FENG Dong, CHEN Duo-fu, SU Zheng, LIU Qian. ANAEROBIC OXIDATION OF METHANE AND SEEP CARBONATE PRECIPITATION KINETICS AT SEAFLOOR[J]. Marine Geology & Quaternary Geology, 2006, 26(3): 125-131.
Citation: FENG Dong, CHEN Duo-fu, SU Zheng, LIU Qian. ANAEROBIC OXIDATION OF METHANE AND SEEP CARBONATE PRECIPITATION KINETICS AT SEAFLOOR[J]. Marine Geology & Quaternary Geology, 2006, 26(3): 125-131.

ANAEROBIC OXIDATION OF METHANE AND SEEP CARBONATE PRECIPITATION KINETICS AT SEAFLOOR

More Information
  • Received Date: November 16, 2005
  • Revised Date: February 20, 2006
  • Anaerobic methane oxidation(AMO)is a globally important biogeochemistry process,which has been identified by sufficient geochemical evidence.Unfortunately,the mechanism of AMO is controversial and may be a reverse-methanogenesis process.So the fundamental understanding of the AMO in the global carbon cycle is still lacking.At many gas vent sites authigenic carbonate precipitates because of release of carbonate alkalinity from the AMO.Carbonate precipitation often induces accumulation of carbonate crust at the sediments surface or within shallow surface sediments.Physical and biogeochemical conditions allowing carbonate crust formation are largely unknown.Carbonate crusts are built under a narrow range of physical,chemical and biological conditions.The simulations show that carbonate crusts in the sediments only form when the fluids contain sufficient dissolved methane,with moderate upward fluid flow velocity and when bioturbation coefficents are low.Moreover,high sedimentation rate inhibit crust formation.Thus,seep carbonates at seafloor are indicators of the evolvement of gas venting system.Based on the recent results of AMO and seep carbonate formation,the authors reviewed mechanism of AMO,relevance to ecology and environmental effect,rate of AMO,kinetics of crust formation and its controls.
  • [1]
    Hinrichs K -U,Boetius A.The anaerobic oxidation of methane:new insights in microbial ecology and biogeochemistry[C]//Wefer G,Billet D,Hebbeln D,et al(eds).Ocean Margin Systems.Heidelberg:Springer-Verlag,2002:457-477.
    [2]
    Treude T,Niggemann J,Kallmeyer J,et al.Anaerobic oxidation of methane in the sulfate-methane transition along the Chilean continental margin[J].Geochimica et Cosmochimica Acta,2005,69:2767-2779.
    [3]
    Joye S B,Boetius A,Orcutt B N,et al.The anaerobic oxidation of methane and sulfate reduction in sediments from Gulf of Mexico cold seeps[J].Chemical Geology,2004,205:219-238.
    [4]
    Hoehler T M,Alperin M J,Albert D B,et al.Field and laboratory studies of methane oxidation in an anoxic marine sediment-evidence for a methanogen-sulfate reducer consortium[J].Blobal Biogeochemical Cycles,1994,8:451-463.
    [5]
    Barnes R O,Goldberg E D.Methane production and consumption in anaerobic marine sediments[J].Geology,1976,4:297-300.
    [6]
    Reeburgh W S.Methane consumption in Cariaco Trench waters and sediments[J].Earth and Plantary Science Letters,1976,28:337-344.
    [7]
    Martens C S,Berner R A.Interstitial water chemistry of Long Island Sound sediments,I,dissolved gases[J].Limnology and Oceanograrphy,1977,22:10-25.
    [8]
    Valentine D L,Reeburgh W S.New perspectives on anaerobic methane oxidation[J].Environmental Microbiology,2000,2:477-484.
    [9]
    Valentine D L.Biogeochemistry and microbial ecology of methane oxidation in anoxic environments:a review[J].Antonie van Leeuwenhoek,2002,81:271-282.
    [10]
    Nauhaus K,Treude T,Boetius A,et al.Environmental regulation of the anaerobic oxidation of methane:a comparison of ANME-I and ANME-Ⅱ communities[J].Environmental Microbiology,2005,7(1):98-106.
    [11]
    Borowski W S,Paull C K,Ussler Ⅲ W.Marine porewater sulfate profiles indicate in situ methane flux from underlying gas hydrate[J].Geology,1996,24:655-658.
    [12]
    Borowski W S,Hoehler T M,Alperin M J,et al.Significance of anaerobic methane oxidation in methane-rich sediments overlying the Blake Ridge gas hydrates[C]//Paull C K,Matsumoto R,Wallace P J,et al (eds).Proceedings of the Ocean Drilling Program,Scientific Results,Ocean Drilling Program. 2000,164:87-99.
    [13]
    Jörgensen B B,Weber A,Zopfi J.Sulfate reduction and anaerobic methane oxidation in Black Sea sediments[J].Deep-Sea Research I,2001,48:2097-2120.
    [14]
    Reeburgh W S.Anaerobic methane oxidation:rate depth distributions in Skan Bay sediments[J].Earth and Plantary Science Letters,1980,47:345-352.
    [15]
    Bussmann I,Dando P R,Niven S J,et al.Groundwater seepage in the marine environment:Role for mass flux and bacterial activity[J].Marine Ecology-Progress Series,1999,178:169-177.
    [16]
    Boetius A,Ravenschlag K,Schubert C J,et al.A marine microbial consortium apparently mediating anaerobic oxidation of methane[J].Nature,2000,407:623-626.
    [17]
    Burns S J.Carbon isotopic evidence for coupled sulfate reduction-methane oxidation in Amazon Fan sediments[J].Geochimica et Cosmochimica Acta,1998,62(5):797-804.
    [18]
    Whiticar M J,Faber E,Schoell M.Biogenic methane formation in marine and freshwater environments:CO2 reduction vs.acetate fermentation-isotope evidence[J].Geochimica et Cosmochimica Acta,1986,50:693-709.
    [19]
    Whiticar M J.Carbon and hydrogen isotope systematics of bacterial formation and oxidation of methane[J].Chemical Geology,1999,161:291-314.
    [20]
    Luff R,Wallmann K.Fluid flow,methane fluxes,carbonate precipitation and biogeochemical turnover in gas hydrate-bearing sediments at Hydrate Ridge,Cascadia margin:numerical modeling and mass balances[J].Geochimica et Cosmochimica Acta,2003,67(18):3403-3421.
    [21]
    Michaelis W,Seifert R,Nauhaus K,et al.Microbial reefs in the Black Sea fueled by anaerobic methane oxidation[J].Science,2002,297:1013-1015.
    [22]
    Bohrmann G,Greinert J,Suess E,et al.Authigenic carbonates from the Cascadia subduction zone and their relation to gas hydrate stability[J].Geology,1998,26(7):647-650.
    [23]
    Peckmann J,Reimer A,Luth U,et al.Methane-derived carbonates and authigenic pyrite from the northwestern Black Sea[J].Marine Geology,2001,177:129-150.
    [24]
    Hallam S J,Putnam N,Preston C M,et al.Reverse methanogenesis:Testing the hypothesis with environmental genomics[J].Science,2004,305:1457-1462.
    [25]
    Orphan V J,House C H,Hinrichs K -U,et al.Methane-consuming Archaea revealed by directly coupled isotopic and phylogenetic analysis[J].Science,2001,293:484-487.
    [26]
    Orcutt B,Boetius A,Elvert M,et al.Molecular biogeochemistry of sulfate reduction,methanogenesis and the anaerobic oxidation of methane at Gulf of Mexico cold seeps[J].Geochimica et Cosmochimica Acta,2005,69(17):4267-4281.
    [27]
    Reeburgh W S,Whalen S C,Alperin M J.The role of methylotrophy in the global methane budget[C]//Murrell JC & Kelley DP(eds.).Microbial Growth on C-1 Compounds.Kluwer:Academic Publishers,1993:1-14.
    [28]
    Aharon P,Fu B.Microbial sulfate reduction rates and sulfur and oxygen isotope fractionations at oil and gas seeps in deepwater Gulf of Mexico[J].Geochimica et Cosmochimica Acta,2000,64:233-246.
    [29]
    Treude T,Boetius A,Knittel K,et al.Anaerobic oxidation of methane above gas hydrates(Hydrate Ridge,OR)[J].Marine Ecology-Progress Series,2003,264:1-14.
    [30]
    Luff R,Wallmann K,Aloisi G.Numerical modeling of carbonate crust formation at cold vent sites:significance for fluid and methane budgets and chemosynthetic biological communities[J].Earth and Plantary Science Letters,2004,221:337-353.
    [31]
    Naehr T H,Rodriguez N M,Bohrmann G,et al.Methane-derived authigenic carbonates associated with gas hydrate decomposition and fluid venting above the Blake Ridge Diap[C]//Paull C K,Matsumoto R,Wallace P J.Proceedings of the Ocean Drilling Program,Scientific Results.College Station,Texas:Texas A & M University(Ocean Drilling Program),2000.164:285-300.
    [32]
    Greinert J,Bohrmann G,Suess E.Gas hydrate-associated carbonates and methane-venting at Hydrate Ridge classification, distribution, and origin of authigenic lithologies[C].Geophysical Monograph Series,2001,124:99-113.
    [33]
    Boudreau B P.Diagenetic Models and their Implementation[M].Berlin:Springer,1997.
    [34]
    Linke P,Suess E,Torres M E,et al.In situ measurements of fluid flow from cold seeps at active continental margins[J].Deep-Sea Research I,1994,41:721-739.
    [35]
    Judd A G,Hovland M, Dimitrov L I,et al.The geological methane budget at continental margins and its influence on climate change[J].Geofluids,2002,2:109-126.
    [36]
    Wallmann K,Linke P,Suess E,et al.Quantifying fluid flow,solute mixing,and biogeochemical turnover at cold vents of the eastern Aleutian subduction zone[J].Geochimica et Cosmochimica Acta,1997,61:5209-5219.
  • Related Articles

    [1]LONG Hengcha, XI Shichuan, YANG Huiliang, ZHAO Lihong, LI Jinyang, LUAN Zhendong. Geochemical characteristics of sediments in the Haima Cold Seep area: indication for methane seepage and sediment source[J]. Marine Geology & Quaternary Geology, 2024, 44(6): 105-120. DOI: 10.16562/j.cnki.0256-1492.2023101001
    [2]SUN Guojing, GUAN Hongxiang, ZHANG Zhishun, ZHAO Yanyan, FENG Junxi, YANG Jun, ZHANG Guanglu, ZHANG Yaru, WEI Haotian, LIU Sheng. Geochemical characteristics of sediment pore water in Haima area of the South China Sea: An indication of cold seeps[J]. Marine Geology & Quaternary Geology, 2024, 44(1): 1-14. DOI: 10.16562/j.cnki.0256-1492.2023022301
    [3]LV Taiheng, SUN Zhilei, GENG Wei, CAO Hong, ZHANG Xilin, ZHANG Xianrong, XU Cuiling, XU Hao, ZHAI Bin, ZHANG Dong, ZHOU Yucheng, CAO Youwen, LI Xinhai. Progress in in-situ observation of methane flux at sediment-water interface in cold seep[J]. Marine Geology & Quaternary Geology, 2023, 43(4): 167-180. DOI: 10.16562/j.cnki.0256-1492.2022081901
    [4]XIN Youzhi, SUN Zhilei, WANG Hongmei, CHEN Ye, XU Cuiling, GENG Wei, CAO Hong, ZHANG Xilin, ZHANG Xianrong, LI Xin, YAN Dawei, WU Nengyou. Research progress and prospects of metal-dependent anaerobic methane oxidation in marine sediments[J]. Marine Geology & Quaternary Geology, 2021, 41(5): 58-66. DOI: 10.16562/j.cnki.0256-1492.2020122801
    [5]WU Daidai, YANG Fei, HUANG Xia, PAN Mengdi, SUN Tiantian, LIU Lihua, WU Nengyou. RARE EARTH ELEMENTAL GEOCHEMISTRY OF THE SEDIMENTS IN COLD-SEEP AREA IN DONGSHA AREA OF SOUTH CHINA SEA[J]. Marine Geology & Quaternary Geology, 2017, 37(5): 59-69. DOI: 10.16562/j.cnki.0256-1492.2017.05.006
    [6]LI Yanju, SHI Jiannan, ZHU Lidong, FU Xiugen, YANG Wenguang, YANG Ruoyi. THE DISCOVERY OF COLD SEEP CARBONATE IN SHUANGHU REGION, QIANGTANG BASIN AND ITS IMPLICATIONS FOR GAS HYDRATE ACCUMULATION[J]. Marine Geology & Quaternary Geology, 2013, 33(2): 105-110. DOI: 10.3724/SP.J.1140.2013.02105
    [7]DING Ling, ZHAO Meixun. APPLICATION OF BIOMARKERS AND CARBON ISOTOPES TO COLD SEEP BIOGEOCHEMICAL PROCESSES[J]. Marine Geology & Quaternary Geology, 2010, 30(2): 133-142. DOI: 10.3724/SP.J.1140.2010.02133
    [8]LUAN Xiwu. SULFATE-METHANE INTERFACE: THE UPPER BOUNDARY OF GAS HYDRATE ZONE[J]. Marine Geology & Quaternary Geology, 2009, 29(2): 91-102. DOI: 10.3724/SP.J.1140.2009.02091
    [9]GUAN Hong-xiang, CHEN Duo-fu, SONG Zhi-guang. BIOMARKERS AND BACTERIAL PROCESSES IN THE SEDIMENTS OF GAS SEEP SITE[J]. Marine Geology & Quaternary Geology, 2007, 27(5): 75-83.
    [10]LUAN Xi-wu, YUE Bao-jing, LU Yin-tao. SEISMIC CHARACTERISTICS OF GAS HYDRATES IN THE EAST CHINA SEA[J]. Marine Geology & Quaternary Geology, 2006, 26(5): 91-99.

Catalog

    Article views (1728) PDF downloads (23) Cited by()

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return