PENG Wenrui,XING Lei,LI Qianqian,et al. On seismic monitoring of the scope of CO2 storage in the seabed saline aquifers: Taking the Sleipner CCS project as an example[J]. Marine Geology & Quaternary Geology,2025,45(1):210-224. DOI: 10.16562/j.cnki.0256-1492.2024040401
Citation: PENG Wenrui,XING Lei,LI Qianqian,et al. On seismic monitoring of the scope of CO2 storage in the seabed saline aquifers: Taking the Sleipner CCS project as an example[J]. Marine Geology & Quaternary Geology,2025,45(1):210-224. DOI: 10.16562/j.cnki.0256-1492.2024040401

On seismic monitoring of the scope of CO2 storage in the seabed saline aquifers: Taking the Sleipner CCS project as an example

More Information
  • Received Date: April 03, 2024
  • Revised Date: May 07, 2024
  • Accepted Date: May 07, 2024
  • CO2 saline aquifer sequestration accounts for 98% of the total sequestration potential. In the past, most of the studies on 4D seismic monitoring of the CO2 seabed saline aquifer spread range were qualitatively analyzed by the variability of time-delayed seismic data, which lacked the constraints of well-logging data. Therefore, seismic monitoring methods for the spread range of CO2 seabed saline aquifer storage based on the logging and 4D seismic data collected by the Sleipner Saline Aquifer CO2 Sequestration Project in Norway were investigated. Based on the logging and 4D seismic data collected in the project, the anisotropic response characteristics caused by the change of the CO2-saline two-phase medium in the process of CO2 injection were studied by rock physics modelling, the technique of well control seismic attribute analysis was applied, the seismic attributes that are sensitive to the change of the saturation degree of CO2 were selected, and the seismic forward and inverse analysis were combined to better understand the time-shifted CO2 saline aquifer spread range. Results show that the bulk modulus, bulk density, primary wave velocity, and shear wave velocity of the saturated rocks decreased with the increase of CO2 saturation, the overall amplitude increased in the forward simulation results, the amplitude changes decreased with the increase of CO2 injection, and the root-mean-square (RMS) amplitude attribute was the most sensitive to the change of CO2 saturation. During the injection period, CO2 was mainly transported along the SSW-NNE and accumulates in the higher part of the tectonic structure. Vertically, CO2 was transported from the injection point to the upper layer, and the lower layer reached the maximum spread range earlier than the upper layer. Combined with the nature of the reservoir and the structural interpretation results, the spreading range of CO2 in the reservoir was controlled by mainly the anisotropic permeability and the structural high or low levels.

  • [1]
    IPCC. 2023: Summary for policymakers[C]//Core Writing Team, Lee H, Romero J. Climate Change 2023: Synthesis Report. Contribution of Working Groups I, II and III to the Sixth Assessment Report of the Intergovernmental Panel on Climate Change. Geneva, Switzerland: IPCC, 2023:1-34.
    [2]
    Herzog H, Eliasson B, Kaarstad O. Capturing greenhouse gases[J]. Scientific American, 2000, 282(2):72-79. doi: 10.1038/scientificamerican0200-72
    [3]
    Bachu S. CO2 storage in geological media: Role, means, status and barriers to deployment[J]. Progress in Energy and Combustion Science, 2008, 34(2):254-273. doi: 10.1016/j.pecs.2007.10.001
    [4]
    赵改善. 二氧化碳地质封存地球物理监测: 现状、挑战与未来发展[J]. 石油物探, 2023, 62(2):194-211 doi: 10.3969/j.issn.1000-1441.2023.02.002

    ZHAO Gaishan. Geophysical monitoring for geological carbon sequestration: present status, challenges, and future developments[J]. Geophysical Prospecting for Petroleum, 2023, 62(2):194-211.] doi: 10.3969/j.issn.1000-1441.2023.02.002
    [5]
    张国良, 战明君. 板块俯冲和岩浆过程中碳循环及深部碳储库[J]. 海洋地质与第四纪地质, 2019, 39(5):36-45

    ZHANG Guoliang, ZHAN Mingjun. Carbon cycle and deep carbon storage during subduction and magamatic processes[J]. Marine Geology & Quaternary Geology, 2019, 39(5):36-45.]
    [6]
    李海燕, 彭仕宓, 许明阳, 等. CO2在深部咸水层中的埋存机制研究进展[J]. 科技导报, 2013, 31(2):72-79 doi: 10.3981/j.issn.1000-7857.2013.02.010

    LI Haiyan, PENG Shimi, XU Mingyang, et al. CO2 storage mechanism in deep saline aquifers[J]. Science and Technology Review, 2013, 31(2):72-79.] doi: 10.3981/j.issn.1000-7857.2013.02.010
    [7]
    Falcon-Suarez I, Papageorgiou G, Chadwick A, et al. CO2-brine flow-through on an Utsira Sand core sample: experimental and modelling. Implications for the Sleipner storage field[J]. International Journal of Greenhouse Gas Control, 2018, 68:236-246. doi: 10.1016/j.ijggc.2017.11.019
    [8]
    Williams G A, Chadwick R A. Influence of reservoir-scale heterogeneities on the growth, evolution and migration of a CO2 plume at the Sleipner Field, Norwegian North Sea[J]. International Journal of Greenhouse Gas Control, 2021, 106:103260. doi: 10.1016/j.ijggc.2021.103260
    [9]
    李福来, 刘立, 曲希玉, 等. CO2注入砂岩后的典型自生矿物组合[J]. 海洋地质与第四纪地质, 2009, 29(6):103-109

    LI Fulai, LIU Li, QU Xiyu, et al. Typical authigenic mineral assemblages after CO2 injected into sandstone[J]. Marine Geology & Quaternary Geology, 2009, 29(6):103-109.]
    [10]
    Zhao M X, Liu H S, Wang W Q, et al. Numerical study on mechanical properties and instability characteristics of sandy reservoir containing hydrate interlayer[J]. Ocean Engineering, 2023, 286:115694. doi: 10.1016/j.oceaneng.2023.115694
    [11]
    Liu H W, Liu H S, Li Q Q, et al. A first-arrival wave recognition method based on the optimal dominant energy spectrum[J]. Geophysical Prospecting, 2024, 72(4):1322-1334. doi: 10.1111/1365-2478.13297
    [12]
    Lin H R, Xu J, Xing L, et al. Random noise attenuation of ocean bottom seismometers based on a substep deep denoising autoencoder[J]. Geophysical Prospecting, 2024, 72(4):1428-1441. doi: 10.1111/1365-2478.13302
    [13]
    Xing L, Li Y, Li Q Q, et al. Prediction of shale gas pressure based on multi‐channel seismic inversion in Fuling[J]. Acta Geologica Sinica‐English Edition, 2022, 96(4):1237-1245. doi: 10.1111/1755-6724.14778
    [14]
    Sambo C, Iferobia C C, Babasafari A A, et al. The role of time lapse (4D) seismic technology as reservoir monitoring and surveillance tool: A comprehensive review[J]. Journal of Natural Gas Science and Engineering, 2020, 80:103312. doi: 10.1016/j.jngse.2020.103312
    [15]
    Huang F, Bergmann P, Juhlin C, et al. The first post‐injection seismic monitor survey at the Ketzin pilot CO2 storage site: results from time‐lapse analysis[J]. Geophysical Prospecting, 2018, 66(1):62-84. doi: 10.1111/1365-2478.12497
    [16]
    Chadwick R A, Noy D J. History-matching flow simulations and time-lapse seismic data from the Sleipner CO2 plume[M]//Vining B A, Pickering S C. Petroleum Geology: From Mature Basins to New Frontiers – Proceedings of the 7th Petroleum Geology Conference. London: The Geological Society, 2010:1171-1182.
    [17]
    Roach L A N, White D J. Evolution of a deep CO2 plume from time-lapse seismic imaging at the Aquistore storage site, Saskatchewan, Canada[J]. International Journal of Greenhouse Gas Control, 2018, 74:79-86. doi: 10.1016/j.ijggc.2018.04.025
    [18]
    Fawad M, Mondol N H. Monitoring geological storage of CO2: A new approach[J]. Scientific Reports, 2021, 11(1):5942. doi: 10.1038/s41598-021-85346-8
    [19]
    Cavanagh A J, Haszeldine R S. The Sleipner storage site: Capillary flow modeling of a layered CO2 plume requires fractured shale barriers within the Utsira Formation[J]. International Journal of Greenhouse Gas Control, 2014, 21:101-112. doi: 10.1016/j.ijggc.2013.11.017
    [20]
    Wierzchowska M, Alnes H, Oukili J, et al. Broadband processing improves 4D repeatability and resolution at the Sleipner CO2 storage project, North Sea[C]//82nd EAGE Annual Conference & Exhibition. Amsterdam: European Association of Geoscientists & Engineers, 2021:1-5.
    [21]
    Arts R, Brevik I, Eiken O, et al. Geophysical methods for monitoring marine aquifer CO2 storage–Sleipner experiences[C]//5th Int Conf. on Greenhouse Gas Control Technologies. Australia: Cairns, 2000.
    [22]
    Chadwick R A, Arts R, Eiken O. 4D seismic quantification of a growing CO2 plume at Sleipner, North Sea[M]//Doré A G, Vining B A. Petroleum Geology: North-West Europe and Global Perspectives—Proceedings of the 6th Petroleum Geology Conference. London: The Geological Society, 2005:1385-1399.
    [23]
    Pelemo-Daniels D, Nwafor B O, Stewart R R. CO2 Injection monitoring: enhancing time-lapse seismic inversion for injected volume estimation in the Utsira Formation, Sleipner Field, North Sea[J]. Journal of Marine Science and Engineering, 2023, 11(12):2275. doi: 10.3390/jmse11122275
    [24]
    Pelemo-Daniels D, Stewart R R. Petrophysical property prediction from seismic inversion attributes using rock physics and machine learning: Volve Field, North Sea[J]. Applied Sciences, 2024, 14(4):1345. doi: 10.3390/app14041345
    [25]
    Baklid A, Korbol R, Owren G. Sleipner vest CO2 disposal, CO2 injection into a shallow underground aquifer[C]//SPE Annual Technical Conference and Exhibition. Colorado: SPE, 1996.
    [26]
    Chadwick R A, Holloway S, Kirby G A, et al. The Utsira Sand, Central North Sea–an assessment of its potential for regional CO2 disposal[C]//Proceedings of the 5th International Conference on Greenhouse Gas Control Technologies (GHGT-5). Collingwood: CSIRO Publishing, 2000: 349-354.
    [27]
    Zweigel P, Arts R, Lothe A E, et al. Reservoir geology of the Utsira Formation at the first industrial-scale underground CO2 storage site (Sleipner area, North Sea)[J]. Geological Society, London, Special Publications, 2004, 233:165-180. doi: 10.1144/GSL.SP.2004.233.01.11
    [28]
    Boait F C, White N J, Bickle M J, et al. Spatial and temporal evolution of injected CO2 at the Sleipner Field, North Sea[J]. Journal of Geophysical Research: Solid Earth, 2012, 117(B3):B03309.
    [29]
    Mavko G, Mukerji T, Dvorkin J. The Rock Physics Handbook[M]. California: Cambridge University Press, 2020.
    [30]
    Furre A K, Eiken O. Dual sensor streamer technology used in Sleipner CO2 injection monitoring[J]. Geophysical Prospecting, 2014, 62(5):1075-1088. doi: 10.1111/1365-2478.12120
    [31]
    Lindeberg E. Calculation of thermodynamic properties of CO2, CH4, H2O and their mixtures also including salt with the Excel macro “CO2 Thermodynamics”[J]. SINTEF Report, 2013.
    [32]
    Ghaderi A, Landrø M. Estimation of thickness and velocity changes of injected carbon dioxide layers from prestack time-lapse seismic data[J]. Geophysics, 2009, 74(2):O17-O28. doi: 10.1190/1.3054659
    [33]
    Williams G A, Chadwick R A. An improved history-match for layer spreading within the Sleipner plume including thermal propagation effects[J]. Energy Procedia, 2017, 114:2856-2870. doi: 10.1016/j.egypro.2017.03.1406
    [34]
    Chadwick R A, Holloway S, Brook M S, et al. The case for underground CO2 sequestration in northern Europe[J]. Geological Society, London, Special Publications, 2004, 233(1):17-28. doi: 10.1144/GSL.SP.2004.233.01.03
    [35]
    Xing L, Liu X Q, Liu H S, et al. Research on the construction of a petrophysical model of a heterogeneous reservoir in the hydrate test area in the Shenhu area of the South China Sea (SCS)[J]. Geofluids, 2021, 2021(1):5586118.
    [36]
    Xu S Y, White R E. A new velocity model for clay‐sand mixtures[J]. Geophysical Prospecting, 1995, 43(1):91-118. doi: 10.1111/j.1365-2478.1995.tb00126.x
    [37]
    Kuster G T, Toksöz M N. Velocity and attenuation of seismic waves in two-phase media: Part I. Theoretical formulations[J]. Geophysics, 1974, 39(5):587-606. doi: 10.1190/1.1440450
    [38]
    Voigt W. Lehrbuch der Kristallphysik: (Mit Ausschluss der Kristalloptik)[M]. London: B. G. Teubner, 1910:253-253.
    [39]
    Hill R. The elastic behaviour of a crystalline aggregate[J]. Proceedings of the Physical Society. Section A, 1952, 65(5):349-354. doi: 10.1088/0370-1298/65/5/307
    [40]
    Brie A, Pampuri F, Marsala A F, et al. Shear sonic interpretation in gas-bearing sands[C]//SPE Annual Technical Conference and Exhibition. Texas: SPE, 1995.
    [41]
    沙志彬, 梁金强, 郑涛, 等. 地震属性在天然气水合物预测中的应用[J]. 海洋地质与第四纪地质, 2013, 33(5):185-192

    SHA Zhibin, LIANG Jinqiang, ZHENG Tao, et al. The application of seismic attributes to the prediction of gas hydrates[J]. Marine Geology & Quaternary Geology, 2013, 33(5):185-192.]
    [42]
    靳佳澎, 王秀娟, 陈端新, 等. 基于测井与地震多属性分析神狐海域天然气水合物分布特征[J]. 海洋地质与第四纪地质, 2017, 37(5):122-130

    JIN Jiapeng, WANG Xiujuan, CHEN Duanxin, et al. Distribution of gas hydrate in Shenhu area: identified with well log and seismic multi-attributes[J]. Marine Geology & Quaternary Geology, 2017, 37(5):122-130.]
    [43]
    李旭彤, 吴志强, 张训华. 地震属性分析在南黄海盆地北部坳陷白垩系油气地质特征研究中的应用[J]. 海洋地质与第四纪地质, 2015, 35(6):119-126

    LI Xutong, WU Zhiqiang, ZHANG Xunhua. Petroleum Geology of the Cretaceous in the northern Depression of South Yellow Sea Basin: evidence from seismic attribute analysis[J]. Marine Geology & Quaternary Geology, 2015, 35(6):119-126.]
  • Related Articles

    [1]PENG Wenrui, XING Lei, LI Qianqian, WANG Xu. On seismic monitoring of the scope of CO2 storage in the seabed saline aquifers: Taking the Sleipner CCS project as an example[J]. Marine Geology & Quaternary Geology, 2025, 45(1): 210-224. DOI: 10.16562/j.cnki.0256-1492.2024040401
    [2]ZHAO Yong, LI Jiudi, YANG Pengcheng, SHEN Shan, WANG Danping, DONG Xin, ZHU Ruizhe. Evaluation on of geological suitability for CO2 storage in salty aquifers in the East China Sea Shelf Basin[J]. Marine Geology & Quaternary Geology, 2023, 43(4): 129-139. DOI: 10.16562/j.cnki.0256-1492.2022121401
    [3]GUO Jingteng, XIONG Zhifang, LI Tiegang. Influencing factors of air-sea CO2 exchange in the Western Tropical Pacific during the late Quaternary[J]. Marine Geology & Quaternary Geology, 2023, 43(4): 48-55. DOI: 10.16562/j.cnki.0256-1492.2023071601
    [4]WANG Jiaxian, LIU Changling, NING Fulong, JI Yunkai. Technological research progress on CO2-CH4 replacement for hydrate exploitation and enhancement[J]. Marine Geology & Quaternary Geology, 2023, 43(1): 190-204. DOI: 10.16562/j.cnki.0256-1492.2022032101
    [5]MA Ning, XIONG Wanlin, LONG Zulie, ZHU Junzhang, WEN Huahua, YANG Xingye, WANG Xiaomeng. Types, genesis, and formation of CO2-rich reservoirs in the Yangjiangdong Sag, Pearl River Mouth Basin[J]. Marine Geology & Quaternary Geology, 2023, 43(1): 118-127. DOI: 10.16562/j.cnki.0256-1492.2022062201
    [6]ZHAO Jinhui, HE Chao, ZHAO Liya, LU Huayu. ATMOSPHERIC DUST LOADS AND SPATIAL DIFFERENCE IN NORTH CHINA SINCE LATE PLEISTOCENE: RECORDS FROM TYPICAL SECTIONS[J]. Marine Geology & Quaternary Geology, 2016, 36(2): 153-160. DOI: 10.16562/j.cnki.0256-1492.2016.02.017
    [7]WU Weiqiang, HE Jiaxiong, ZHU Youhai, HUANG Xia, GONG Xiaofeng. ORIGIN, MIGRATION AND ACCUMULATION OF CO2 IN SANSHUI BASIN AT NORTHERN SOUTH CHINA SEA CONTINENTAL MARGIN AND MAIN CONTROLLING FACTORS[J]. Marine Geology & Quaternary Geology, 2012, 32(5): 89-96. DOI: 10.3724/SP.J.1140.2012.05089
    [8]LI Fulai, LIU Li, QU Xiyu, ZHAO Guoxiang, LIU Na, ZHANG Liyuan, YU Zhichao. TYPICAL AUTHIGENIC MINERAL ASSEMBLAGES AFTER CO2 INJECTED INTO SANDSTONE[J]. Marine Geology & Quaternary Geology, 2009, 29(6): 103-109. DOI: 10.3724/SP.J.1140.2009.06103
    [9]HE Jia-xiong, XU Rui-song, LIU Quan-wen, SUN Dong-shan, WAN Zhi-feng. DEVELOPMENT AND EVOLUTION OF MUD DIAPIR AND MIGRATION AND ACCUMULATION OF NATURAL GAS AND CO2 IN YINGGEHAI BASIN[J]. Marine Geology & Quaternary Geology, 2008, 28(1): 91-98.
    [10]WANG Shun-bing, GE Quan-sheng, ZHENG Jing-yun. CLIMATE AND ITS EFFECTS AROUND 2 kaBP IN CHINA[J]. Marine Geology & Quaternary Geology, 2006, 26(2): 123-131.

Catalog

    Article views (45) PDF downloads (36) Cited by()

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return