ZHANG Zhen, LI Sanzhong. Tectonic evolution of the Yap trench-arc system[J]. Marine Geology & Quaternary Geology, 2019, 39(5): 138-146. DOI: 10.16562/j.cnki.0256-1492.2019090301
Citation: ZHANG Zhen, LI Sanzhong. Tectonic evolution of the Yap trench-arc system[J]. Marine Geology & Quaternary Geology, 2019, 39(5): 138-146. DOI: 10.16562/j.cnki.0256-1492.2019090301

Tectonic evolution of the Yap trench-arc system

More Information
  • Received Date: September 02, 2019
  • Revised Date: September 20, 2019
  • Available Online: November 06, 2019
  • The geological characteristics of the Yap trench-arc system is quite unique, which is dominated by metamorphic rocks and lack of island arc magmatism. Meanwhile, the trench-island distance of the Yap trench-arc system is abnormally short and the accretion wedge is absent. In this paper, the tectonic evolution of the Yap trench-arc system is discussed on the basis of geochemical, geophysical and tectonic data. The metamorphic basement of Yap island has relatively high K2O, Ti and low 87Sr/86Sr ratio, which indicates that the basement is once the oceanic crust of the Parece-Vela basin. A deep triangular area is located on the east side of the Yap trench which separates the Yap island arc from the Caroline ridge. The geophysical characteristics of this triangular area demonstrate that the area has not been affected by the Caroline Hotspot, and then the Caroline ridge does not collide with the Yap island arc directly. Considering the spreading of the Parece-Vela basin in NE-SW trending at 20~15 Ma and the relative sinistral movement of the oceanic crust on both sides of the Parece-Vela basin, the Yap trench is probably a subduction zone formed by the exposure of the spreading center on the eastern side of the Yap island arc, while the triangular area on the eastern side of the Yap trench is caused by the re-exposure of the subduction plates.
  • [1]
    Ohara Y, Fujioka K, Ishizuka O, et al. Peridotites and volcanics from the Yap arc system: implications for tectonics of the southern Philippine Sea Plate [J]. Chemical Geology, 2002, 189(1-2): 35-53. doi: 10.1016/S0009-2541(02)00062-1
    [2]
    Matsuda J I, Zashu S, Ozima M. Sr isotopic studies of volcanic rocks from island arcs in the western pacific [J]. Tectonophysics, 1977, 37(1-3): 141-151. doi: 10.1016/0040-1951(77)90044-0
    [3]
    Shiraki K. Metamorphic basement rocks of Yap Islands, western Pacific: possible oceanic crust beneath an island arc [J]. Earth and Planetary Science Letters, 1971, 13(1): 167-174. doi: 10.1016/0012-821X(71)90120-8
    [4]
    Hawkins J, Batiza R. Metamorphic rocks of the Yap arc-trench system [J]. Earth and Planetary Science Letters, 1977, 37(2): 216-229. doi: 10.1016/0012-821X(77)90166-2
    [5]
    Sato T, Kasahara J, Katao H, et al. Seismic observations at the Yap Islands and the northern Yap Trench [J]. Tectonophysics, 1997, 271(3-4): 285-294. doi: 10.1016/S0040-1951(96)00251-X
    [6]
    Fujiwara T, Tamura C, Nishizawa A, et al. Morphology and tectonics of the Yap Trench [J]. Marine Geophysical Researches, 2000, 21(1-2): 69-86.
    [7]
    Sato T, Matsu’ura M. A kinematic model for evolution of island arc-trench systems [J]. Geophysical Journal International, 1993, 114(3): 512-530. doi: 10.1111/j.1365-246X.1993.tb06984.x
    [8]
    Kim Y M, Lee S M, Okino K. Comparison of gravity anomaly between mature and immature intra-oceanic subduction zones in the western Pacific [J]. Tectonophysics, 2009, 474(3-4): 657-673. doi: 10.1016/j.tecto.2009.05.004
    [9]
    张正一, 董冬冬, 张广旭, 等. 板块俯冲侵蚀雅浦岛弧的地形制约[J]. 海洋地质与第四纪地质, 2017, 37(1):41-50. [ZHANG Zhengyi, DONG Dongdong, ZHANG Guangxu, et al. Topographic constraints on the subduction erosion of the Yap Arc, western Pacific [J]. Marine Geology & Quaternary Geology, 2017, 37(1): 41-50.
    [10]
    McCabe R, Uyeda S. Hypothetical model for the bending of the Mariana Arc[M]//Hayes D E. The Tectonic and Geologic Evolution of Southeast Asian Seas and Islands: Part 2. Washington DC: AGU, 1983: 281-293.
    [11]
    Lee S M. Deformation from the convergence of oceanic lithosphere into Yap trench and its implications for early-stage subduction [J]. Journal of Geodynamics, 2004, 37(1): 83-102. doi: 10.1016/j.jog.2003.10.003
    [12]
    Dong D D, Zhang Z Y, Bai Y L, et al. Topographic and sedimentary features in the Yap subduction zone and their implications for the Caroline Ridge subduction [J]. Tectonophysics, 2018, 722: 410-421. doi: 10.1016/j.tecto.2017.11.030
    [13]
    张吉, 张国良. 雅浦岛弧变质岩成因和构造环境研究[J]. 海洋地质与第四纪地质, 2018, 38(4):71-82. [ZHANG Ji, ZHANG Guoliang. Origin and tectonic setting of metamorphic rocks in the Yap Island Arc [J]. Marine Geology & Quaternary Geology, 2018, 38(4): 71-82.
    [14]
    Okino K, Ohara Y, Kasuga S, et al. The Philippine Sea: new survey results reveal the structure and the history of the marginal basins [J]. Geophysical Research Letters, 1999, 26(15): 2287-2290. doi: 10.1029/1999GL900537
    [15]
    Kasuga S, Ohara Y. A new model of back-arc spreading in the Parece Vela Basin, northwest Pacific margin [J]. Island Arc, 1997, 6(3): 316-326. doi: 10.1111/j.1440-1738.1997.tb00181.x
    [16]
    Sdrolias M, Roest W R, Müller R D. An expression of Philippine Sea plate rotation: the Parece Vela and Shikoku Basins [J]. Tectonophysics, 2004, 394(1-2): 69-86. doi: 10.1016/j.tecto.2004.07.061
    [17]
    Ishizuka O, Yuasa M, Taylor R N, et al. Two contrasting magmatic types coexist after the cessation of back-arc spreading [J]. Chemical Geology, 2009, 266(3-4): 274-296. doi: 10.1016/j.chemgeo.2009.06.014
    [18]
    Tani K, Dunkley D J, Ohara Y. Termination of backarc spreading: zircon dating of a giant oceanic core complex [J]. Geology, 2011, 39(1): 47-50. doi: 10.1130/G31322.1
    [19]
    Beccaluva L, Macciotta G, Savelli C, et al. Geochemistry and K/Ar ages of volcanics dredged in the Philippine Sea (Mariana, Yap, and Palau trenches and Parece Vela Basin)[M]//Hayes D E. The Tectonic and Geologic Evolution of Southeast Asian Seas and Islands. Washington DC: AGU, 1980: 247-268.
    [20]
    Ryan W B F, Carbotte S M, Coplan J O, et al. Global multi‐resolution topography synthesis [J]. Geochemistry, Geophysics, Geosystems, 2009, 10(3): Q03014.
    [21]
    Altis S. Origin and tectonic evolution of the Caroline Ridge and the Sorol Trough, western tropical Pacific, from admittance and a tectonic modeling analysis [J]. Tectonophysics, 1999, 313(3): 271-292. doi: 10.1016/S0040-1951(99)00204-8
    [22]
    Okino K, Ohara Y, Fujiwara T, et al. Tectonics of the southern tip of the Parece Vela Basin, Philippine Sea Plate [J]. Tectonophysics, 2009, 466(3-4): 213-228. doi: 10.1016/j.tecto.2007.11.017
    [23]
    Tayama R. Topography, geology and coral reef of the yap Islands[R]. Contributions from the Institute of Geology and Paleontology, Tohoku Imperial University, 1935, 9: 43(in Japanese).
    [24]
    Cole W S, Todd R, Johnson C G. Conflicting age determination suggested by foraminifera on Yap, Caroline Island [J]. Bulletins of American Paleontology, 1960(186): 77-112.
    [25]
    Pearce J A. Statistical analysis of major element patterns in basalts [J]. Journal of Petrology, 1976, 17(1): 15-43. doi: 10.1093/petrology/17.1.15
    [26]
    Shiraki K, Kuroda N, Maruyama S, et al. Evolution of the Tertiary volcanic rocks in the Izu-Mariana arc [J]. Bulletin Volcanologique, 1987, 41(4): 548-562.
    [27]
    Hickey-Vargas R. Isotope characteristics of submarine lavas from the Philippine Sea: implications for the origin of arc and basin magmas of the Philippine tectonic plate [J]. Earth and Planetary Science Letters, 1991, 107(2): 290-304. doi: 10.1016/0012-821X(91)90077-U
    [28]
    Hickey-Vargas R. Origin of the Indian Ocean-type isotopic signature in basalts from Philippine Sea plate spreading centers: an assessment of local versus large-scale processes [J]. Journal of Geophysical Research: Solid Earth, 1998, 103(B9): 20963-20979. doi: 10.1029/98JB02052
    [29]
    Jenner F E, O'Neill H S C. Analysis of 60 elements in 616 ocean floor basaltic glasses [J]. Geochemistry, Geophysics, Geosystems, 2012, 13(2): Q02005.
    [30]
    Ikeda Y, Nagao K, Ishii T, et al. Contributions of slab fluid and sediment melt components to magmatism in the Mariana Arc-Trough system: evidence from geochemical compositions and Sr, Nd, and noble gas isotope systematics [J]. Island Arc, 2016, 25(4): 253-273. doi: 10.1111/iar.12150
    [31]
    Kohut E J, Stern R J, Kent A J R, et al. Evidence for adiabatic decompression melting in the Southern Mariana Arc from high-Mg lavas and melt inclusions [J]. Contributions to Mineralogy and Petrology, 2006, 152(2): 201-221. doi: 10.1007/s00410-006-0102-7
    [32]
    Pearce J A, Stern R J, Bloomer S H, et al. Geochemical mapping of the Mariana arc-basin system: implications for the nature and distribution of subduction components [J]. Geochemistry, Geophysics, Geosystems, 2005, 6(7): Q07006.
    [33]
    Reagan M K, Ishizuka O, Stern R J, et al. Fore-arc basalts and subduction initiation in the Izu-Bonin-Mariana system [J]. Geochemistry, Geophysics, Geosystems, 2010, 11(3): Q03X12.
    [34]
    Tamura Y, Ishizuka O, Stern R J, et al. Two Primary Basalt Magma types from Northwest Rota-1 Volcano, Mariana Arc [J]. Journal of Petrology, 2012, 52(6): 1143-1183.
    [35]
    Ishizuka O, Taylor R N, Yuasa M, et al. Making and breaking an island arc: a new perspective from the Oligocene Kyushu‐Palau arc, Philippine Sea [J]. Geochemistry, Geophysics, Geosystems, 2011, 12(5): Q05005.
    [36]
    Kobayashi K. Origin of the Palau and Yap trench-arc systems [J]. Geophysical Journal International, 2004, 157(3): 1303-1315. doi: 10.1111/j.1365-246X.2003.02244.x
    [37]
    Kotake Y. Study on the tectonics of Western Pacific region derived from GPS data analysis [J]. Bulletin of Earthquake Research Institute, 2000, 75: 229-334.
    [38]
    Tomoda Y, Fujimoto H. Gravity anomalies in the western Pacific and geophysical interpretation of their origin [J]. Journal of Physics of the Earth, 1981, 29: 387-419. doi: 10.4294/jpe1952.29.387
    [39]
    Deschamps A, Lallemand S. The West Philippine Basin: an Eocene to early Oligocene back arc basin opened between two opposed subduction zones [J]. Journal of Geophysical Research: Solid Earth, 2002, 107(B12): 2322.
    [40]
    Hall R. Cenozoic geological and plate tectonic evolution of SE Asia and the SW Pacific: computer-based reconstructions, model and animations [J]. Journal of Asian Earth Sciences, 2002, 20(4): 353-431. doi: 10.1016/S1367-9120(01)00069-4
  • Related Articles

    [1]YAN Yu, JIANG Fuqing, ZENG Zhigang, ZHENG Hao. Variation of clay mineral input in the Parece Vela Basin since the last 2.1 Ma and the response to the mid-Pleistocene climate transition[J]. Marine Geology & Quaternary Geology, 2022, 42(6): 150-161. DOI: 10.16562/j.cnki.0256-1492.2022071701
    [2]YAN Quanshu, YUAN Long, SHI Xuefa. Magmatism and tectonic evolution of the Parece Vela Basin and the drilling proposal[J]. Marine Geology & Quaternary Geology, 2022, 42(5): 103-109. DOI: 10.16562/j.cnki.0256-1492.2022062003
    [3]HUANG Wei, HU Bangqi, XU Lei, SONG Weiyu, DING Xue, GUO Jianwei, Cui Ruyong, YU Yiyong. Geochemical characteristics and genesis of the ferromanganese nodules in the middle western margin of the Parece Vela Basin[J]. Marine Geology & Quaternary Geology, 2021, 41(1): 199-209. DOI: 10.16562/j.cnki.0256-1492.2020101501
    [4]CHEN Mei, ZHANG Li, SHI Xiaobin, LUO Shuaibing, YU Chuanhai, GUO Lei, FENG Yingci. The Cenozoic evolution of sedimentary environment of Xisha Trough Basin[J]. Marine Geology & Quaternary Geology, 2019, 39(1): 15-24. DOI: 10.16562/j.cnki.0256-1492.2016090401
    [5]ZHANG Ji, ZHANG Guoliang. Origin and tectonic setting of metamorphic rocks in the Yap Island Arc[J]. Marine Geology & Quaternary Geology, 2018, 38(4): 71-82. DOI: 10.16562/j.cnki.0256-1492.2018.04.006
    [6]HE Zhengjun, WEN Zhixin, WANG Zhaoming, YANG Xiaofa, LIU Xiaobing, GUO Chunen. FORMATION MECHANISM AND TECTONIC EVOLUTION OF BACK-ARC BASINS IN THE OKHOTSK SEA[J]. Marine Geology & Quaternary Geology, 2016, 36(4): 93-102. DOI: 10.16562/j.cnki.0256-1492.2016.04.011
    [7]ZHANG Xunhua, HOU Fanghui, SUN Jun, WEN Zhenhe, GUO Xingwei, WANG Zhonglei, ZHU Xiaoqing. GEOLOGICAL OUTLINE AND TECTONIC EVOLUTION OF CHINA SEAS AND ADJACENT AREAS[J]. Marine Geology & Quaternary Geology, 2014, 34(6): 1-8. DOI: 10.3724/SP.J.1140.2014.06001
    [8]MING Jie, LI Anchun, MENG Qingyong, WAN Shiming, YAN Wenwen. QUATERNARY ASSEMBLAGE CHARACTERISTIC AND PROVENANCE OF CLAY MINERALS IN THE PARECEVELA BASIN OF THE EAST PHILIPPINE SEA[J]. Marine Geology & Quaternary Geology, 2012, 32(4): 139-148. DOI: 10.3724/SP.J.1140.2012.04139
    [9]HOU Fang-hui, ZHANG Zhi-xun, ZHANG Xun-hua, LI San-zhong, LI Gang, Guo Xing-wei, Tian Zhen-xing. GEOLOGIC EVOLUTION AND TECTONIC STYLES IN THE SOUTH YELLOW SEA BASIN[J]. Marine Geology & Quaternary Geology, 2008, 28(5): 61-68.
    [10]LI Qing, LI Tie-gang, CHANG Feng-ming, CAO Qi-yuan. EVOLUTION OF UPWELLING IN THE NORTH OF THE OKINAWA TROUGH SINCE ABOUT 7 300 aBP[J]. Marine Geology & Quaternary Geology, 2008, 28(2): 65-70.
  • Cited by

    Periodical cited type(4)

    1. 李双林,赵青芳,王建强,董贺平. 南黄海盆地崂山隆起中南部海底沉积物饱和烃类地球化学特征与热成因烃类输入. 地质通报. 2023(05): 669-679 .
    2. 张鹏辉,付奕霖,梁杰,陈建文,张银国,鲍衍君,薛路,李慧君. 南黄海盆地下古生界油气地质条件与勘探前景. 地质通报. 2021(Z1): 243-251 .
    3. 陈春峰,万延周,张伯成,付晓伟,欧戈,王军,陈浩. 南黄海盆地阜宁组烃源岩地层热压生烃特征. 海洋地质前沿. 2021(04): 18-24 .
    4. 张玉玺,陈建文,张银国. 下扬子-南黄海地区下三叠统“错时相”沉积及成因. 海洋地质前沿. 2021(04): 68-76 .

    Other cited types(0)

Catalog

    Article views (3327) PDF downloads (51) Cited by(4)

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return