Citation: | CHENYingying ,QIN Lin,LI Ruijie,et al. Paleohydrological variations revealed from the TMZ05 Borehole in the Qiantao Basin of the Yellow River[J]. Marine Geology & Quaternary Geology,xxxx,x(x): x-xx. DOI: 10.16562/j.cnki.0256-1492.2025030301 |
Paleohydrology serves as a critical historical reference for studying and assessing flood risks in river basins. We analyzed a ~19 m deep borehole core (TMZ05) from Tumote Right Banner in the Qiantao Basin of the Yellow River and reconstructed the paleohydrological evolution over the past 19 ka using sediment grain size and geochemical proxies, including the grain-size U value (U=p(16~80 μm) / p(2~16 μm), flood energy index (FEI=(pEM4+pEM5)/(pEM3+pEM4+pEM5)) from grain size end-member components, and ln(Zr/Rb) values. Optically stimulated luminescence (OSL) and accelerator mass spectrometry (AMS) 14C dating were applied to establish the chronological framework. Results reveal that since the Last Glacial Maximum (LGM), the frequency and magnitude of paleohydrological events in the region have been generally decreased but exhibited distinct phases. Periods of 18.5~14 ka and 8.5~6 ka were characterized by low-frequency and low-amplitude fluctuations, while 14~8.5 ka showed intense high-frequency and high-amplitude hydrological variability. After 6 ka, both the intensity and variability of paleohydrology were gradually increased. Furthermore, five high-frequency and high-amplitude paleohydrological phases: 19~16.5 ka, 14~11.7 ka, 11~9.7 ka, 9.4~8.5 ka, and 4.2~1.6 ka indicated by high-resolution proxies (FEI and ln(Zr/Rb)), during which catastrophic flood events occurred frequently in the Yellow River Basin. Regional paleoenvironmental comparisons indicate that these high-frequency and high-amplitude hydrological phases corresponded to intensified flood disasters, and occurred mainly during the transitional periods of climate system, implying that the instability in hydroclimatic regime could seriously disrupt the equilibrium of fluvial morphology.
[1] |
Benito G, Macklin M G, Panin A, et al. Recurring flood distribution patterns related to short-term Holocene climatic variability[J]. Scientific Reports, 2015, 5(1):16398. doi: 10.1038/srep16398
|
[2] |
Wilhelm B, Rapuc W, Amann B, et al. Impact of warmer climate periods on flood hazard in the European Alps[J]. Nature Geoscience, 2022, 15(2):118-123. doi: 10.1038/s41561-021-00878-y
|
[3] |
Gregory K J, Benito G, Dikau R, et al. Past hydrological events related to understanding global change: an ICSU research project[J]. CATENA, 2006, 66(1-2):2-13. doi: 10.1016/j.catena.2005.11.011
|
[4] |
Hudson P F, Colditz R R. Flood delineation in a large and complex alluvial valley, lower Pánuco basin, Mexico[J]. Journal of Hydrology, 2003, 280(1-4):229-245. doi: 10.1016/S0022-1694(03)00227-0
|
[5] |
张鹏, 杨劲松, 赵华, 等. 黄河流域全新世古洪水研究进展及展望[J]. 海洋地质与第四纪地质, 2020, 40(6):178-188
ZHANG Peng, YANG Jinsong, ZHAO Hua, et al. Research progress of the Holocene paleoflood in the Yellow River basin and a future prospect[J]. Marine Geology & Quaternary Geology, 2020, 40(6):178-188.]
|
[6] |
Baker V R, Benito G, Brown A G, et al. Fluvial palaeohydrology in the 21st century and beyond[J]. Earth Surface Processes and Landforms, 2022, 47(1):58-81. doi: 10.1002/esp.5275
|
[7] |
Toonen W H J, Winkels T G, Cohen K M, et al. Lower Rhine historical flood magnitudes of the last 450 years reproduced from grain-size measurements of flood deposits using End Member Modelling[J]. CATENA, 2015, 130:69-81. doi: 10.1016/j.catena.2014.12.004
|
[8] |
Blöschl G, Hall J, Parajka J, et al. Changing climate shifts timing of European floods[J]. Science, 2017, 357(6351):588-590. doi: 10.1126/science.aan2506
|
[9] |
Harden T, Macklin M G, Baker V R. Holocene flood histories in south-western USA[J]. Earth Surface Processes and Landforms, 2010, 35(6):707-716. doi: 10.1002/esp.1983
|
[10] |
Munoz S E, Giosan L, Therrell M D, et al. Climatic control of Mississippi River flood hazard amplified by river engineering[J]. Nature, 2018, 556(7699):95-98. doi: 10.1038/nature26145
|
[11] |
Camuera J, Ramos-Román M J, Jiménez-Moreno G, et al. Past 200 kyr hydroclimate variability in the western Mediterranean and its connection to the African Humid Periods[J]. Scientific Reports, 2022, 12(1):9050. doi: 10.1038/s41598-022-12047-1
|
[12] |
Huang C C, Pang J L, Zha X C, et al. Extraordinary floods related to the climatic event at 4200 a BP on the Qishuihe River, middle reaches of the Yellow River, China[J]. Quaternary Science Reviews, 2011, 30(3-4):460-468. doi: 10.1016/j.quascirev.2010.12.007
|
[13] |
Zhang Y Z, Huang C C, Pang J L, et al. Holocene palaeoflood events recorded by slackwater deposits along the middle Beiluohe River valley, middle Yellow River basin, China[J]. Boreas, 2015, 44(1):127-138. doi: 10.1111/bor.12095
|
[14] |
Chen Y L, Huang C C, Zhang Y Z, et al. Palaeoflood events during the last deglaciation in the Yellow River source area on the northeast Tibetan Plateau[J]. Geological Journal, 2021, 56(8):4293-4309. doi: 10.1002/gj.4164
|
[15] |
Yu S Y, Hou Z F, Chen X X, et al. Extreme flooding of the lower Yellow River near the Northgrippian-Meghalayan boundary: evidence from the Shilipu archaeological site in southwestern Shandong Province, China[J]. Geomorphology, 2020, 350:106878. doi: 10.1016/j.geomorph.2019.106878
|
[16] |
Li T, Li J B, Zhang D D. Yellow River flooding during the past two millennia from historical documents[J]. Progress in Physical Geography: Earth and Environment, 2020, 44(5):661-678. doi: 10.1177/0309133319899821
|
[17] |
Mackin J H. Concept of the graded river[J]. GSA Bulletin, 1948, 59(5):463-512. doi: 10.1130/0016-7606(1948)59[463:COTGR]2.0.CO;2
|
[18] |
Aalto R, Lauer J W, Dietrich W E. Spatial and temporal dynamics of sediment accumulation and exchange along Strickland River floodplains(Papua New Guinea) over decadal‐to‐centennial timescales[J]. Journal of Geophysical Research: Earth Surface, 2008, 113(F1):F01S04.
|
[19] |
Repasch M, Wittmann H, Scheingross J S, et al. Sediment transit time and floodplain storage dynamics in alluvial rivers revealed by meteoric 10Be[J]. Journal of Geophysical Research: Earth Surface, 2020, 125(7):e2019JF005419. doi: 10.1029/2019JF005419
|
[20] |
Huffman M E, Pizzuto J E, Trampush S M, et al. Floodplain sediment storage timescales of the laterally confined meandering Powder River, USA[J]. Journal of Geophysical Research: Earth Surface, 2022, 127(1):e2021JF006313. doi: 10.1029/2021JF006313
|
[21] |
师长兴. 黄河上游内蒙古段河床演变及其与水沙变化的关系[J]. 地理科学, 2016, 36(6):895-901
SHI Changxing. Channel adjustments of the Inner Mongolia reach of the upper Huanghe River to changes in water discharge and sediment load[J]. Scientia Geographica Sinica, 2016, 36(6):895-901.]
|
[22] |
国家地震局. 鄂尔多斯周缘活动断裂系[M]. 北京: 地震出版社, 1988: 39-71
China Earthquake Administration. Active Fault System Around Ordos Massif[M]. Beijing: Seismological Press, 1988: 39-71.]
|
[23] |
许炯心. 异源水沙对黄河上游兰州至头道拐河段悬移质泥沙冲淤的影响[J]. 泥沙研究, 2014(5):1-10
XU Jiongxin. Channel sedimentation in the Lanzhou–Toudaoguai reach of the upper Yellow River influenced by runoff and sediment from different source areas[J]. Journal of Sediment Research, 2014(5):1-10.]
|
[24] |
Konert M, Vandenberghe J. Comparison of laser grain size analysis with pipette and sieve analysis: a solution for the underestimation of the clay fraction[J]. Sedimentology, 1997, 44(3):523-535. doi: 10.1046/j.1365-3091.1997.d01-38.x
|
[25] |
Wentworth C K. A scale of grade and class terms for clastic sediments[J]. The Journal of Geology, 1922, 30(5):377-392. doi: 10.1086/622910
|
[26] |
Folk R L, Ward W C. Brazos River bar: a study in the significance of grain size parameters[J]. Journal of Sedimentary Petrology, 1957, 27(1):3-26. doi: 10.1306/74D70646-2B21-11D7-8648000102C1865D
|
[27] |
Li F Q, Pan B T, Lai Z P, et al. Identifying the degree of luminescence signal bleaching in fluvial sediments from the Inner Mongolian reaches of the Yellow River[J]. Geochronometria, 2018, 45(1):82-96. doi: 10.1515/geochr-2015-0087
|
[28] |
Maizels J K. Palaeovelocity and palaeodischarge determination for coarse gravel deposits[M]//Gregory K J. Background to Palaeohydrology: A Perspective. New York: Wiley, 1983: 101-139.
|
[29] |
Wang H, Jia X, Li Y, et al. Selective deposition response to aeolian–fluvial sediment supply in the desert braided channel of the upper Yellow River, China[J]. Natural Hazards and Earth System Sciences, 2015, 15(9):1955-1962. doi: 10.5194/nhess-15-1955-2015
|
[30] |
Paterson G A, Heslop D. New methods for unmixing sediment grain size data[J]. Geochemistry, Geophysics, Geosystems, 2015, 16(12):4494-4506. doi: 10.1002/2015GC006070
|
[31] |
Weltje G J. End-member modeling of compositional data: numerical-statistical algorithms for solving the explicit mixing problem[J]. Mathematical Geology, 1997, 29(4):503-549. doi: 10.1007/BF02775085
|
[32] |
Parris A S, Bierman P R, Noren A J, et al. Holocene paleostorms identified by particle size signatures in lake sediments from the northeastern United States[J]. Journal of Paleolimnology, 2010, 43(1):29-49. doi: 10.1007/s10933-009-9311-1
|
[33] |
Weltje G J, Prins M A. Genetically meaningful decomposition of grain-size distributions[J]. Sedimentary Geology, 2007, 202(3):409-424. doi: 10.1016/j.sedgeo.2007.03.007
|
[34] |
Peng F, Prins M A, Kasse C, et al. An improved method for paleoflood reconstruction and flooding phase identification, applied to the Meuse River in the Netherlands[J]. Global and Planetary Change, 2019, 177:213-224. doi: 10.1016/j.gloplacha.2019.04.006
|
[35] |
Peng F, van Balen R, Beets C, et al. Rapid flood intensification and environmental response of the Lower Meuse during the Allerød-Younger Dryas climate transition[J]. Geomorphology, 2021, 372:107469. doi: 10.1016/j.geomorph.2020.107469
|
[36] |
Jones A F, Macklin M G, Brewer P A. A geochemical record of flooding on the upper River Severn, UK, during the last 3750 years[J]. Geomorphology, 2012, 179:89-105. doi: 10.1016/j.geomorph.2012.08.003
|
[37] |
Schulte L, Peña J C, Carvalho F, et al. A 2600-year history of floods in the Bernese Alps, Switzerland: frequencies, mechanisms and climate forcing[J]. Hydrology and Earth System Sciences, 2015, 19(7):3047-3072. doi: 10.5194/hess-19-3047-2015
|
[38] |
Richter T O, van der Gaast S, Koster B, et al. The Avaatech XRF Core Scanner: technical description and applications to NE Atlantic sediments[J]. Geological Society, London, Special Publications, 2006, 267(1):39-50. doi: 10.1144/GSL.SP.2006.267.01.03
|
[39] |
Berner Z A, Bleeck-Schmidt S, Stüben D, et al. Floodplain deposits: a geochemical archive of flood history – A case study on the River Rhine, Germany[J]. Applied Geochemistry, 2012, 27(3):543-561. doi: 10.1016/j.apgeochem.2011.12.007
|
[40] |
Chen J, Chen Y, Liu L W, et al. Zr/Rb ratio in the Chinese loess sequences and its implication for changes in the East Asian winter monsoon strength[J]. Geochimica et Cosmochimica Acta, 2006, 70(6):1471-1482. doi: 10.1016/j.gca.2005.11.029
|
[41] |
Fuller I C, Macklin M G, Toonen W H J, et al. A 2000 year record of palaeofloods in a volcanically-reset catchment: Whanganui River, New Zealand[J]. Global and Planetary Change, 2019, 181:102981. doi: 10.1016/j.gloplacha.2019.102981
|
[42] |
Weltje G J, Tjallingii R. Calibration of XRF core scanners for quantitative geochemical logging of sediment cores: theory and application[J]. Earth and Planetary Science Letters, 2008, 274(3-4):423-438. doi: 10.1016/j.jpgl.2008.07.054
|
[43] |
Gao W H, Li K F, Miao X D, et al. Holocene extreme flood distribution patterns in the upper and middle Yellow River: a review based on slackwater deposits[J]. Earth-Science Reviews, 2025, 261:105039. doi: 10.1016/j.earscirev.2024.105039
|
[44] |
Zhang Z X, Zhang Z P, Xu J H, et al. A review of paleofloods in the middle-lower reaches of the Yangtze River during the Holocene: processes, causes and effects[J]. Quaternary Science Reviews, 2024, 345:109019. doi: 10.1016/j.quascirev.2024.109019
|
[45] |
Knox J C. Sensitivity of modern and Holocene floods to climate change[J]. Quaternary Science Reviews, 2000, 19(1-5):439-457. doi: 10.1016/S0277-3791(99)00074-8
|
[46] |
Starkel L, Soja R, Michczyńska D J. Past hydrological events reflected in Holocene history of Polish rivers[J]. CATENA, 2006, 66(1-2):24-33. doi: 10.1016/j.catena.2005.07.008
|
[47] |
Wang Y J, Cheng H, Edwards R L, et al. A high-resolution absolute-dated late Pleistocene Monsoon record from Hulu Cave, China[J]. Science, 2001, 294(5550):2345-2348. doi: 10.1126/science.1064618
|
[48] |
Alley R B, Meese D A, Shuman C A, et al. Abrupt increase in Greenland snow accumulation at the end of the Younger Dryas event[J]. Nature, 1993, 362(6420):527-529. doi: 10.1038/362527a0
|
[49] |
Svensson A, Andersen K K, Bigler M, et al. A 60000 year Greenland stratigraphic ice core chronology[J]. Climate of the Past, 2008, 4(1):47-57. doi: 10.5194/cp-4-47-2008
|
[50] |
Berger A, Loutre M F. Insolation values for the climate of the last 10 million years[J]. Quaternary Science Reviews, 1991, 10(4):297-317. doi: 10.1016/0277-3791(91)90033-Q
|
[51] |
Herzschuh U. Palaeo-moisture evolution in monsoonal Central Asia during the last 50, 000 years[J]. Quaternary Science Reviews, 2006, 25(1-2):163-178. doi: 10.1016/j.quascirev.2005.02.006
|
[52] |
王瑜, 宋长青, 孙湘君. 内蒙古土默特平原北部全新世古环境变迁[J]. 地理学报, 1997, 52(5):430-438 doi: 10.3321/j.issn:0375-5444.1997.05.007
WANG Yu, SONG Changqing, SUN Xiangjun. Palynological record of paleovegetation change during Holocene at North Tumote Plain in Inner Mongolia, China[J]. Acta Geographica Sinica, 1997, 52(5):430-438.] doi: 10.3321/j.issn:0375-5444.1997.05.007
|
[53] |
Dong H W, Xie M M, Shang W Y, et al. Plant-wax carbon isotopic evidence of Lateglacial and Holocene climate change from lake sediments in the Yin Mountains, inner Mongolia[J]. Quaternary International, 2022, 622:10-20. doi: 10.1016/j.quaint.2021.12.017
|
[54] |
Chen F H, Xu Q H, Chen J H, et al. East Asian summer monsoon precipitation variability since the last deglaciation[J]. Scientific Reports, 2015, 5(1):11186. doi: 10.1038/srep11186
|
[55] |
Wang H P, Chen J H, Zhang X J, et al. Palaeosol development in the Chinese Loess Plateau as an indicator of the strength of the East Asian summer monsoon: evidence for a mid-Holocene maximum[J]. Quaternary International, 2014, 334-335:155-164. doi: 10.1016/j.quaint.2014.03.013
|
[56] |
Chen F H, Li G Q, Zhao H, et al. Landscape evolution of the Ulan Buh Desert in northern China during the late Quaternary[J]. Quaternary Research, 2014, 81(3):476-487. doi: 10.1016/j.yqres.2013.08.005
|
[57] |
申洪源, 贾玉连, 郭峰. 内蒙古黄旗海湖泊沉积物磁化率特征及其环境意义[J]. 干旱区地理, 2010, 33(2):151-157
SHEN Hongyuan, JIA Yulian, GUO Feng. Characteristics and environmental significance of the magnetic susceptibility in sediment of Huangqihai Lake, Inner Mongolia, China[J]. Arid Land Geography, 2010, 33(2):151-157.]
|
[58] |
Chen L, Chen J, Shen Z W, et al. Drought in the Asian summer monsoon region is liked to a weakened inter-hemispheric temperature gradient[J]. Communications Earth & Environment, 2024, 5(1):432.
|
[59] |
Pang H L, Jia Y X, Li F Q, et al. An improved method for paleoflood reconstruction from core sediments in the upper Yellow River[J]. Frontiers in Earth Science, 2023, 11:1149502. doi: 10.3389/feart.2023.1149502
|
[60] |
Yu S Y, Li W J, Zhou L, et al. Human disturbances dominated the unprecedentedly high frequency of Yellow River flood over the last millennium[J]. Science Advances, 2023, 9(8):eadf8576. doi: 10.1126/sciadv.adf8576
|
[61] |
陈耳东. 河套灌区水利简史[M]. 北京: 水利电力出版社, 1988
CHEN Erdong. A Brief History of Water Conservancy in Hetao Irrigation District[M]. Beijing: Water Resources and Electric Power Press, 1988.]
|
1. |
谷浩然,杨俊钢,王斌,崔伟,陈前. 基于再分析数据的南海三维温盐结构特征分析. 数字海洋与水下攻防. 2024(01): 62-71 .
![]() |