Citation: | SONG Jiang,WANG Wenpeng,WANG Hu. The characteristics of Zn species in hydrothermal plumes above arc volcanoes in the Northeast of Lau Basin, Southwest Pacific Ocean[J]. Marine Geology & Quaternary Geology,2025,45(1):122-135. DOI: 10.16562/j.cnki.0256-1492.2024062001 |
Seafloor hydrothermal fluids are rich in various metal elements and could be one of the important sources of metals in the ocean. We investigated Zn species in hydrothermal plumes in different types of hydrothermal systems (water-rock and magmatic-hydrothermal systems) in the northeastern Lau Basin, Southwest Pacific, including particulate Zn (pZn), dissolved Zn (dZn), and colloidal Zn (cZn). Results show that the plumes contained higher pZn concentrations than background seawater (typically <0.5 nM) in maximum of 16.9 nM. In plumes from low-temperature magmatic-hydrothermal systems, pZn concentrations were comparatively low, but still higher than that in background seawater. Even in the plumes that originated from low-temperature venting at West Mata that had dispersed off to over 5 km, the pZn concentration could still reach 3.1 nM, which indicates that pZn did not precipitate rapidly but dispersed in the ocean with the plumes, and the seafloor hydrothermal systems could be one of the sources of pZn in the ocean. The analyses of dZn in the plumes revealed no significant difference in dZn concentration between the two types of hydrothermal systems. Although the input of hydrothermal fluids resulted in higher dZn concentrations in some plume samples compared to background seawater, the adsorption by particulate Fe led to lower dZn concentrations in other plume samples. Therefore, hydrothermal plumes could act as either a source or a sink of dZn in the ocean. Observations in scanning electron microscopy and energy-dispersive X-ray spectroscopy suggest that the cZn in plumes could be from volcanic eruption.
[1] |
Fitzsimmons J N, John S G, Marsay C M, et al. Iron persistence in a distal hydrothermal plume supported by dissolved–particulate exchange[J]. Nature Geoscience, 2017, 10(3):195-201. doi: 10.1038/ngeo2900
|
[2] |
Resing J A, Sedwick P N, German C R, et al. Basin-scale transport of hydrothermal dissolved metals across the South Pacific Ocean[J]. Nature, 2015, 523(7559):200-203. doi: 10.1038/nature14577
|
[3] |
Tagliabue A, Lough A J M, Vic C, et al. Mechanisms driving the dispersal of hydrothermal iron from the northern mid Atlantic ridge[J]. Geophysical Research Letters, 2022, 49(22):e2022GL100615. doi: 10.1029/2022GL100615
|
[4] |
Bennett S A, Achterberg E P, Connelly D P, et al. The distribution and stabilisation of dissolved Fe in deep-sea hydrothermal plumes[J]. Earth and Planetary Science Letters, 2008, 270(3-4):157-167. doi: 10.1016/j.jpgl.2008.01.048
|
[5] |
Shaked Y, Xu Y, Leblanc K, et al. Zinc availability and alkaline phosphatase activity in Emiliania huxleyi: implications for Zn-P co-limitation in the ocean[J]. Limnology and Oceanography, 2006, 51(1):299-309. doi: 10.4319/lo.2006.51.1.0299
|
[6] |
Supuran C T. Carbonic anhydrase inhibitors[J]. Bioorganic & Medicinal Chemistry Letters, 2010, 20(12):3467-3474.
|
[7] |
Sinoir M, Butler E C V, Bowie A R, et al. Zinc marine biogeochemistry in seawater: a review[J]. Marine and Freshwater Research, 2012, 63(7):644-657. doi: 10.1071/MF11286
|
[8] |
Graedel T E, Van Beers D, Bertram M, et al. The multilevel cycle of anthropogenic zinc[J]. Journal of Industrial Ecology, 2005, 9(3):67-90. doi: 10.1162/1088198054821573
|
[9] |
Anderson R F. GEOTRACES: accelerating research on the marine biogeochemical cycles of trace elements and their isotopes[J]. Annual Review of Marine Science, 2020, 12:49-85. doi: 10.1146/annurev-marine-010318-095123
|
[10] |
Little S H, Vance D, Walker-Brown C, et al. The oceanic mass balance of copper and zinc isotopes, investigated by analysis of their inputs, and outputs to ferromanganese oxide sediments[J]. Geochimica et Cosmochimica Acta, 2014, 125:673-693. doi: 10.1016/j.gca.2013.07.046
|
[11] |
Elderfield H, Schultz A. Mid-ocean ridge hydrothermal fluxes and the chemical composition of the ocean[J]. Annual Review of Earth and Planetary Sciences, 1996, 24:191-224. doi: 10.1146/annurev.earth.24.1.191
|
[12] |
Waeles M, Cotte L, Pernet-Coudrier B, et al. On the early fate of hydrothermal iron at deep-sea vents: A reassessment after in situ filtration[J]. Geophysical Research Letters, 2017, 44(9):4233-4240. doi: 10.1002/2017GL073315
|
[13] |
Cotte L, Chavagnac V, Pelleter E, et al. Metal partitioning after in situ filtration at deep-sea vents of the Lucky Strike hydrothermal field (EMSO-Azores, Mid-Atlantic Ridge, 37°N)[J]. Deep Sea Research Part I: Oceanographic Research Papers, 2020, 157:103204. doi: 10.1016/j.dsr.2019.103204
|
[14] |
German C R, Campbell A C, Edmond J M. Hydrothermal scavenging at the Mid-Atlantic Ridge: modification of trace element dissolved fluxes[J]. Earth and Planetary Science Letters, 1991, 107(1):101-114. doi: 10.1016/0012-821X(91)90047-L
|
[15] |
Trocine R P, Trefry J H. Distribution and chemistry of suspended particles from an active hydrothermal vent site on the Mid-Atlantic Ridge at 26°N[J]. Earth and Planetary Science Letters, 1988, 88(1-2):1-15. doi: 10.1016/0012-821X(88)90041-6
|
[16] |
Conway T M, John S G. The biogeochemical cycling of zinc and zinc isotopes in the North Atlantic Ocean[J]. Global Biogeochemical Cycles, 2014, 28(10):1111-1128. doi: 10.1002/2014GB004862
|
[17] |
Roshan S, Wu J F, Jenkins W J. Long-range transport of hydrothermal dissolved Zn in the tropical South Pacific[J]. Marine Chemistry, 2016, 183:25-32. doi: 10.1016/j.marchem.2016.05.005
|
[18] |
De Ronde C E J, Stucker V K. Chapter 47 - Seafloor hydrothermal venting at volcanic arcs and backarcs[M]//Sigurdsson H. The Encyclopedia of Volcanoes. 2nd ed. San Diego: Academic Press, 2015:823-849.
|
[19] |
Bevis M, Taylor F W, Schutz B E, et al. Geodetic observations of very rapid convergence and back-arc extension at the Tonga arc[J]. Nature, 1995, 374(6519):249-251. doi: 10.1038/374249a0
|
[20] |
Zellmer K E, Taylor B. A three-plate kinematic model for Lau Basin opening[J]. Geochemistry, Geophysics, Geosystems, 2001, 2(5):2000GC000106. doi: 10.1029/2000GC000106
|
[21] |
Wiens D A, Kelley K A, Plank T. Mantle temperature variations beneath back-arc spreading centers inferred from seismology, petrology, and bathymetry[J]. Earth and Planetary Science Letters, 2006, 248(1-2):30-42. doi: 10.1016/j.jpgl.2006.04.011
|
[22] |
Keller N S, Arculus R J, Hermann J, et al. Submarine back-arc lava with arc signature: Fonualei Spreading Center, northeast Lau Basin, Tonga[J]. Journal of Geophysical Research: Solid Earth, 2008, 113(B8):2007JB005451. doi: 10.1029/2007JB005451
|
[23] |
Van Keken P E, Hacker B R, Syracuse E M, et al. Subduction factory: 4. Depth-dependent flux of H2O from subducting slabs worldwide[J]. Journal of Geophysical Research: Solid Earth, 2011, 116(B1):B01401.
|
[24] |
Embley R W, Rubin K H. Extensive young silicic volcanism produces large deep submarine lava flows in the NE Lau Basin[J]. Bulletin of Volcanology, 2018, 80(4):36. doi: 10.1007/s00445-018-1211-7
|
[25] |
Resing J A, Rubin K H, Embley R W, et al. Active submarine eruption of boninite in the northeastern Lau Basin[J]. Nature Geoscience, 2011, 4(11):799-806. doi: 10.1038/ngeo1275
|
[26] |
Embley R W, Chadwick Jr W W, Baker E T, et al. Long-term eruptive activity at a submarine arc volcano[J]. Nature, 2006, 441(7092):494-497. doi: 10.1038/nature04762
|
[27] |
Butterfield D A, Nakamura K I, Takano B, et al. High SO2 flux, sulfur accumulation, and gas fractionation at an erupting submarine volcano[J]. Geology, 2011, 39(9):803-806. doi: 10.1130/G31901.1
|
[28] |
Kusakabe M, Komoda Y, Takano B, et al. Sulfur isotopic effects in the disproportionation reaction of sulfur dioxide in hydrothermal fluids: implications for the δ34S variations of dissolved bisulfate and elemental sulfur from active crater lakes[J]. Journal of Volcanology and Geothermal Research, 2000, 97(1-4):287-307. doi: 10.1016/S0377-0273(99)00161-4
|
[29] |
Rubin K H, Chadwick W W Jr, Embley R W, et al. Exploration of the mata submarine volcano group reveals volcano-tectonic-hydrothermal links[C]//American Geophysical Union, Fall Meeting 2018. Washington: AGU, 2018.
|
[30] |
Baumberger T, Lilley M D, Resing J A, et al. Understanding a submarine eruption through time series hydrothermal plume sampling of dissolved and particulate constituents: West Mata, 2008-2012[J]. Geochemistry, Geophysics, Geosystems, 2014, 15(12):4631-4650. doi: 10.1002/2014GC005460
|
[31] |
Walker S L, Baker E T, Lupton J E, et al. Patterns of fine ash dispersal related to volcanic activity at west Mata volcano, NE Lau Basin[J]. Frontiers in Marine Science, 2019, 6:593. doi: 10.3389/fmars.2019.00593
|
[32] |
Wang H, Wang W P, Liu M T, et al. Iron ligands and isotopes in hydrothermal plumes over backarc volcanoes in the Northeast Lau Basin, Southwest Pacific Ocean[J]. Geochimica et Cosmochimica Acta, 2022, 336:341-352. doi: 10.1016/j.gca.2022.09.026
|
[33] |
Rubin K and the Shipboard Scientific Party. 2017 NE Lau Basin cruise report: FK171110, R/V Falkor, November 10-December 18, 2017[R]. Honolulu: University of Hawaii, 2018.
|
[34] |
Resing J A, Mottl M J. Determination of manganese in seawater using flow injection analysis with on-line preconcentration and spectrophotometric detection[J]. Analytical Chemistry, 1992, 64(22):2682-2687. doi: 10.1021/ac00046a006
|
[35] |
Resing J A, Baker E T, Lupton J E, et al. Chemistry of hydrothermal plumes above submarine volcanoes of the Mariana Arc[J]. Geochemistry, Geophysics, Geosystems, 2009, 10(2):Q02009.
|
[36] |
Ellwood M J, Strzepek R, Chen X Y, et al. Some observations on the biogeochemical cycling of zinc in the Australian sector of the Southern Ocean: a dedication to Keith Hunter[J]. Marine and Freshwater Research, 2020, 71(3):355-373. doi: 10.1071/MF19200
|
[37] |
Samanta M, Ellwood M J, Mortimer G E. A method for determining the isotopic composition of dissolved zinc in seawater by MC-ICP-MS with a 67Zn–68Zn double spike[J]. Microchemical Journal, 2016, 126:530-537. doi: 10.1016/j.microc.2016.01.014
|
[38] |
Ge Y C, Zhang R F, Jiang Z Y, et al. Determination of Fe, Ni, Cu, Zn, Cd and Pb in seawater by isotope dilution automatic solid-phase extraction—ICP-MS[J]. Acta Oceanologica Sinica, 2022, 41(8):129-136. doi: 10.1007/s13131-022-2016-2
|
[39] |
Wang H, Yan Q Y, Yang Q H, et al. The size fractionation and speciation of iron in the Longqi hydrothermal plumes on the southwest Indian ridge[J]. Journal of Geophysical Research: Oceans, 2019, 124(6):4029-4043. doi: 10.1029/2018JC014713
|
[40] |
Massoth G J, Baker E T, Lupton J E, et al. Temporal and spatial variability of hydrothermal manganese and iron at Cleft segment, Juan de Fuca Ridge[J]. Journal of Geophysical Research: Solid Earth, 1994, 99(B3):4905-4923. doi: 10.1029/93JB02799
|
[41] |
James R H, Elderfield H. Dissolved and particulate trace metals in hydrothermal plumes at the Mid-Atlantic Ridge[J]. Geophysical Research Letters, 1996, 23(23):3499-3502. doi: 10.1029/96GL01588
|
[42] |
Field M P, Sherrell R M. Dissolved and particulate Fe in a hydrothermal plume at 9°45′N, East Pacific Rise: Slow Fe (II) oxidation kinetics in Pacific plumes[J]. Geochimica et Cosmochimica Acta, 2000, 64(4):619-628. doi: 10.1016/S0016-7037(99)00333-6
|
[43] |
Zhao Y, Vance D, Abouchami W, et al. Biogeochemical cycling of zinc and its isotopes in the Southern Ocean[J]. Geochimica et Cosmochimica Acta, 2014, 125:653-672. doi: 10.1016/j.gca.2013.07.045
|
[44] |
Liao W H, Takano S, Yang S C, et al. Zn isotope composition in the water column of the northwestern pacific ocean: the importance of external sources[J]. Global Biogeochemical Cycles, 2020, 34(1):e2019GB006379. doi: 10.1029/2019GB006379
|
[45] |
Vance D, De Souza G F, Zhao Y, et al. The relationship between zinc, its isotopes, and the major nutrients in the North-East Pacific[J]. Earth and Planetary Science Letters, 2019, 525:115748. doi: 10.1016/j.jpgl.2019.115748
|
[46] |
Samanta M, Ellwood M J, Sinoir M, et al. Dissolved zinc isotope cycling in the Tasman Sea, SW Pacific Ocean[J]. Marine Chemistry, 2017, 192:1-12. doi: 10.1016/j.marchem.2017.03.004
|
[47] |
Cohen N R, Noble A E, Moran D M, et al. Hydrothermal trace metal release and microbial metabolism in the northeastern Lau Basin of the South Pacific Ocean[J]. Biogeosciences, 2021, 18(19):5397-5422. doi: 10.5194/bg-18-5397-2021
|
[48] |
Kleint C, Zitoun R, Neuholz R, et al. Trace metal dynamics in shallow hydrothermal plumes at the kermadec arc[J]. Frontiers in Marine Science, 2022, 8:782734. doi: 10.3389/fmars.2021.782734
|
[49] |
Schlitzer, Reiner, eGEOTRACES. Electronic atlas of GEOTRACES sections and animated 3D scenes[R]. 2021. http://www.egeotraces.org.
|
[50] |
Cloete R, Loock J C, Van Horsten N R, et al. Winter dissolved and particulate zinc in the Indian Sector of the Southern Ocean: Distribution and relation to major nutrients (GEOTRACES GIpr07 transect)[J]. Marine Chemistry, 2021, 236:104031. doi: 10.1016/j.marchem.2021.104031
|
[51] |
Feely R A, Massoth G J, Trefry J H, et al. Composition and sedimentation of hydrothermal plume particles from North Cleft segment, Juan de Fuca Ridge[J]. Journal of Geophysical Research: Solid Earth, 1994, 99(B3):4985-5006. doi: 10.1029/93JB02509
|
[52] |
Edmonds H N, German C R. Particle geochemistry in the Rainbow hydrothermal plume, Mid-Atlantic Ridge[J]. Geochimica et Cosmochimica Acta, 2004, 68(4):759-772. doi: 10.1016/S0016-7037(03)00498-8
|
[53] |
Sun X X, Yang Z S, Fan D J, et al. Suspended zinc sulfide particles in the Southwest Indian Ridge area and their relationship with hydrothermal activity[J]. Chinese Science Bulletin, 2014, 59(9):913-923. doi: 10.1007/s11434-014-0118-8
|
[54] |
Liu X W, Millero F J. The solubility of iron in seawater[J]. Marine Chemistry, 2002, 77(1):43-54. doi: 10.1016/S0304-4203(01)00074-3
|
[55] |
Bermin J, Vance D, Archer C, et al. The determination of the isotopic composition of Cu and Zn in seawater[J]. Chemical Geology, 2006, 226(3-4):280-297. doi: 10.1016/j.chemgeo.2005.09.025
|
[56] |
Bruland K W, Middag R, Lohan M C. 8.2—Controls of trace metals in seawater[M]//Holland H D, Turekian K K. Treatise on Geochemistry. 2nd ed. Amsterdam: Elsevier, 2014:19-51.
|
[57] |
Roshan S, Wu J F. The distribution of dissolved copper in the tropical-subtropical north Atlantic across the GEOTRACES GA03 transect[J]. Marine Chemistry, 2015, 176:189-198. doi: 10.1016/j.marchem.2015.09.006
|
[58] |
Weber T, John S, Tagliabue A, et al. Biological uptake and reversible scavenging of zinc in the global ocean[J]. Science, 2018, 361(6397):72-76. doi: 10.1126/science.aap8532
|
[59] |
Bruland K W. Oceanographic distributions of cadmium, zinc, nickel, and copper in the North Pacific[J]. Earth and Planetary Science Letters, 1980, 47(2):176-198. doi: 10.1016/0012-821X(80)90035-7
|
[60] |
Conway T M, John S G. The cycling of iron, zinc and cadmium in the North East Pacific Ocean – Insights from stable isotopes[J]. Geochimica et Cosmochimica Acta, 2015, 164:262-283. doi: 10.1016/j.gca.2015.05.023
|
[61] |
Wyatt N J, Milne A, Woodward E M S, et al. Biogeochemical cycling of dissolved zinc along the GEOTRACES South Atlantic transect GA10 at 40°S[J]. Global Biogeochemical Cycles, 2014, 28(1):44-56. doi: 10.1002/2013GB004637
|
[62] |
Neff J M. Chapter 10 - Zinc in the ocean[M]//Neff J M. Bioaccumulation in Marine Organisms. Amsterdam: Elsevier, 2002:175-189.
|
[63] |
Croot P L, Baars O, Streu P. The distribution of dissolved zinc in the Atlantic sector of the Southern Ocean[J]. Deep Sea Research Part II: Topical Studies in Oceanography, 2011, 58(25-26):2707-2719. doi: 10.1016/j.dsr2.2010.10.041
|
[64] |
Jensen L T, Lanning N T, Marsay C M, et al. Biogeochemical cycling of colloidal trace metals in the arctic cryosphere[J]. Journal of Geophysical Research: Oceans, 2021, 126(8):e2021JC017394. doi: 10.1029/2021JC017394
|
[65] |
Resing J A, Lebon G, Baker E T, et al. Venting of acid-sulfate fluids in a high-sulfidation setting at NW rota-1 submarine volcano on the Mariana arc[J]. Economic Geology, 2007, 102(6):1047-1061. doi: 10.2113/gsecongeo.102.6.1047
|
[1] | ZENG Zhigang, ZHANG Yuxiang, CHEN Zuxing, LI Xiaohui, QI Haiyan, WANG Xiaoyuan, CHEN Shuai, YIN Xuebo. Seafloor hydrothermal system and its magmatic setting in the western Pacific back-arc basins[J]. Marine Geology & Quaternary Geology, 2021, 41(5): 12-24. DOI: 10.16562/j.cnki.0256-1492.2021070101 |
[2] | LI Xiaohui, YANG Huixin, ZENG Zhigang. Advances in melt inclusion studies in back-arc basin volcanic rocks in Western Pacific[J]. Marine Geology & Quaternary Geology, 2021, 41(1): 166-179. DOI: 10.16562/j.cnki.0256-1492.2020072601 |
[3] | ZHANG Zhen, LI Sanzhong. Tectonic evolution of the Yap trench-arc system[J]. Marine Geology & Quaternary Geology, 2019, 39(5): 138-146. DOI: 10.16562/j.cnki.0256-1492.2019090301 |
[4] | ZHAO Xia, HUANG Peng, HU Ningjing, KONG Juanjuan, LIAO Renqiang, WANG Xiong. CHARACTERISTICS AND INFLUENCE FACTORS OF ELEMENT MIGRATION OF HYDROTHERMAL ALTERED ROCK IN EASTERN MANUS BASIN[J]. Marine Geology & Quaternary Geology, 2017, 37(3): 86-101. DOI: 10.16562/j.cnki.0256-1492.2017.03.009 |
[5] | HE Zhengjun, WEN Zhixin, WANG Zhaoming, YANG Xiaofa, LIU Xiaobing, GUO Chunen. FORMATION MECHANISM AND TECTONIC EVOLUTION OF BACK-ARC BASINS IN THE OKHOTSK SEA[J]. Marine Geology & Quaternary Geology, 2016, 36(4): 93-102. DOI: 10.16562/j.cnki.0256-1492.2016.04.011 |
[6] | LIANG Jie, WEN Zhenhe, XIAO Guolin, ZHANG Yinguo, ZHAO Qingfang, DONG Heping, LI Qing. THE IMPACT OF HYDROTHERMAL ACTIVITY ON THE RESERVOIRS IN THE EAST DEPRESSION OF THE NORTH YELLOW SEA BASIN[J]. Marine Geology & Quaternary Geology, 2015, 35(5): 117-123. DOI: 10.16562/j.cnki.0256-1492.2015.05.014 |
[7] | XUE Youchen, LI Sanzhong, LIU Xin, SUO Yanhui, DAI Liming, YU Shan, ZHAO Shujuan, WANG Pengcheng, XIONG Lijuan, AN Huiting, CHENG Shixiu, WANG Xiaofei, MA Yun. SEGMENTATION OF SUBDUCTION SYSTEM IN THE EASTERN SOUTH CHINA SEA AND DYNAMICS OF RELATED BASIN GROUPS[J]. Marine Geology & Quaternary Geology, 2012, 32(6): 129-147. DOI: 10.3724/SP.J.1140.2012.06129 |
[8] | LI Sanzhong, SUO Yanhui, LIU Xin, DAI Liming, YU Shan, ZHAO Shujuan, MA Yun, WANG Xiaofei, CHENG Shixiu, AN Huiting, XUE Youchen, XIONG Lijuan, CAO Xianzhi, XU Liqing. BASIN DYNAMICS AND BASIN GROUPS OF THE SOUTH CHINA SEA[J]. Marine Geology & Quaternary Geology, 2012, 32(6): 55-78. DOI: 10.3724/SP.J.1140.2012.06055 |
[9] | YAO Bochu, ZHANG Li, WEI Zhenquan, YI Hai, LIN Zhen, WAN Ling, WANG Wanyin, QIU Zhiyun, LI Chunfang. THE MESOZOIC TECTONIC CHARACTERISTICS AND SEDIMENTARY BASINS IN THE EASTERN MARGIN OF SOUTH CHINA[J]. Marine Geology & Quaternary Geology, 2011, 31(3): 47-60. DOI: 10.3724/SP.J.1140.2011.03047 |
[10] | YAN Quanshu, SHI Xuefa, LI Naisheng. GEOLOGY OF LAU BASIN IN THE SOUTHWEST PACIFIC OCEAN[J]. Marine Geology & Quaternary Geology, 2010, 30(1): 131-140. DOI: 10.3724/SP.J.1140.2010.01131 |