Citation: | LIU Bingjin,HUANG Enqing,TIAN Jun. Precession forcing of the Holocene moisture transfer between tropical western Pacific and Indian Ocean[J]. Marine Geology & Quaternary Geology,2023,43(4):56-70. DOI: 10.16562/j.cnki.0256-1492.2023042001 |
[1] |
Trenberth K E, Fasullo J T, Mackaro J. Atmospheric moisture transports from ocean to land and global energy flows in reanalyses [J]. Journal of Climate, 2011, 24(18): 4907-4924. doi: 10.1175/2011JCLI4171.1
|
[2] |
Gimeno L, Stohl A, Trigo R M, et al. Oceanic and terrestrial sources of continental precipitation [J]. Reviews of Geophysics, 2012, 50(4): RG4003.
|
[3] |
Shakun J D, Lea D W, Lisiecki L E, et al. An 800-kyr record of global surface ocean δ18 O and implications for ice volume-temperature coupling [J]. Earth and Planetary Science Letters, 2015, 426: 58-68. doi: 10.1016/j.jpgl.2015.05.042
|
[4] |
Coplen T B, Herczeg A L, Barnes C. Isotope engineering—using stable isotopes of the water molecule to solve practical problems [J]. Environmental tracers in subsurface hydrology, 2000: 79-110.
|
[5] |
Shackleton N J. Attainment of isotopic equilibrium between ocean water and the benthonic foraminifera genus Uvigerina: isotopic changes in the ocean during the last glacial[C]//Proceedings of the Colloques Internationaux du C. N. R. S. 1974.
|
[6] |
Zhang P, Xu J, Holbourn A, et al. Obliquity induced latitudinal migration of the Intertropical Convergence Zone during the past~ 410 kyr [J]. Geophysical Research Letters, 2022, 49(21): e2022GL100039.
|
[7] |
黄恩清, 赵蔓, 王跃, 等. 第四纪热带西太平洋表层海水氧同位素的岁差周期[J]. 第四纪研究, 2020, 40(6):1464-1473
HUANG Enqing, ZHAO Man, WANG Yue, et al. Quaternary precession cycles of sea-surface oxygen isotope records from the tropical western Pacific [J]. Quaternary Sciences, 2020, 40(6): 1464-1473.
|
[8] |
Zhang P, Xu J, Beil S, et al. Variability in Indonesian throughflow upper hydrology in response to precession‐induced tropical climate processes over the past 120 kyr [J]. Journal of Geophysical Research: Oceans, 2021, 126(8): e2020JC017014.
|
[9] |
Weldeab S. Bipolar modulation of millennial-scale West African monsoon variability during the last glacial (75, 000–25, 000 years ago) [J]. Quaternary Science Reviews, 2012, 40: 21-29. doi: 10.1016/j.quascirev.2012.02.014
|
[10] |
Weldeab S, Lea D W, Schneider R R, et al. 155, 000 years of West African monsoon and ocean thermal evolution [J]. Science, 2007, 316(5829): 1303-1307. doi: 10.1126/science.1140461
|
[11] |
Clemens S C, Holbourn A, Kubota Y, et al. Precession-band variance missing from East Asian monsoon runoff [J]. Nature Communications, 2018, 9(1): 3364. doi: 10.1038/s41467-018-05814-0
|
[12] |
Huang E Q, Wang P X, Wang Y, et al. Dole effect as a measurement of the low-latitude hydrological cycle over the past 800 ka [J]. Science Advances, 2020, 6(41): eaba4823. doi: 10.1126/sciadv.aba4823
|
[13] |
Jian Z M, Wang Y, Dang H W, et al. Warm pool ocean heat content regulates ocean–continent moisture transport [J]. Nature, 2022, 612(7938): 92-99. doi: 10.1038/s41586-022-05302-y
|
[14] |
Cheng H, Li H Y, Sha L J, et al. Milankovitch theory and monsoon [J]. The Innovation, 2022, 3(6): 100338. doi: 10.1016/j.xinn.2022.100338
|
[15] |
Schmidt G A, LeGrande A N, Hoffmann G. Water isotope expressions of intrinsic and forced variability in a coupled ocean‐atmosphere model [J]. Journal of Geophysical Research:Atmospheres, 2007, 112(D10): D10103.
|
[16] |
石正国, 雷婧, 周朋, 等. 轨道尺度亚洲气候演化机理的数值模拟: 历史与展望[J]. 第四纪研究, 2020, 40(1):8-17
SHI Zhengguo, LEI Jing, ZHOU Peng, et al. Numerical simulation researches on orbital-scale Asian climate dynamics: history and perspective [J]. Quaternary Sciences, 2020, 40(1): 8-17.
|
[17] |
Leduc G, Schneider R, Kim J H, et al. Holocene and Eemian sea surface temperature trends as revealed by alkenone and Mg/Ca paleothermometry [J]. Quaternary Science Reviews, 2010, 29(7-8): 989-1004. doi: 10.1016/j.quascirev.2010.01.004
|
[18] |
Huang E Q, Tian J, Steinke S. Millennial-scale dynamics of the winter cold tongue in the southern South China Sea over the past 26 ka and the East Asian winter monsoon [J]. Quaternary Research, 2011, 75(1): 196-204. doi: 10.1016/j.yqres.2010.08.014
|
[19] |
Tierney J E, Tingley M P. A TEX86 surface sediment database and extended Bayesian calibration [J]. Scientific Data, 2015, 2: 150029. doi: 10.1038/sdata.2015.29
|
[20] |
Heaton T J, Bard E, Bronk Ramsey C, et al. Radiocarbon: a key tracer for studying Earth’s dynamo, climate system, carbon cycle, and Sun [J]. Science, 2021, 374(6568): eabd7096. doi: 10.1126/science.abd7096
|
[21] |
Sun Y B, Oppo D W, Xiang R, et al. Last deglaciation in the Okinawa Trough: subtropical northwest Pacific link to Northern Hemisphere and tropical climate [J]. Paleoceanography, 2005, 20(4): PA4005.
|
[22] |
Chang Y P, Chen M T, Yokoyama Y, et al. Monsoon hydrography and productivity changes in the East China Sea during the past 100, 000 years: okinawa Trough evidence (MD012404) [J]. Paleoceanography, 2009, 24(3): PA3208.
|
[23] |
Chen M T, Lin X P, Chang Y P, et al. Dynamic millennial‐scale climate changes in the northwestern Pacific over the past 40, 000 years [J]. Geophysical Research Letters, 2010, 37(23): L23603.
|
[24] |
Steinke S, Kienast M, Groeneveld J, et al. Proxy dependence of the temporal pattern of deglacial warming in the tropical South China Sea: toward resolving seasonality [J]. Quaternary Science Reviews, 2008, 27(7-8): 688-700. doi: 10.1016/j.quascirev.2007.12.003
|
[25] |
Steinke S, Mohtadi M, Groeneveld J, et al. Reconstructing the southern South China Sea upper water column structure since the Last Glacial Maximum: implications for the East Asian winter monsoon development [J]. Paleoceanography, 2010, 25(2): PA2219.
|
[26] |
Tian J, Huang E Q, Pak D K. East Asian winter monsoon variability over the last glacial cycle: insights from a latitudinal sea-surface temperature gradient across the South China Sea [J]. Palaeogeography, Palaeoclimatology, Palaeoecology, 2010, 292(1-2): 319-324. doi: 10.1016/j.palaeo.2010.04.005
|
[27] |
An Y, Jian Z M. Pulleniatina Minimum Event during the last deglaciation in the southern South China Sea [J]. Chinese Science Bulletin, 2009, 54(23): 4514-4519.
|
[28] |
郝鹏, 李铁刚, 常凤鸣, 等. 末次盛冰期以来南海西南海区对快速气候变化的响应特征[J]. 海洋地质与第四纪地质, 2014, 34(4):83-91
HAO Peng, LI Tiegang, CHANG Fengming, et al. Response of the southwestern South China Sea to the rapid climate changes since the last glacial maximum [J]. Marine Geology & Quaternary Geology, 2014, 34(4): 83-91.
|
[29] |
Huang J, Wan S M, Li A C, et al. Two-phase structure of tropical hydroclimate during Heinrich Stadial 1 and its global implications [J]. Quaternary Science Reviews, 2019, 222: 105900. doi: 10.1016/j.quascirev.2019.105900
|
[30] |
葛黄敏, 李前裕, 成鑫荣, 等. 南海北部晚第四纪高分辨率浮游氧同位素地层学及其古气候信息[J]. 地球科学-中国地质大学学报, 2010, 35(4):515-525 doi: 10.3799/dqkx.2010.067
GE Huangmin, LI Qianyu, CHENG Xinrong, et al. Late Quaternary high resolution monsoon records in planktonic stable isotopes from northern South China Sea [J]. Earth Science-Journal of China University of Geosciences, 2010, 35(4): 515-525. doi: 10.3799/dqkx.2010.067
|
[31] |
Wang P X, Li Q Y, Tian J, et al. Monsoon influence on planktic δ18O records from the South China Sea [J]. Quaternary Science Reviews, 2016, 142: 26-39. doi: 10.1016/j.quascirev.2016.04.009
|
[32] |
Yang Y P, Xiang R, Zhang L L, et al. Is the upward release of intermediate ocean heat content a possible engine for low-latitude processes? [J]. Geology, 2020, 48(6): 579-583. doi: 10.1130/G47271.1
|
[33] |
Rosenthal Y, Oppo D W, Linsley B K. The amplitude and phasing of climate change during the last deglaciation in the Sulu Sea, western equatorial Pacific [J]. Geophysical Research Letters, 2003, 30(8): 1428.
|
[34] |
Fan W J, Jian Z M, Bassinot F, et al. Holocene centennial-scale changes of the Indonesian and South China Sea throughflows: evidences from the Makassar Strait [J]. Global and Planetary Change, 2013, 111: 111-117. doi: 10.1016/j.gloplacha.2013.08.017
|
[35] |
Fan W J, Jian Z M, Chu Z H, et al. Variability of the Indonesian throughflow in the Makassar Strait over the last 30 ka [J]. Scientific Reports, 2018, 8(1): 5678. doi: 10.1038/s41598-018-24055-1
|
[36] |
Bolliet T, Holbourn A, Kuhnt W, et al. Mindanao Dome variability over the last 160 kyr: episodic glacial cooling of the West Pacific Warm Pool [J]. Paleoceanography, 2011, 26(1): PA1208.
|
[37] |
Jian Z M, Wang Y, Dang H W, et al. Half-precessional cycle of thermocline temperature in the western equatorial Pacific and its bihemispheric dynamics [J]. Proceedings of the National Academy of Sciences of the United States of America, 2020, 117(13): 7044-7051. doi: 10.1073/pnas.1915510117
|
[38] |
Hollstein M, Mohtadi M, Rosenthal Y, et al. Variations in Western Pacific Warm Pool surface and thermocline conditions over the past 110, 000 years: forcing mechanisms and implications for the glacial Walker circulation [J]. Quaternary Science Reviews, 2018, 201: 429-445. doi: 10.1016/j.quascirev.2018.10.030
|
[39] |
Tachikawa K, Timmermann A, Vidal L, et al. CO2 radiative forcing and Intertropical Convergence Zone influences on western Pacific warm pool climate over the past 400 ka [J]. Quaternary Science Reviews, 2014, 86: 24-34. doi: 10.1016/j.quascirev.2013.12.018
|
[40] |
Hollstein M, Mohtadi M, Kienast M, et al. The impact of astronomical forcing on surface and thermocline variability within the Western Pacific Warm Pool over the past 160 kyr [J]. Paleoceanography and Paleoclimatology, 2020, 35(6): e2019PA003832.
|
[41] |
Zhang S, Li T G, Chang F M, et al. Correspondence between the ENSO-like state and glacial-interglacial condition during the past 360 kyr [J]. Chinese Journal of Oceanology and Limnology, 2017, 35(5): 1018-1031. doi: 10.1007/s00343-017-6082-9
|
[42] |
Zhang S, Yu Z F, Wang Y, et al. Thermal coupling of the Indo-Pacific warm pool and Southern Ocean over the past 30, 000 years [J]. Nature Communications, 2022, 13(1): 5457. doi: 10.1038/s41467-022-33206-y
|
[43] |
Dang H W, Jian Z M, Wang Y, et al. Pacific warm pool subsurface heat sequestration modulated Walker circulation and ENSO activity during the Holocene [J]. Science Advances, 2020, 6(42): eabc0402. doi: 10.1126/sciadv.abc0402
|
[44] |
Dang H W, Wu J W, Xiong Z F, et al. Orbital and sea-level changes regulate the iron-associated sediment supplies from Papua New Guinea to the equatorial Pacific [J]. Quaternary Science Reviews, 2020, 239: 106361. doi: 10.1016/j.quascirev.2020.106361
|
[45] |
Stott L D. Comment on “Anomalous radiocarbon ages for foraminifera shells” by W. Broecker et al. : a correction to the western tropical Pacific MD9821-81 record [J]. Paleoceanography, 2007, 22(1): PA1211.
|
[46] |
Saikku R, Stott L, Thunell R. A bi-polar signal recorded in the western tropical Pacific: northern and Southern Hemisphere climate records from the Pacific warm pool during the last Ice Age [J]. Quaternary Science Reviews, 2009, 28(23-24): 2374-2385. doi: 10.1016/j.quascirev.2009.05.007
|
[47] |
Dang H W, Jian Z M, Bassinot F, et al. Decoupled Holocene variability in surface and thermocline water temperatures of the Indo‐Pacific Warm Pool [J]. Geophysical Research Letters, 2012, 39(1): L01701.
|
[48] |
Linsley B K, Rosenthal Y, Oppo D W. Holocene evolution of the Indonesian throughflow and the western Pacific warm pool [J]. Nature Geoscience, 2010, 3(8): 578-583. doi: 10.1038/ngeo920
|
[49] |
Hendrizan M, Kuhnt W, Holbourn A. Variability of indonesian throughflow and borneo runoff during the last 14 kyr [J]. Paleoceanography, 2017, 32(10): 1054-1069. doi: 10.1002/2016PA003030
|
[50] |
Schröder J F, Holbourn A, Kuhnt W, et al. Variations in sea surface hydrology in the southern Makassar Strait over the past 26 kyr [J]. Quaternary Science Reviews, 2016, 154: 143-156. doi: 10.1016/j.quascirev.2016.10.018
|
[51] |
Schröder J F, Kuhnt W, Holbourn A, et al. Deglacial warming and hydroclimate variability in the central Indonesian Archipelago [J]. Paleoceanography and Paleoclimatology, 2018, 33(9): 974-993. doi: 10.1029/2018PA003323
|
[52] |
张鹏, 徐建, 杨策, 等. 末次冰期以来印尼穿越流出口处古海洋学记录及其意义[J]. 海洋地质与第四纪地质, 2017, 37(3):129-137 doi: 10.16562/j.cnki.0256-1492.2017.03.013
ZHANG Peng, XU Jian, YANG Ce, et al. Paleoceanographic records of Indonesian throughflow at its exit since the last glacial and their significance [J]. Marine Geology & Quaternary Geology, 2017, 37(3): 129-137. doi: 10.16562/j.cnki.0256-1492.2017.03.013
|
[53] |
Lea D W, Pak D K, Belanger C L, et al. Paleoclimate history of Galápagos surface waters over the last 135, 000 yr [J]. Quaternary Science Reviews, 2006, 25(11-12): 1152-1167. doi: 10.1016/j.quascirev.2005.11.010
|
[54] |
Pena L D, Cacho I, Ferretti P, et al. El Niño–Southern Oscillation–like variability during glacial terminations and interlatitudinal teleconnections [J]. Paleoceanography, 2008, 23(3): PA3101.
|
[55] |
Benway H M, Mix A C, Haley B A, et al. Eastern Pacific Warm Pool paleosalinity and climate variability: 0–30 kyr [J]. Paleoceanography, 2006, 21(3): PA3008.
|
[56] |
Koutavas A, Lynch-Stieglitz J, Marchitto Jr T M, et al. El Niño-like pattern in ice age tropical Pacific sea surface temperature [J]. Science, 2002, 297(5579): 226-230. doi: 10.1126/science.1072376
|
[57] |
Lo L, Lai Y H, Wei K Y, et al. Persistent sea surface temperature and declined sea surface salinity in the northwestern tropical Pacific over the past 7500 years [J]. Journal of Asian Earth Sciences, 2013, 66: 234-239. doi: 10.1016/j.jseaes.2013.01.014
|
[58] |
Lea D W, Pak D K, Spero H J. Climate impact of late quaternary equatorial pacific sea surface temperature variations [J]. Science, 2000, 289(5485): 1719-1724. doi: 10.1126/science.289.5485.1719
|
[59] |
Oppo D W, Sun Y B. Amplitude and timing of sea-surface temperature change in the northern South China Sea: dynamic link to the East Asian monsoon [J]. Geology, 2005, 33(10): 785-788. doi: 10.1130/G21867.1
|
[60] |
Yang Y P, Xiang R, Liu J G, et al. Inconsistent sea surface temperature and salinity changing trend in the northern South China Sea since 7.0 ka BP [J]. Journal of Asian Earth Sciences, 2019, 171: 178-186. doi: 10.1016/j.jseaes.2018.05.033
|
[61] |
Cheng Z J, Weng C Y, Steinke S, et al. Anthropogenic modification of vegetated landscapes in southern China from 6, 000 years ago [J]. Nature Geoscience, 2018, 11(12): 939-943. doi: 10.1038/s41561-018-0250-1
|
[62] |
Huang E Q, Chen Y R, Schefuß E, et al. Precession and glacial-cycle controls of monsoon precipitation isotope changes over East Asia during the Pleistocene [J]. Earth and Planetary Science Letters, 2018, 494: 1-11. doi: 10.1016/j.jpgl.2018.04.046
|
[63] |
范维佳, 陈荣华. 南海北部5万年来的表层海水盐度及东亚季风降水[J]. 第四纪研究, 2011, 31(2):227-235
FAN Weijia, CHEN Ronghua. Sea surface salinity and East Asian monsoon precipitation since the last 50000 years in the northern South China Sea [J]. Quaternary Sciences, 2011, 31(2): 227-235.
|
[64] |
杨文光, 郑洪波, 王可, 等. 南海东北部MD05-2905站36ka BP以来的陆源碎屑沉积特征与东亚季风的演化[J]. 地球科学进展, 2007, 22(10):1012-1018
YANG W G, ZHENG H B, WANG K, et al. Sedimentary characteristic of terrigenous clast of site MD05-2905 in the northeastern part of South China Sea after 36ka and evolution of East Asian monsoon [J]. Advances in Earth Science, 2007, 22(10): 1012-1018.
|
[65] |
Nürnberg D, Böschen T, Doering K, et al. Sea surface and subsurface circulation dynamics off equatorial Peru during the last ~ 17 kyr [J]. Paleoceanography, 2015, 30(7): 984-999. doi: 10.1002/2014PA002706
|
[66] |
Lo L, Chang S P, Wei K Y, et al. Nonlinear climatic sensitivity to greenhouse gases over past 4 glacial/interglacial cycles [J]. Scientific Reports, 2017, 7(1): 4626. doi: 10.1038/s41598-017-04031-x
|
[67] |
Mohtadi M, Prange M, Oppo D W, et al. North Atlantic forcing of tropical Indian Ocean climate [J]. Nature, 2014, 509(7498): 76-80. doi: 10.1038/nature13196
|
[68] |
Mohtadi M, Steinke S, Lückge A, et al. Glacial to Holocene surface hydrography of the tropical eastern Indian Ocean [J]. Earth and Planetary Science Letters, 2010, 292(1-2): 89-97. doi: 10.1016/j.jpgl.2010.01.024
|
[69] |
Setiawan R Y, Mohtadi M, Southon J, et al. The consequences of opening the Sunda Strait on the hydrography of the eastern tropical Indian Ocean [J]. Paleoceanography, 2015, 30(10): 1358-1372. doi: 10.1002/2015PA002802
|
[70] |
Levi C, Labeyrie L, Bassinot F, et al. Low‐latitude hydrological cycle and rapid climate changes during the last deglaciation [J]. Geochemistry, Geophysics, Geosystems, 2007, 8(5): Q05N12.
|
[71] |
Gibbons F T, Oppo D W, Mohtadi M, et al. Deglacial δ18O and hydrologic variability in the tropical Pacific and Indian Oceans [J]. Earth and Planetary Science Letters, 2014, 387: 240-251. doi: 10.1016/j.jpgl.2013.11.032
|
[72] |
Xu J, Holbourn A, Kuhnt W, et al. Changes in the thermocline structure of the Indonesian outflow during Terminations I and II [J]. Earth and Planetary Science Letters, 2008, 273(1-2): 152-162. doi: 10.1016/j.jpgl.2008.06.029
|
[73] |
Lückge A, Mohtadi M, Rühlemann C, et al. Monsoon versus ocean circulation controls on paleoenvironmental conditions off southern Sumatra during the past 300, 000 years [J]. Paleoceanography, 2009, 24(1): PA1208.
|
[74] |
Wang X X, Jian Z M, Lückge A, et al. Precession-paced thermocline water temperature changes in response to upwelling conditions off southern Sumatra over the past 300, 000 years [J]. Quaternary Science Reviews, 2018, 192: 123-134. doi: 10.1016/j.quascirev.2018.05.035
|
[75] |
Saraswat R, Lea D W, Nigam R, et al. Deglaciation in the tropical Indian Ocean driven by interplay between the regional monsoon and global teleconnections [J]. Earth and Planetary Science Letters, 2013, 375: 166-175. doi: 10.1016/j.jpgl.2013.05.022
|
[76] |
Saraswat R, Singh D P, Lea D W, et al. Indonesian throughflow controlled the westward extent of the Indo-Pacific Warm Pool during glacial-interglacial intervals [J]. Global and Planetary Change, 2019, 183: 103031. doi: 10.1016/j.gloplacha.2019.103031
|
[77] |
Govil P, Naidu P D. Variations of Indian monsoon precipitation during the last 32 kyr reflected in the surface hydrography of the Western Bay of Bengal [J]. Quaternary Science Reviews, 2011, 30(27-28): 3871-3879. doi: 10.1016/j.quascirev.2011.10.004
|
[78] |
Tierney J E, Pausata F S R, deMenocal P. Deglacial Indian monsoon failure and North Atlantic stadials linked by Indian Ocean surface cooling [J]. Nature Geoscience, 2016, 9(1): 46-50. doi: 10.1038/ngeo2603
|
[79] |
Gebregiorgis D, Hathorne E C, Giosan L, et al. Southern Hemisphere forcing of South Asian monsoon precipitation over the past~ 1 million years [J]. Nature Communications, 2018, 9(1): 4702. doi: 10.1038/s41467-018-07076-2
|
[80] |
Banakar V K, Baidya S, Piotrowski A M, et al. Indian summer monsoon forcing on the deglacial polar cold reversals [J]. Journal of Earth System Science, 2017, 126(6): 87. doi: 10.1007/s12040-017-0864-5
|
[81] |
Gebregiorgis D, Hathorne E C, Sijinkumar A V, et al. South Asian summer monsoon variability during the last ~54 kyrs inferred from surface water salinity and river runoff proxies [J]. Quaternary Science Reviews, 2016, 138: 6-15. doi: 10.1016/j.quascirev.2016.02.012
|
[82] |
Rippert N, Baumann K H, Pätzold J. Thermocline fluctuations in the western tropical Indian Ocean during the past 35 ka [J]. Journal of Quaternary Science, 2015, 30(3): 201-210. doi: 10.1002/jqs.2767
|
[83] |
Kuhnert H, Kuhlmann H, Mohtadi M, et al. Holocene tropical western Indian Ocean sea surface temperatures in covariation with climatic changes in the Indonesian region [J]. Paleoceanography, 2014, 29(5): 423-437. doi: 10.1002/2013PA002555
|
[84] |
Romahn S, Mackensen A, Groeneveld J, et al. Deglacial intermediate water reorganization: new evidence from the Indian Ocean [J]. Climate of the Past, 2014, 10(1): 293-303. doi: 10.5194/cp-10-293-2014
|
[85] |
Wang Y V, Leduc G, Regenberg M, et al. Northern and southern hemisphere controls on seasonal sea surface temperatures in the Indian Ocean during the last deglaciation [J]. Paleoceanography, 2013, 28(4): 619-632. doi: 10.1002/palo.20053
|
[86] |
Govil P, Naidu P D. Evaporation‐precipitation changes in the eastern Arabian Sea for the last 68 ka: Implications on monsoon variability [J]. Paleoceanography, 2010, 25(1): PA1210.
|
[87] |
Kiefer T, McCave I N, Elderfield H. Antarctic control on tropical Indian Ocean sea surface temperature and hydrography [J]. Geophysical Research Letters, 2006, 33(24): L24612. doi: 10.1029/2006GL027097
|
[88] |
Weldeab S, Lea D W, Oberhänsli H, et al. Links between southwestern tropical Indian Ocean SST and precipitation over southeastern Africa over the last 17 kyr [J]. Palaeogeography, Palaeoclimatology, Palaeoecology, 2014, 410: 200-212. doi: 10.1016/j.palaeo.2014.06.001
|
[89] |
Clemens S C, Yamamoto M, Thirumalai K, et al. Remote and local drivers of Pleistocene South Asian summer monsoon precipitation: a test for future predictions [J]. Science Advances, 2021, 7(23): eabg3848. doi: 10.1126/sciadv.abg3848
|
[90] |
Pei R J, Kuhnt W, Holbourn A, et al. Evolution of sea surface hydrology along the Western Australian margin over the past 450 kyr [J]. Paleoceanography and Paleoclimatology, 2021, 36(11): e2021PA004222.
|
[91] |
Yang Y P, Xiang R, Huang Y, et al. Meridional migration of Indian Ocean Monsoon precipitation during the early Holocene: evidence from the Andaman Sea [J]. Quaternary Science Reviews, 2021, 267: 107102. doi: 10.1016/j.quascirev.2021.107102
|
[92] |
Liu S F, Ye W X, Chen M T, et al. Millennial-scale variability of Indian summer monsoon during the last 42 kyr: evidence based on foraminiferal Mg/Ca and oxygen isotope records from the central Bay of Bengal [J]. Palaeogeography, Palaeoclimatology, Palaeoecology, 2021, 562: 110112. doi: 10.1016/j.palaeo.2020.110112
|
[93] |
Nürnberg D, Ziegler M, Karas C, et al. Interacting Loop Current variability and Mississippi River discharge over the past 400 kyr [J]. Earth and Planetary Science Letters, 2008, 272(1-2): 278-289. doi: 10.1016/j.jpgl.2008.04.051
|
[94] |
Schmidt M W, Lynch‐Stieglitz J. Florida Straits deglacial temperature and salinity change: implications for tropical hydrologic cycle variability during the Younger Dryas [J]. Paleoceanography, 2011, 26(4): PA4205.
|
[95] |
Antonarakou A, Kontakiotis G, Mortyn P G, et al. Biotic and geochemical (δ18O, δ13C, Mg/Ca, Ba/Ca) responses of Globigerinoides ruber morphotypes to upper water column variations during the last deglaciation, Gulf of Mexico [J]. Geochimica et Cosmochimica Acta, 2015, 170: 69-93. doi: 10.1016/j.gca.2015.08.003
|
[96] |
Flower B P, Hastings D W, Hill H W, et al. Phasing of deglacial warming and Laurentide Ice Sheet meltwater in the Gulf of Mexico [J]. Geology, 2004, 32(7): 597-600. doi: 10.1130/G20604.1
|
[97] |
Zarriess M, Johnstone H, Prange M, et al. Bipolar seesaw in the northeastern tropical Atlantic during Heinrich stadials [J]. Geophysical Research Letters, 2011, 38(4): L04706.
|
[98] |
Zarriess M, Mackensen A. The tropical rainbelt and productivity changes off northwest Africa: a 31, 000-year high-resolution record [J]. Marine Micropaleontology, 2010, 76(3-4): 76-91. doi: 10.1016/j.marmicro.2010.06.001
|
[99] |
Weldeab S, Schneider R R, Kölling M, et al. Holocene African droughts relate to eastern equatorial Atlantic cooling [J]. Geology, 2005, 33(12): 981-984. doi: 10.1130/G21874.1
|
[100] |
Arbuszewski J A, Demenocal P B, Cléroux C, et al. Meridional shifts of the Atlantic intertropical convergence zone since the Last Glacial Maximum [J]. Nature Geoscience, 2013, 6(11): 959-962. doi: 10.1038/ngeo1961
|
[101] |
Reißig S, Nürnberg D, Bahr A, et al. Southward displacement of the North Atlantic subtropical gyre circulation system during North Atlantic cold spells [J]. Paleoceanography and Paleoclimatology, 2019, 34(5): 866-885.
|
[102] |
Lin H L, Peterson L C, Overpeck J T, et al. Late Quaternary climate change from δ18O records of multiple species of planktonic foraminifera: high‐resolution records from the Anoxic Cariaco Basin, Venezuela [J]. Paleoceanography, 1997, 12(3): 415-427. doi: 10.1029/97PA00230
|
[103] |
Lea D W, Pak D K, Peterson L C, et al. Synchroneity of tropical and high-latitude Atlantic temperatures over the last glacial termination [J]. Science, 2003, 301(5638): 1361-1364. doi: 10.1126/science.1088470
|
[104] |
Weldeab S, Schneider R R, Kölling M. Deglacial sea surface temperature and salinity increase in the western tropical Atlantic in synchrony with high latitude climate instabilities [J]. Earth and Planetary Science Letters, 2006, 241(3-4): 699-706. doi: 10.1016/j.jpgl.2005.11.012
|
[105] |
Santos T P, Lessa D O, Venancio I M, et al. Prolonged warming of the Brazil Current precedes deglaciations [J]. Earth and Planetary Science Letters, 2017, 463: 1-12. doi: 10.1016/j.jpgl.2017.01.014
|
[106] |
Lessa D V O, Venancio I M, dos Santos T P, et al. Holocene oscillations of Southwest Atlantic shelf circulation based on planktonic foraminifera from an upwelling system (off Cabo Frio, Southeastern Brazil) [J]. The Holocene, 2016, 26(8): 1175-1187. doi: 10.1177/0959683616638433
|
[107] |
Hoffmann J, Bahr A, Voigt S, et al. Disentangling abrupt deglacial hydrological changes in northern South America: insolation versus oceanic forcing [J]. Geology, 2014, 42(7): 579-582. doi: 10.1130/G35562.1
|
[108] |
Schmidt M W, Weinlein W A, Marcantonio F, et al. Solar forcing of Florida Straits surface salinity during the early Holocene [J]. Paleoceanography, 2012, 27(3): PA3204.
|
[109] |
Parker A O, Schmidt M W, Jobe Z R, et al. A new perspective on West African hydroclimate during the last deglaciation [J]. Earth and Planetary Science Letters, 2016, 449: 79-88. doi: 10.1016/j.jpgl.2016.05.038
|
[110] |
Bemis B E, Spero H J, Bijma J, et al. Reevaluation of the oxygen isotopic composition of planktonic foraminifera: experimental results and revised paleotemperature equations [J]. Paleoceanography, 1998, 13(2): 150-160. doi: 10.1029/98PA00070
|
[111] |
Mulitza S, Boltovskoy D, Donner B, et al. Temperature: δ18O relationships of planktonic foraminifera collected from surface waters [J]. Palaeogeography, Palaeoclimatology, Palaeoecology, 2003, 202(1-2): 143-152. doi: 10.1016/S0031-0182(03)00633-3
|
[112] |
Lambeck K, Rouby H, Purcell A, et al. Sea level and global ice volumes from the Last Glacial Maximum to the Holocene [J]. Proceedings of the National Academy of Sciences of the United States of America, 2014, 111(43): 15296-15303. doi: 10.1073/pnas.1411762111
|
[113] |
Schrag D P, Adkins J F, McIntyre K, et al. The oxygen isotopic composition of seawater during the Last Glacial Maximum [J]. Quaternary Science Reviews, 2002, 21(1-3): 331-342. doi: 10.1016/S0277-3791(01)00110-X
|
[114] |
LeGrande A N, Schmidt G A. Global gridded data set of the oxygen isotopic composition in seawater [J]. Geophysical Research Letters, 2006, 33(12): L12604. doi: 10.1029/2006GL026011
|
[115] |
Manabe S, Stouffer R J. Two stable equilibria of a coupled ocean-atmosphere model [J]. Journal of Climate, 1988, 1(9): 841-866. doi: 10.1175/1520-0442(1988)001<0841:TSEOAC>2.0.CO;2
|
[116] |
Zaucker F, Broecker W S. The influence of atmospheric moisture transport on the fresh water balance of the Atlantic drainage basin: general circulation model simulations and observations [J]. Journal of Geophysical Research:Atmospheres, 1992, 97(D3): 2765-2773. doi: 10.1029/91JD01699
|
[117] |
Joussaume S, Sadourny R, Vignal C. Origin of precipitating water in a numerical simulation of the July climate [J]. Ocean-Air Interactions, 1986, 1(1): 43-56.
|
[118] |
Schmittner A, Clement A C. Sensitivity of the thermohaline circulation to tropical and high latitude freshwater forcing during the last glacial‐interglacial cycle [J]. Paleoceanography, 2002, 17(2): 1017.
|
[119] |
Broecker W S, Blanton S, Smethie Jr W M, et al. Radiocarbon decay and oxygen utilization in the deep Atlantic Ocean [J]. Global Biogeochemical Cycles, 1991, 5(1): 87-117. doi: 10.1029/90GB02279
|
[120] |
Carlson A E, LeGrande A N, Oppo D W, et al. Rapid early Holocene deglaciation of the Laurentide ice sheet [J]. Nature Geoscience, 2008, 1(9): 620-624. doi: 10.1038/ngeo285
|
[121] |
Ullman D J, Carlson A E, Hostetler S W, et al. Final Laurentide ice-sheet deglaciation and Holocene climate-sea level change [J]. Quaternary Science Reviews, 2016, 152: 49-59. doi: 10.1016/j.quascirev.2016.09.014
|
[122] |
Bentley M J. The Antarctic palaeo record and its role in improving predictions of future Antarctic Ice Sheet change [J]. Journal of Quaternary Science, 2010, 25(1): 5-18. doi: 10.1002/jqs.1287
|
[123] |
Moy C M, Seltzer G O, Rodbell D T, et al. Variability of El Niño/Southern Oscillation activity at millennial timescales during the Holocene epoch [J]. Nature, 2002, 420(6912): 162-165. doi: 10.1038/nature01194
|
[124] |
Conroy J L, Overpeck J T, Cole J E, et al. Holocene changes in eastern tropical Pacific climate inferred from a Galápagos lake sediment record [J]. Quaternary Science Reviews, 2008, 27(11-12): 1166-1180. doi: 10.1016/j.quascirev.2008.02.015
|
[125] |
Liu Z Y, Lu Z Y, Wen X Y, et al. Evolution and forcing mechanisms of El Niño over the past 21, 000 years [J]. Nature, 2014, 515(7528): 550-553. doi: 10.1038/nature13963
|
[126] |
Partin J W, Cobb K M, Adkins J F, et al. Millennial-scale trends in west Pacific warm pool hydrology since the Last Glacial Maximum [J]. Nature, 2007, 449(7161): 452-455. doi: 10.1038/nature06164
|
[127] |
Weber M E, Lantzsch H, Dekens P, et al. 200, 000 years of monsoonal history recorded on the lower Bengal Fan-strong response to insolation forcing [J]. Global and Planetary Change, 2018, 166: 107-119. doi: 10.1016/j.gloplacha.2018.04.003
|
1. |
何家雄,关进安,王梦荷,苏丕波. 南海北部气烟囱成因及其与油气及水合物运聚成藏关系. 海洋地质前沿. 2024(04): 1-8 .
![]() | |
2. |
廖晋,罗钧升,宋鹏,陆江,张金锋. 琼东南盆地气烟囱发育特征、成因类型及对水合物成藏的控制作用. 海洋地质前沿. 2021(07): 33-42 .
![]() |