FENG Dong, CHEN Duo-fu, SU Zheng, LIU Qian. ANAEROBIC OXIDATION OF METHANE AND SEEP CARBONATE PRECIPITATION KINETICS AT SEAFLOOR[J]. Marine Geology & Quaternary Geology, 2006, 26(3): 125-131.
Citation: FENG Dong, CHEN Duo-fu, SU Zheng, LIU Qian. ANAEROBIC OXIDATION OF METHANE AND SEEP CARBONATE PRECIPITATION KINETICS AT SEAFLOOR[J]. Marine Geology & Quaternary Geology, 2006, 26(3): 125-131.

ANAEROBIC OXIDATION OF METHANE AND SEEP CARBONATE PRECIPITATION KINETICS AT SEAFLOOR

More Information
  • Received Date: November 16, 2005
  • Revised Date: February 20, 2006
  • Anaerobic methane oxidation(AMO)is a globally important biogeochemistry process,which has been identified by sufficient geochemical evidence.Unfortunately,the mechanism of AMO is controversial and may be a reverse-methanogenesis process.So the fundamental understanding of the AMO in the global carbon cycle is still lacking.At many gas vent sites authigenic carbonate precipitates because of release of carbonate alkalinity from the AMO.Carbonate precipitation often induces accumulation of carbonate crust at the sediments surface or within shallow surface sediments.Physical and biogeochemical conditions allowing carbonate crust formation are largely unknown.Carbonate crusts are built under a narrow range of physical,chemical and biological conditions.The simulations show that carbonate crusts in the sediments only form when the fluids contain sufficient dissolved methane,with moderate upward fluid flow velocity and when bioturbation coefficents are low.Moreover,high sedimentation rate inhibit crust formation.Thus,seep carbonates at seafloor are indicators of the evolvement of gas venting system.Based on the recent results of AMO and seep carbonate formation,the authors reviewed mechanism of AMO,relevance to ecology and environmental effect,rate of AMO,kinetics of crust formation and its controls.
  • [1]
    Hinrichs K -U,Boetius A.The anaerobic oxidation of methane:new insights in microbial ecology and biogeochemistry[C]//Wefer G,Billet D,Hebbeln D,et al(eds).Ocean Margin Systems.Heidelberg:Springer-Verlag,2002:457-477.
    [2]
    Treude T,Niggemann J,Kallmeyer J,et al.Anaerobic oxidation of methane in the sulfate-methane transition along the Chilean continental margin[J].Geochimica et Cosmochimica Acta,2005,69:2767-2779.
    [3]
    Joye S B,Boetius A,Orcutt B N,et al.The anaerobic oxidation of methane and sulfate reduction in sediments from Gulf of Mexico cold seeps[J].Chemical Geology,2004,205:219-238.
    [4]
    Hoehler T M,Alperin M J,Albert D B,et al.Field and laboratory studies of methane oxidation in an anoxic marine sediment-evidence for a methanogen-sulfate reducer consortium[J].Blobal Biogeochemical Cycles,1994,8:451-463.
    [5]
    Barnes R O,Goldberg E D.Methane production and consumption in anaerobic marine sediments[J].Geology,1976,4:297-300.
    [6]
    Reeburgh W S.Methane consumption in Cariaco Trench waters and sediments[J].Earth and Plantary Science Letters,1976,28:337-344.
    [7]
    Martens C S,Berner R A.Interstitial water chemistry of Long Island Sound sediments,I,dissolved gases[J].Limnology and Oceanograrphy,1977,22:10-25.
    [8]
    Valentine D L,Reeburgh W S.New perspectives on anaerobic methane oxidation[J].Environmental Microbiology,2000,2:477-484.
    [9]
    Valentine D L.Biogeochemistry and microbial ecology of methane oxidation in anoxic environments:a review[J].Antonie van Leeuwenhoek,2002,81:271-282.
    [10]
    Nauhaus K,Treude T,Boetius A,et al.Environmental regulation of the anaerobic oxidation of methane:a comparison of ANME-I and ANME-Ⅱ communities[J].Environmental Microbiology,2005,7(1):98-106.
    [11]
    Borowski W S,Paull C K,Ussler Ⅲ W.Marine porewater sulfate profiles indicate in situ methane flux from underlying gas hydrate[J].Geology,1996,24:655-658.
    [12]
    Borowski W S,Hoehler T M,Alperin M J,et al.Significance of anaerobic methane oxidation in methane-rich sediments overlying the Blake Ridge gas hydrates[C]//Paull C K,Matsumoto R,Wallace P J,et al (eds).Proceedings of the Ocean Drilling Program,Scientific Results,Ocean Drilling Program. 2000,164:87-99.
    [13]
    Jörgensen B B,Weber A,Zopfi J.Sulfate reduction and anaerobic methane oxidation in Black Sea sediments[J].Deep-Sea Research I,2001,48:2097-2120.
    [14]
    Reeburgh W S.Anaerobic methane oxidation:rate depth distributions in Skan Bay sediments[J].Earth and Plantary Science Letters,1980,47:345-352.
    [15]
    Bussmann I,Dando P R,Niven S J,et al.Groundwater seepage in the marine environment:Role for mass flux and bacterial activity[J].Marine Ecology-Progress Series,1999,178:169-177.
    [16]
    Boetius A,Ravenschlag K,Schubert C J,et al.A marine microbial consortium apparently mediating anaerobic oxidation of methane[J].Nature,2000,407:623-626.
    [17]
    Burns S J.Carbon isotopic evidence for coupled sulfate reduction-methane oxidation in Amazon Fan sediments[J].Geochimica et Cosmochimica Acta,1998,62(5):797-804.
    [18]
    Whiticar M J,Faber E,Schoell M.Biogenic methane formation in marine and freshwater environments:CO2 reduction vs.acetate fermentation-isotope evidence[J].Geochimica et Cosmochimica Acta,1986,50:693-709.
    [19]
    Whiticar M J.Carbon and hydrogen isotope systematics of bacterial formation and oxidation of methane[J].Chemical Geology,1999,161:291-314.
    [20]
    Luff R,Wallmann K.Fluid flow,methane fluxes,carbonate precipitation and biogeochemical turnover in gas hydrate-bearing sediments at Hydrate Ridge,Cascadia margin:numerical modeling and mass balances[J].Geochimica et Cosmochimica Acta,2003,67(18):3403-3421.
    [21]
    Michaelis W,Seifert R,Nauhaus K,et al.Microbial reefs in the Black Sea fueled by anaerobic methane oxidation[J].Science,2002,297:1013-1015.
    [22]
    Bohrmann G,Greinert J,Suess E,et al.Authigenic carbonates from the Cascadia subduction zone and their relation to gas hydrate stability[J].Geology,1998,26(7):647-650.
    [23]
    Peckmann J,Reimer A,Luth U,et al.Methane-derived carbonates and authigenic pyrite from the northwestern Black Sea[J].Marine Geology,2001,177:129-150.
    [24]
    Hallam S J,Putnam N,Preston C M,et al.Reverse methanogenesis:Testing the hypothesis with environmental genomics[J].Science,2004,305:1457-1462.
    [25]
    Orphan V J,House C H,Hinrichs K -U,et al.Methane-consuming Archaea revealed by directly coupled isotopic and phylogenetic analysis[J].Science,2001,293:484-487.
    [26]
    Orcutt B,Boetius A,Elvert M,et al.Molecular biogeochemistry of sulfate reduction,methanogenesis and the anaerobic oxidation of methane at Gulf of Mexico cold seeps[J].Geochimica et Cosmochimica Acta,2005,69(17):4267-4281.
    [27]
    Reeburgh W S,Whalen S C,Alperin M J.The role of methylotrophy in the global methane budget[C]//Murrell JC & Kelley DP(eds.).Microbial Growth on C-1 Compounds.Kluwer:Academic Publishers,1993:1-14.
    [28]
    Aharon P,Fu B.Microbial sulfate reduction rates and sulfur and oxygen isotope fractionations at oil and gas seeps in deepwater Gulf of Mexico[J].Geochimica et Cosmochimica Acta,2000,64:233-246.
    [29]
    Treude T,Boetius A,Knittel K,et al.Anaerobic oxidation of methane above gas hydrates(Hydrate Ridge,OR)[J].Marine Ecology-Progress Series,2003,264:1-14.
    [30]
    Luff R,Wallmann K,Aloisi G.Numerical modeling of carbonate crust formation at cold vent sites:significance for fluid and methane budgets and chemosynthetic biological communities[J].Earth and Plantary Science Letters,2004,221:337-353.
    [31]
    Naehr T H,Rodriguez N M,Bohrmann G,et al.Methane-derived authigenic carbonates associated with gas hydrate decomposition and fluid venting above the Blake Ridge Diap[C]//Paull C K,Matsumoto R,Wallace P J.Proceedings of the Ocean Drilling Program,Scientific Results.College Station,Texas:Texas A & M University(Ocean Drilling Program),2000.164:285-300.
    [32]
    Greinert J,Bohrmann G,Suess E.Gas hydrate-associated carbonates and methane-venting at Hydrate Ridge classification, distribution, and origin of authigenic lithologies[C].Geophysical Monograph Series,2001,124:99-113.
    [33]
    Boudreau B P.Diagenetic Models and their Implementation[M].Berlin:Springer,1997.
    [34]
    Linke P,Suess E,Torres M E,et al.In situ measurements of fluid flow from cold seeps at active continental margins[J].Deep-Sea Research I,1994,41:721-739.
    [35]
    Judd A G,Hovland M, Dimitrov L I,et al.The geological methane budget at continental margins and its influence on climate change[J].Geofluids,2002,2:109-126.
    [36]
    Wallmann K,Linke P,Suess E,et al.Quantifying fluid flow,solute mixing,and biogeochemical turnover at cold vents of the eastern Aleutian subduction zone[J].Geochimica et Cosmochimica Acta,1997,61:5209-5219.
  • Related Articles

    [1]GE Chunhai, FAN Yongyong, BA Qi, SUN Chao, WU Zhen, WU Xiao, WANG Houjie, BI Naishuang. Diversion characteristics of the branching channels in the Yellow River mouth and its influencing mechanisms[J]. Marine Geology & Quaternary Geology, 2024, 44(2): 131-145. DOI: 10.16562/j.cnki.0256-1492.2023030301
    [2]DU Xiaodong, PENG Guangrong, WU Jing, CAI Guofu, WANG Xiaomeng, SUO Yanhui, ZHOU Jie. Tracing source-to-sink process of the Eocene in the Eastern Yangjiang Sag, Pearl River Mouth Basin: Evidence from detrital zircon spectrum[J]. Marine Geology & Quaternary Geology, 2021, 41(6): 124-137. DOI: 10.16562/j.cnki.0256-1492.2021071301
    [3]YAN Zhonghui, FANG Gang, XU Huaning, LIU Jun, SHI Jian, PAN Jun, WANG Jianqiang. The application of Hilbert spectral whitening method to high resolution processing of marine seismic data[J]. Marine Geology & Quaternary Geology, 2018, 38(4): 212-220. DOI: 10.16562/j.cnki.0256-1492.2018.04.019
    [4]WU Shuyu, LIU Jun, XIAO Guolin, ZHANG Yinguo, LIANG Jie, WANG Jianqiang. THIN CLASIC SAND RESERVOIR PREDICTION BASED ON MATCHING PURSUIT SPECTRUM DECOMPOSITION-A CASE OF EASTERN DEPRESSION OF NORTH YELLOW SEA BASIN[J]. Marine Geology & Quaternary Geology, 2017, 37(3): 197-207. DOI: 10.16562/j.cnki.0256-1492.2017.03.020
    [5]ZHAO Xufeng, JIA Jianjun, WANG Xinkai, CAI Tinglu, YANG Yang, SHI Lianqiang, XIA Xiaoming. EVALUATION OF A NEW DYNAMIC LASER PARTICLE SIZE &SHAPE ANALYZER AND COMPARISON WITH THE SIEVING AND LASER DIFFRACTION PARTICLE SIZE ANALYZER[J]. Marine Geology & Quaternary Geology, 2015, 35(6): 175-184. DOI: 10.16562/j.cnki.0256-1492.2015.06.018
    [6]LI Panfeng, ZHAO Tiehu, ZHANG Xiaobo, MEI Sai, YAN Zhonghui, QIN Ke, . FRACTAL RESEARCH OF REMOTE SENSING LINEAR FAULTS IN SHANDONG PENINSULA[J]. Marine Geology & Quaternary Geology, 2015, 35(4): 105-112. DOI: 10.16562/j.cnki.0256-1492.2015.04.011
    [7]GUO Yongfei, HAN Zhen, ZHANG Kun. INFORMATION EXTRACTION WITH REGION GROWING METHOD AND FRACTAL DIMENSION RESEARCH IN THE JIUDUANSHA TIDAL CHANNELS OF YANGTZE RIVER ESTUARY[J]. Marine Geology & Quaternary Geology, 2011, 31(2): 31-35. DOI: 10.3724/SP.J.1140.2011.02031
    [8]ZHOU Jiang, YIN Ping, CHENG Dang-di, FANG Jing, YUE Jun. RESEARCH ON THE FRACTAL SIMULATION IMAGE AND THE FRACTAL DIMENSION AND LENGTH OF COASTLINE BASED ON GIS AND FRACTAL THEORY[J]. Marine Geology & Quaternary Geology, 2008, 28(4): 65-71. DOI: 10.3724/SP.J.1140.2008.03065
    [9]LONG Teng-wen, ZHAO Jing-bo. A STUDY ON FRACTAL STRUCTURE OF FLOOD SEQUENCE IN LUOHE RIVER BASIN IN MING DYNASTY[J]. Marine Geology & Quaternary Geology, 2008, 28(3): 115-119.
    [10]LONG Hai-yan, ZHUANG Zhen-ye, LIU Sheng-fa, LÜ Hai-qing, YE Yin-can, DU Wen-bo. ACTIVITY MAGNITUDE OF THE SMALL-MEDIUM SUBAQUEOUS DUNES IN THE YANGTZE SHOAL[J]. Marine Geology & Quaternary Geology, 2007, 27(6): 17-24.
  • Cited by

    Periodical cited type(1)

    1. 任帅波. 工程物探调查技术及其现场质控应用分析. 价值工程. 2025(04): 136-138 .

    Other cited types(0)

Catalog

    Article views (1744) PDF downloads (24) Cited by(1)

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return