DU linfen,SHI Lu,HUA Chunrong,et al. Paleoenvironmental evolution in the Guaymas Basin over the past 350 ka based on X-ray fluorescence scanning of sediment cores[J]. Marine Geology & Quaternary Geology,xxxx,x(x): x-xx. DOI: 10.16562/j.cnki.0256-1492.2024072701
Citation: DU linfen,SHI Lu,HUA Chunrong,et al. Paleoenvironmental evolution in the Guaymas Basin over the past 350 ka based on X-ray fluorescence scanning of sediment cores[J]. Marine Geology & Quaternary Geology,xxxx,x(x): x-xx. DOI: 10.16562/j.cnki.0256-1492.2024072701

Paleoenvironmental evolution in the Guaymas Basin over the past 350 ka based on X-ray fluorescence scanning of sediment cores

More Information
  • Received Date: July 26, 2024
  • Revised Date: February 11, 2025
  • Accepted Date: February 11, 2025
  • Available Online: March 25, 2025
  • X-ray fluorescence (XRF) core scanning on marine sediments has been widely utilized in reconstructing changes in ancient ocean and climate. However, the current XRF core scanning conducted by the International Ocean Discovery Program (IODP) only provides elemental counts, which does not meet the requirements for elemental concentration in paleoceanography. This study takes the XRF core scanning data from Site U1546 of IODP Expedition 385 in the Guaymas Basin as an example. By combining the XRF measured elemental contents of discrete sediment samples and a reference material, the relationships between concentrations and counts of various elements were obtained, allowing the conversion of elemental counts from raw XRF scanning data into concentrations. Based on the previously established age model for Site U1546, various proxies such as Ti/Al, K/Al, K/Ti, Ti/Ca, Fe/Ca, Sr/Ca, and Zn/Al were utilized to reconstruct the continental weathering intensity, terrigenous input, oceanic nutrient conditions, and primary productivity in the Guaymas Basin since the middle Pleistocene (since 350 ka). Results indicate that the continental weathering intensity shows a generally periodic change, being weaker during glacial periods and stronger during interglacial periods. Terrigenous input, nutrient availability and primary productivity fluctuated significantly between 350 and 130 ka and increased slowly since 130 ka. Nutrient availability and primary productivity were positively correlated with terrigenous input, suggesting a possible terrestrial control. This study revealed the changing patterns of continental surface weathering intensity, terrigenous material input, and marine nutrition and primary productivity in the Guaymas Basin since the Middle Pleistocene, providing an important scientific basis for further exploring the response of ancient marine environmental evolution to climate change.

  • [1]
    Croudace I W, Rindby A, Rothwell R G. ITRAX: description and evaluation of a new multi-function X-ray core scanner[J]. Geological Society, London, Special Publications, 2006, 267(1):51-63. doi: 10.1144/GSL.SP.2006.267.01.04
    [2]
    Kylander M E, Ampel L, Wohlfarth B, et al. High-resolution X-ray fluorescence core scanning analysis of Les Echets (France) sedimentary sequence: new insights from chemical proxies[J]. Journal of Quaternary Science, 2011, 26(1):109-117. doi: 10.1002/jqs.1438
    [3]
    Francus P, Lamb H, Nakagawa T, et al. The potential of high-resolution X-ray fluorescence core scanning: applications in paleolimnology[J]. PAGES News, 2009, 17(3):93-95. doi: 10.22498/pages.17.3.93
    [4]
    Brouwer P. Theory of XRF[M]. Almelo, Netherlands: PANalytical BV, 2006.
    [5]
    Sabatier P, Dezileau L, Colin C, et al. 7000 years of paleostorm activity in the NW Mediterranean Sea in response to Holocene climate events[J]. Quaternary Research, 2012, 77(1):1-11. doi: 10.1016/j.yqres.2011.09.002
    [6]
    Loring D H, Asmund G. Geochemical factors controlling accumulation of major and trace elements in Greenland coastal and fjord Sediments[J]. Environmental Geology, 1996, 28(1):2-11. doi: 10.1007/s002540050072
    [7]
    Hu G, Jin Z D, Zhang F. Constraints of authigenic carbonates on trace elements (Sr, Mg) of lacustrine ostracod shells in paleoenvironment reconstruction and its Mechanism[J]. Science in China Series D: Earth Sciences, 2008, 51(5):654-664. doi: 10.1007/s11430-008-0043-2
    [8]
    Ziegler M, Jilbert T, de Lange G J, et al. Bromine counts from XRF scanning as an estimate of the marine organic carbon content of sediment cores[J]. Geochemistry, Geophysics, Geosystems, 2008, 9(5):Q05009.
    [9]
    Gebregiorgis D, Giosan L, Hathorne E C, et al. What can we learn from X-ray fluorescence core scanning data? A paleomonsoon case study[J]. Geochemistry, Geophysics, Geosystems, 2020, 21(2):e2019GC008414. doi: 10.1029/2019GC008414
    [10]
    李国刚, 李云海, 布如源, 等. 晚更新世以来南极罗斯海陆坡沉积物岩芯常量元素地球化学特征及其古环境意义[J]. 海洋地质与第四纪地质, 2022, 42(4):1-11

    LI Guogang, LI Yunhai, BU Ruyuan, et al. Geochemical characteristics and paleoenvironmental implications of major elements in sediments from the continental slope of the Ross Sea, Antarctica since late Pleistocene[J]. Marine Geology & Quaternary Geology, 2022, 42(4):1-11.]
    [11]
    Bahr A, Lamy F, Arz H, et al. Late glacial to Holocene climate and sedimentation history in the NW Black Sea[J]. Marine Geology, 2005, 214(4):309-322. doi: 10.1016/j.margeo.2004.11.013
    [12]
    Arz H W, Pätzold J, Wefer G. Climatic changes during the last deglaciation recorded in sediment cores from the northeastern Brazilian Continental Margin[J]. Geo-Marine Letters, 1999, 19(3):209-218. doi: 10.1007/s003670050111
    [13]
    Nace T E, Baker P A, Dwyer G S, et al. The role of North Brazil Current transport in the paleoclimate of the Brazilian Nordeste margin and paleoceanography of the western tropical Atlantic during the late Quaternary[J]. Palaeogeography, Palaeoclimatology, Palaeoecology, 2014, 415:3-13. doi: 10.1016/j.palaeo.2014.05.030
    [14]
    Dellwig O, Hinrichs J, Hild A, et al. Changing sedimentation in tidal flat sediments of the southern North Sea from the Holocene to the present: a geochemical approach[J]. Journal of Sea Research, 2000, 44(3-4):195-208. doi: 10.1016/S1385-1101(00)00051-4
    [15]
    Mohtadi M, Oppo D W, Steinke S, et al. Glacial to Holocene swings of the Australian-Indonesian monsoon[J]. Nature Geoscience, 2011, 4(8):540-544. doi: 10.1038/ngeo1209
    [16]
    Kuhnt W, Holbourn A, Xu J, et al. Southern Hemisphere control on Australian monsoon variability during the late deglaciation and Holocene[J]. Nature Communications, 2015, 6(1):5916. doi: 10.1038/ncomms6916
    [17]
    Bahr A, Lamy F, Arz H W, et al. Abrupt changes of temperature and water chemistry in the late Pleistocene and early Holocene Black Sea[J]. Geochemistry, Geophysics, Geosystems, 2008, 9(1):Q01004.
    [18]
    Stoll H M, Schrag D P. Coccolith Sr/Ca as a new indicator of coccolithophorid calcification and growth rate[J]. Geochemistry, Geophysics, Geosystems, 2000, 1(5):1006.
    [19]
    黄永建, 王成善, 汪云亮. 古海洋生产力指标研究进展[J]. 地学前缘, 2005, 12(2):163-170

    HUANG Yongjian, WANG Chengshan, WANG Yunliang. Progress in the study of proxies of paleocean productivity[J]. Earth Science Frontiers, 2005, 12(2):163-170.]
    [20]
    Murphy A E, Sageman B B, Hollander D J, et al. Black shale deposition and faunal overturn in the Devonian Appalachian Basin: clastic starvation, seasonal water-column mixing, and efficient biolimiting nutrient recycling[J]. Paleoceanography, 2000, 15(3):280-291. doi: 10.1029/1999PA000445
    [21]
    Bertrand P, Shimmield G, Martinez P, et al. The glacial ocean productivity hypothesis: the importance of regional temporal and spatial studies[J]. Marine Geology, 1996, 130(1-2):1-9. doi: 10.1016/0025-3227(95)00166-2
    [22]
    傅寒晶, 简星, 梁杭海. 硅酸盐化学风化强度评估的沉积物指标与方法研究进展[J]. 古地理学报, 2021, 23(6):1192-1209

    FU Hanjing, JIAN Xing, LIANG Hanghai. Research progress of sediment indicators and methods for evaluation of silicate chemical weathering intensity[J]. Journal of Palaeogeography, 2021, 23(6):1192-1209.]
    [23]
    Clift P D, Hodges K V, Heslop D, et al. Correlation of Himalayan exhumation rates and Asian monsoon intensity[J]. Nature Geoscience, 2008, 1(12):875-880. doi: 10.1038/ngeo351
    [24]
    Khozyem H, Adatte T, Spangenberg J E, et al. Palaeoenvironmental and climatic changes during the Palaeocene–Eocene Thermal Maximum (PETM) at the Wadi Nukhul Section, Sinai, Egypt[J]. Journal of the Geological Society, 2013, 170(2):341-352. doi: 10.1144/jgs2012-046
    [25]
    汪品先. 大洋钻探五十年: 回顾与前瞻[J]. 科学通报, 2018, 63(36):3868-3876 doi: 10.1360/N972018-01162

    WANG Pinxian. Fifty years of scientific ocean drilling: review and prospect[J]. Chinese Science Bulletin, 2018, 63(36):3868-3876.] doi: 10.1360/N972018-01162
    [26]
    翦知湣, 党皓文. 解读过去、预告未来: IODP气候与海洋变化钻探研究进展与展望[J]. 地球科学进展, 2017, 32(12):1267-1276

    JIAN Zhimin, DANG Haowen. Reading the past, informing the future: progress and prospective of the recent ocean drilling researches on climate and ocean change[J]. Advances in Earth Science, 2017, 32(12):1267-1276.]
    [27]
    Spofforth D J A, Pälike H, Green D. Paleogene record of elemental concentrations in sediments from the Arctic Ocean obtained by XRF Analyses[J]. Paleoceanography, 2008, 23(1):PA1S09.
    [28]
    Teske A, Lizarralde D, Höfig T W, et al. Site U1546[J]. Proceedings of the International Ocean Discovery Program, 2021, 385:1-78.
    [29]
    Teske A, Wegener G, Chanton J P, et al. Microbial communities under distinct thermal and geochemical regimes in Axial and off-axis sediments of Guaymas Basin[J]. Frontiers in Microbiology, 2021, 12:633649. doi: 10.3389/fmicb.2021.633649
    [30]
    Pastor L, Boissier A, Burin C. Data report: wavelength dispersive X-ray fluorescence in sediments from all IODP Expedition 385 sites in the Guaymas Basin[C]//Teske A, Lizarralde D, Höfig T W, et al. Guaymas Basin Tectonics and Biosphere. Proceedings of the International Ocean Discovery Program. College Station: International Ocean Discovery Program, 2023.
    [31]
    秦凡. 中更新世以来瓜伊马斯盆地岩浆活动对沉积物有机质碳源影响[D]. 暨南大学硕士学位论文, 2022

    QIN Fan. Influence of magmatism on sediment organic matter carbon source in Guaymas Basin since middle Pleistocene[D]. Master Dissertation of Jinan University, 2022.]
    [32]
    徐兆凯, 李安春, 李铁刚, 等. 东菲律宾海表层沉积物常量元素组成及地质意义[J]. 海洋地质与第四纪地质, 2010, 30(6):43-48

    XU Zhaokai, LI Anchun, LI Tiegang, et al. Major element compositions of surface sediments in the east Philippine Sea and its geological implication[J]. Marine Geology & Quaternary Geology, 2010, 30(6):43-48.]
    [33]
    Dymond J, Collier R, McManus J, et al. Can the aluminum and titanium contents of ocean sediments be used to determine the paleoproductivity of the oceans?[J]. Paleoceanography, 1997, 12(4):586-593. doi: 10.1029/97PA01135
    [34]
    沈俊, 施张燕, 冯庆来. 古海洋生产力地球化学指标的研究[J]. 地质科技情报, 2011, 30(2):69-77

    SHEN Jun, SHI Zhangyan, FENG Qinglai. Review on geochemical proxies in paleo-productivity studies[J]. Geological Science and Technology Information, 2011, 30(2):69-77.]
    [35]
    Yang S Y, Li C X, Cai J G. Geochemical compositions of core sediments in eastern China: implication for Late Cenozoic palaeoenvironmental changes[J]. Palaeogeography, Palaeoclimatology, Palaeoecology, 2006, 229(4):287-302. doi: 10.1016/j.palaeo.2005.06.026
    [36]
    Riboulleau A, Baudin F, Deconinck J F, et al. Depositional conditions and organic matter preservation pathways in an epicontinental environment: the Upper Jurassic Kashpir Oil Shales (Volga Basin, Russia)[J]. Palaeogeography, Palaeoclimatology, Palaeoecology, 2003, 197(3-4):171-197. doi: 10.1016/S0031-0182(03)00460-7
    [37]
    韦恒叶. 古海洋生产力与氧化还原指标: 元素地球化学综述[J]. 沉积与特提斯地质, 2012, 32(2):76-88

    WEI Hengye. Productivity and redox proxies of palaeo-oceans: an overview of elementary geochemistry[J]. Sedimentary Geology and Tethyan Geology, 2012, 32(2):76-88.]
    [38]
    金秉福, 林振宏, 季福武. 海洋沉积环境和物源的元素地球化学记录释读[J]. 海洋科学进展, 2003, 21(1):99-106

    JIN Bingfu, LIN Zhenhong, JI Fuwu. Interpretation of element geochemical records of marine sedimentary environment and provenance[J]. Advances in Marine Science, 2003, 21(1):99-106.]
    [39]
    Taylor S R, McLennan S M. The Continental Crust: its Composition and Evolution[M]. Oxford: Blackwell Scientific, 1985: 57-72.
    [40]
    Norman M D, De Deckker P. Trace metals in lacustrine and marine sediments: a case study from the Gulf of Carpentaria, northern Australia[J]. Chemical Geology, 1990, 82:299-318. doi: 10.1016/0009-2541(90)90087-N
    [41]
    Chen J, Chen Y, Liu L W, et al. Zr/Rb ratio in the Chinese loess sequences and its implication for changes in the East Asian winter monsoon strength[J]. Geochimica et Cosmochimica Acta, 2006, 70(6):1471-1482. doi: 10.1016/j.gca.2005.11.029
    [42]
    Rudnick R L, Gao S. Composition of the continental crust[M]//Holland H D, Turekian K K. Treatise on Geochemistry. 2nd ed. Oxford: Elsevier, 2014.
    [43]
    丁雪, 胡邦琦, 赵京涛, 等. 九州-帕劳海脊南段及邻近海域表层沉积物元素地球化学特征及其地质意义[J]. 海洋地质与第四纪地质, 2023, 43(1):61-70

    DING Xue, HU Bangqi, ZHAO Jingtao, et al. Elemental geochemical characteristics of surface sediments from the southern Kyushu-Palau Ridge and their geological significance[J]. Marine Geology & Quaternary Geology, 2023, 43(1):61-70.]
    [44]
    赵一阳, 鄢明才. 中国浅海沉积物地球化学[M]. 北京: 科学出版社, 1994

    ZHAO Yiyang, YAN Mingcai. Geochemistry of Sediments of the China Shelf Sea[M]. Beijing: Science Press, 1994.]
    [45]
    Lacey J H, Leng M J, Francke A, et al. Northern Mediterranean climate since the Middle Pleistocene: a 637 ka stable isotope record from Lake Ohrid (Albania/Macedonia)[J]. Biogeosciences, 2016, 13(6):1801-1820. doi: 10.5194/bg-13-1801-2016
    [46]
    Riebe C S, Kirchner J W, Finkel R C. Erosional and climatic effects on long-term chemical weathering rates in granitic landscapes spanning diverse climate regimes[J]. Earth and Planetary Science Letters, 2004, 224(3-4):547-562. doi: 10.1016/j.jpgl.2004.05.019
    [47]
    Dixon J L, Hartshorn A S, Heimsath A M, et al. Chemical weathering response to tectonic forcing: a soils perspective from the San Gabriel Mountains, California[J]. Earth and Planetary Science Letters, 2012, 323-324:40-49. doi: 10.1016/j.jpgl.2012.01.010
    [48]
    Gabet E J, Mudd S M. A theoretical model coupling chemical weathering rates with denudation rates[J]. Geology, 2009, 37(2):151-154. doi: 10.1130/G25270A.1
    [49]
    Yang S Y, Jung H S, Lim D I, et al. A review on the provenance discrimination of sediments in the Yellow Sea[J]. Earth-Science Reviews, 2003, 63(1-2):93-120. doi: 10.1016/S0012-8252(03)00033-3
    [50]
    Bischoff J L, Heath G R, Leinen M. Geochemistry of deep-sea sediments from the Pacific manganese nodule province: DOMES Sites A, B, and C[M]//Bischoff J L, Piper D Z. Marine Geology and Oceanography of the Pacific Manganese Nodule Province. Boston: Springer, 1979: 397-436.
    [51]
    Dean W E, Gardner J V, Piper D Z. Inorganic geochemical indicators of glacial-interglacial changes in productivity and anoxia on the California continental margin[J]. Geochimica et Cosmochimica Acta, 1997, 61(21):4507-4518. doi: 10.1016/S0016-7037(97)00237-8
    [52]
    Dean W, Pride C, Thunell R. Geochemical cycles in sediments deposited on the slopes of the Guaymas and Carmen Basins of the Gulf of California over the last 180 Years[J]. Quaternary Science Reviews, 2004, 23(16-17):1817-1833. doi: 10.1016/j.quascirev.2004.03.010
    [53]
    Daesslé L W, Orozco A, Struck U, et al. Sources and sinks of nutrients and organic carbon during the 2014 pulse flow of the Colorado River into Mexico[J]. Ecological Engineering, 2017, 106:799-808. doi: 10.1016/j.ecoleng.2016.02.018
    [54]
    Baba J, Peterson C D, Schrader H J. Modern fine-grained sediments in the gulf of California[M]//Dauphin J P, Simoneit B R T. The Gulf and Peninsular Province of the Californias. Tulsa: AAPG, 1991: 569-587.
    [55]
    Adamo P, Arienzo M, Imperato M, et al. Distribution and partition of heavy metals in surface and sub-surface sediments of Naples city port[J]. Chemosphere, 2005, 61(6):800-809. doi: 10.1016/j.chemosphere.2005.04.001
    [56]
    Rodríguez-Pérez M Y, Ruiz-Cooley R I, Aurioles-Gamboa D, et al. Deciphering the trophic niche of the nearly extinct vaquita (Phocoena sinus) and its variability through time[J]. Progress in Oceanography, 2021, 199:102694. doi: 10.1016/j.pocean.2021.102694
    [57]
    Lagostina L, Frandsen S, MacGregor B J, et al. Interactions between temperature and energy supply drive microbial communities in hydrothermal sediment[J]. Communications Biology, 2021, 4(1):1006. doi: 10.1038/s42003-021-02507-1
    [58]
    Mejía L M, Paytan A, Eisenhauer A, et al. Controls over δ44/40Ca and Sr/Ca variations in coccoliths: new perspectives from laboratory cultures and cellular models[J]. Earth and Planetary Science Letters, 2018, 481:48-60. doi: 10.1016/j.jpgl.2017.10.013
    [59]
    Rosenthal Y, Katz A. The applicability of trace elements in freshwater shells for paleogeochemical studies[J]. Chemical Geology, 1989, 78(1):65-76. doi: 10.1016/0009-2541(89)90052-1
    [60]
    常凤鸣, 李铁刚. 西太平洋暖池区古海洋学研究[J]. 地球科学进展, 2013, 28(8):847-858

    CHANG Fengming, LI Tiegang. Progress in the paleoceanography of the Western Pacific Warm Pool: a review[J]. Advances in Earth Science, 2013, 28(8):847-858.]
  • Related Articles

    [1]ZHANG Hongliang, HOU Yilin, LI Huayong, LI Zhihui, WANG Qian, YANG Yiping, XU Weidong, YU Zhengsong. Characteristics of X-ray fluorescence scanning element of modern flood sediments in northern Shandong Province and its geological indicative significance[J]. Marine Geology & Quaternary Geology, 2023, 43(3): 185-194. DOI: 10.16562/j.cnki.0256-1492.2022110801
    [2]SHI Chuang, LONG Zulie, ZHU Junzhang, JIANG Zhenglong, HUANG Yuping. Element geochemistry of the Enping Formation in the Baiyun Sag of Pearl River Mouth Basin and their environmental implications[J]. Marine Geology & Quaternary Geology, 2020, 40(5): 79-86. DOI: 10.16562/j.cnki.0256-1492.2020042101
    [3]TANG Rong, FENG Xiuli, FENG Li, XIAO Xiao, FENG Zhiquan. Geochemical characteristics and paleoenvironmental significance of the major elements in the sediments of Core TS6 from the southern part of Southwest Taiwan Basin of the South China Sea[J]. Marine Geology & Quaternary Geology, 2020, 40(2): 58-69. DOI: 10.16562/j.cnki.0256-1492.2019032702
    [4]ZHANG Xiaonan, ZHANG Can, WU Duo, ZHOU Aifeng. ELEMENT GEOCHEMISTRY OF LAKE DEPOSITS MEASURED BY X-RAY FLUORESCENCECORE SCANNER IN NORTHWEST CHINA[J]. Marine Geology & Quaternary Geology, 2015, 35(1): 163-174. DOI: 10.3724/SP.J.1140.2015.01163
    [5]LI Na, ZHAI Shikui, LIU Xinyu, CHEN Kui, JIANG Xiuli, XIU Chun, ZONG Tong, LIU Xiaofeng, CHEN Hongyan, WANG Shujie, CHUN Minghao. THE TRACE ELEMENTS GEOCHEMISTRY AND DEPOSITIONAL ENVIRONMENT CHANGES RECORDED IN THE CORE OF WELL LS33-1-1 IN DEEPWATER AREA OF QIONGDONGNAN BASIN[J]. Marine Geology & Quaternary Geology, 2014, 34(3): 1-12. DOI: 10.3724/SP.J.1140.2014.03001
    [6]LI Sanzhong, SUO Yanhui, LIU Xin, DAI Liming, YU Shan, ZHAO Shujuan, MA Yun, WANG Xiaofei, CHENG Shixiu, AN Huiting, XUE Youchen, XIONG Lijuan, CAO Xianzhi, XU Liqing. BASIN DYNAMICS AND BASIN GROUPS OF THE SOUTH CHINA SEA[J]. Marine Geology & Quaternary Geology, 2012, 32(6): 55-78. DOI: 10.3724/SP.J.1140.2012.06055
    [7]WAN Zhifeng, XIA Bin, LIN Ge, LI Junting, LIU Baoming. HYDROCARBON ACCUMULATION MODEL FOR OVERPRESSURE BASIN: AN EXAMPLE FROM THE YINGGEHAI BASIN[J]. Marine Geology & Quaternary Geology, 2010, 30(6): 91-97. DOI: 10.3724/SP.J.1140.2010.06091
    [8]SUN Guihua, GAO Hongfang, PENG Xuechao, WU Jiaoqi. GEOLOGIC AND TECTONIC CHARACTERISTICS OF THE MEKONG BASIN, SOUTH VIETNAM[J]. Marine Geology & Quaternary Geology, 2010, 30(6): 25-33. DOI: 10.3724/SP.J.1140.2010.06025
    [9]SONG lei, QIANG Mingrui, NIU Guangming, LANG Lili. ELEMENTAL CHARACTERISTICS OF SEDIMENTS FROM LAKE SUGAN IN QAIDAM BASIN AND THE STRONG WIND (DUST STORM) EVENTS[J]. Marine Geology & Quaternary Geology, 2009, 29(1): 95-102. DOI: 10.3724/SP.J.1140.2009.01095
    [10]CHEN Yongquan, ZHOU Xinyuan. GEOCHEMICAL CHARACTERISTICS OF MIDDLE CAMBRIAN-EARLY ORDOVICIAN LIMESTONE AND PALEO-OCEAN RECONSTRUCTION BASED ON δ18OSMOW, 87Sr/86Sr AND RARE EARTH ELEMENTS, TARIM BASIN[J]. Marine Geology & Quaternary Geology, 2009, 29(1): 47-52. DOI: 10.3724/SP.J.1140.2009.01047

Catalog

    Article views (7) PDF downloads (4) Cited by()

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return