognizing the stratigraphic and paleoclimatic significance of eccentricity cycles[J]. Earth Science-Journal of China University of Geosciences,30(5):519-528.]
    [25]
    Matthews R K, Froelich C,Duffy A. Orbital forcing of global change throughout the Phanerozoic:A possible stratigraphic solution to the eccentricity phase problem[J]. Geology, 1997, 25:807-810.
    [26]
    Abels H A, Hilgen F J, Krijgsman W, et al. Long-period orbital control on middle Miocene global cooling:Integrated stratigraphy and astronomical tuning of the Blue Clay Formation on Malta[J]. Paleoceanography, 2005, 20:PA4012, doi: 1029/2004PA001129.
    [27]
    Handoh I C, Lenton T M. Periodic mid-Cretaceaous oceanic anoxic events linked by oscillations of the phosphorus and oxygen biogeochemical cycles[J]. Global Beigeochemical Cycles, 2003,17(4):1092, doi: 10.1029/2003GB002039.
    [28]
    Lourens L J, Wehausen R, Brumsack H L. Geological constraints on tidal dissipation and dynamical ellipticity of the Earth over the past three million years[J]. Nature, 2001, 409:1029-1033.
    [29]
    Pälike H, Laskar J, Shackleton N J. Geologic constraints on the chaotic diffusion of the solar system[J]. Geology, 2004, 32:929-932.
    [30]
    Laskar J, Levrard B, Mustard J F. Orbital forcing of the martian polar layered deposits[J]. Nature, 2002, 419:375-377.
  • Related Articles

    [1]LIU Jiaao, WU Yonghua, LIU Shengfa, QIAO Shuqing, TAO Jing, QI Wenjing, LIU Jihua. Changes in bottom water oxygen level of the Arabian Sea and the driving factors since the Last Glacial Period[J]. Marine Geology & Quaternary Geology, 2024, 44(5): 189-201. DOI: 10.16562/j.cnki.0256-1492.2024022801
    [2]TAO Jing, LIU Shengfa, AI Lina, CAO Peng, HUANG Mu, ZHANG Hui, WU Kaikai, QI Wenjing, FANG Tongbing, MENG Yuanku, SHI Xuefa. Sediment sources and sedimentary processes in the middle Arabian Sea since 90 kaBP[J]. Marine Geology & Quaternary Geology, 2024, 44(2): 146-156. DOI: 10.16562/j.cnki.0256-1492.2023121201
    [3]LAI Yijun, YANG Tao, LIANG Jinqiang, ZHANG Guangxue, SU Pibo, FANG Yunxin. Geochemistry of sediment pore water from Well GMGS2-09 in the southeastern Pearl River Mouth Basin, South China Sea: An indication of gas hydrate occurrence[J]. Marine Geology & Quaternary Geology, 2019, 39(3): 135-142. DOI: 10.16562/j.cnki.0256-1492.2018010201
    [4]GONG Jianming, LIAO Jing, YIN Weihan, ZHANG Li, HE Yongjun, SUN Zhilei, YANG Chuansheng, WANG Jianqiang, HUANG Wei, MENG Ming, CHENG Haiyan. Gas hydrate accumulation models of Makran accretionary wedge, northern Indian Ocean[J]. Marine Geology & Quaternary Geology, 2018, 38(2): 148-155. DOI: 10.16562/j.cnki.0256-1492.2018.02.015
    [5]LI Huailiang, HUANG Shantian, WANG Xiaofei, LI Sa, DAI Xu. Comparison of engineering characteristics of calcareous sands in the South China Sea and Arabian Bay[J]. Marine Geology & Quaternary Geology, 2018, 38(2): 72-78. DOI: 10.16562/j.cnki.0256-1492.2018.02.007
    [6]YANG Tao, YE Hong, LAI Yijun. PORE WATER GEOCHEMISTRY OF THE GAS HYDRATE BEARING ZONE ON NORTHERN SLOPE OF THE SOUTH CHINA SEA[J]. Marine Geology & Quaternary Geology, 2017, 37(5): 48-58. DOI: 10.16562/j.cnki.0256-1492.2017.05.005
    [7]ZHANG Guangxue, XU Huaning, LIU Xuewei, ZHANG Ming, WU Zhongliang, LIANG Jinqiang. THE APPLICATION OF OCEAN BOTTOM SEISMOMETER TO GAS HYDRATE EXPLORATION ON THE NORTHERN MARGIN OF SOUTH CHINA SEA[J]. Marine Geology & Quaternary Geology, 2015, 35(1): 185-192. DOI: 10.3724/SP.J.1140.2015.01185
    [8]SU Ming, YANG Rui, ZHANG Cuimei, CONG Xiaorong, LIANG Jinqiang, SHA Zhibin. PROGRESS IN STUDY OF DEEP-WATER DEPOSITIONAL SYSTEMS IN THE NORTHERN CONTINENTAL SLOPE OF THE SOUTH CHINA SEA AND ITS IMPLICATIONS FOR GAS HYDRATE RESEARCH[J]. Marine Geology & Quaternary Geology, 2013, 33(3): 109-116. DOI: 10.3724/SP.J.1140.2013.03109
    [9]YANG Rui, ZHANG Yuan, LEI Xinhua, SU Zheng, LIANG Jinqiang, SHA Zhibin. IDENTIFICATION OF GAS HYDRATE RESERVOIR AND ITS DEPTH ESTIMATION IN SHENHU AREA, SOUTH CHINA SEA[J]. Marine Geology & Quaternary Geology, 2011, 31(4): 141-147. DOI: 10.3724/SP.J.1140.2011.04141
    [10]SHA Zhibin, GUO Yiqun, YANG Muzhuang, LIANG Jinqiang, WANG Lifeng. RELATION BETWEEN SEDIMENTATION AND GAS HYDRATE RESERVOIRS IN THE NORTHERN SLOPE OF SOUTH CHINA SEA[J]. Marine Geology & Quaternary Geology, 2009, 29(5): 89-98. DOI: 10.3724/SP.J.1140.2009.05089

Catalog

    Article views (1615) PDF downloads (21) Cited by()

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return