Citation: | ZHAO Han,ZHANG Guoliang,ZHANG Ji,et al. Magma genesis and evolution of source composition during the weakening of Caroline mantle plume activity[J]. Marine Geology & Quaternary Geology,2022,42(4):122-134. DOI: 10.16562/j.cnki.0256-1492.2022012202 |
[1] |
Ruttor S, Nebel O, Nebel-Yacobsen Y, et al. Alkalinity of ocean island lavas decoupled from enriched source components: a case study from the EM1-PREMA Tasmantid mantle plume [J]. Geochimica et Cosmochimica Acta, 2021, 314: 140-158. doi: 10.1016/j.gca.2021.09.023
|
[2] |
Garcia M O, Jorgenson B A, Mahoney J J, et al. An evaluation of temporal geochemical evolution of Loihi Summit Lavas: results from Alvin submersible dives [J]. Journal of Geophysical Research:Solid Earth, 1993, 98(B1): 537-550. doi: 10.1029/92JB01707
|
[3] |
Garcia M O, Foss D J P, West H B, et al. Geochemical and isotopic evolution of Loihi Volcano, Hawaii [J]. Journal of Petrology, 1995, 36(6): 1647-1674.
|
[4] |
Naumann T R, Geist D J. Generation of alkalic basalt by crystal fractionation of tholeiitic magma [J]. Geology, 1999, 27(5): 423-426. doi: 10.1130/0091-7613(1999)027<0423:GOABBC>2.3.CO;2
|
[5] |
Hirose K. Partial melt compositions of carbonated peridotite at 3 GPa and role of CO2 in alkali-basalt magma generation [J]. Geophysical Research Letters, 1997, 24(22): 2837-2840. doi: 10.1029/97GL02956
|
[6] |
Dasgupta R, Hirschmann M M, Smith N D. Partial Melting experiments of peridotite + CO2 at 3 GPa and genesis of alkalic ocean island basalts [J]. Journal of Petrology, 2007, 48(11): 2093-2124. doi: 10.1093/petrology/egm053
|
[7] |
Gerbode C, Dasgupta R. Carbonate-fluxed melting of MORB-like pyroxenite at 2·9 GPa and genesis of HIMU ocean island basalts [J]. Journal of Petrology, 2010, 51(10): 2067-2088. doi: 10.1093/petrology/egq049
|
[8] |
Kiseeva E S, Yaxley G M, Hermann J, et al. An experimental study of carbonated eclogite at 3·5–5·5 GPa—implications for silicate and carbonate metasomatism in the cratonic mantle [J]. Journal of Petrology, 2012, 53(4): 727-759. doi: 10.1093/petrology/egr078
|
[9] |
Kiseeva E S, Litasov K D, Yaxley G M, et al. Melting and phase relations of carbonated eclogite at 9–21 GPa and the petrogenesis of alkali-rich melts in the deep mantle [J]. Journal of Petrology, 2013, 54(8): 1555-1583. doi: 10.1093/petrology/egt023
|
[10] |
Mallik A, Dasgupta R. Reactive infiltration of MORB-eclogite-derived carbonated silicate melt into fertile peridotite at 3 GPa and genesis of alkalic magmas [J]. Journal of Petrology, 2013, 54(11): 2267-2300. doi: 10.1093/petrology/egt047
|
[11] |
Mallik A, Dasgupta R. Effect of variable CO2 on eclogite-derived andesite and lherzolite reaction at 3 GPa-Implications for mantle source characteristics of alkalic ocean island basalts [J]. Geochemistry, Geophysics, Geosystems, 2014, 15(4): 1533-1557. doi: 10.1002/2014GC005251
|
[12] |
Zhang G L, Chen L H, Jackson M G, et al. Evolution of carbonated melt to alkali basalt in the South China Sea [J]. Nature Geoscience, 2017, 10(3): 229-235. doi: 10.1038/ngeo2877
|
[13] |
Yao J H, Zhang G L, Wang S, et al. Recycling of carbon from the stagnant paleo-Pacific slab beneath Eastern China revealed by olivine geochemistry [J]. Lithos, 2021, 398-399: 106249. doi: 10.1016/j.lithos.2021.106249
|
[14] |
Jackson M G, Dasgupta R. Compositions of HIMU, EM1, and EM2 from global trends between radiogenic isotopes and major elements in ocean island basalts [J]. Earth and Planetary Science Letters, 2008, 276(1-2): 175-186. doi: 10.1016/j.jpgl.2008.09.023
|
[15] |
Jackson M G, Weis D, Huang S C. Major element variations in Hawaiian shield lavas: source features and perspectives from global ocean island basalt (OIB) systematics [J]. Geochemistry, Geophysics, Geosystems, 2012, 13(9): Q09009.
|
[16] |
Dasgupta R, Jackson M G, Lee C Y A. Major element chemistry of ocean island basalts — Conditions of mantle melting and heterogeneity of mantle source [J]. Earth and Planetary Science Letters, 2010, 289(3-4): 377-392. doi: 10.1016/j.jpgl.2009.11.027
|
[17] |
Mattey D P. The minor and trace element geochemistry of volcanic rocks from Truk, Ponape and Kusaie, Eastern Caroline Islands; the evolution of a young hot spot trace across old Pacific Ocean Crust [J]. Contributions to Mineralogy and Petrology, 1982, 80(1): 1-13. doi: 10.1007/BF00376730
|
[18] |
Keating B H, Mattey D P, Naughton J, et al. Age and origin of Truk Atoll, eastern Caroline Islands: geochemical, radiometric-age, and paleomagnetic evidence [J]. GSA Bulletin, 1984, 95(3): 350-356. doi: 10.1130/0016-7606(1984)95<350:AAOOTA>2.0.CO;2
|
[19] |
Keating B H, Mattey D P, Helsley C E, et al. Evidence for a hot spot origin of the Caroline Islands [J]. Journal of Geophysical Research:Solid Earth, 1984, 89(B12): 9937-9948. doi: 10.1029/JB089iB12p09937
|
[20] |
Jackson M G, Price A A, Blichert-Toft J, et al. Geochemistry of lavas from the Caroline hotspot, Micronesia: evidence for primitive and recycled components in the mantle sources of lavas with moderately elevated 3He/4He [J]. Chemical Geology, 2017, 455: 385-400. doi: 10.1016/j.chemgeo.2016.10.038
|
[21] |
Zhang G L, Zhang J, Wang S, et al. Geochemical and chronological constraints on the mantle plume origin of the Caroline Plateau [J]. Chemical Geology, 2020, 540: 119566. doi: 10.1016/j.chemgeo.2020.119566
|
[22] |
Zhang G L, Wang S, Zhang J, et al. Evidence for the essential role of CO2 in the volcanism of the waning Caroline mantle plume [J]. Geochimica et Cosmochimica Acta, 2020, 290: 391-407. doi: 10.1016/j.gca.2020.09.018
|
[23] |
Batanova V G, Thompson J M, Danyushevsky L V, et al. New olivine reference material for in situ microanalysis [J]. Geostandards and Geoanalytical Research, 2019, 43(3): 453-473. doi: 10.1111/ggr.12266
|
[24] |
Dixon T H, Batiza R, Futa K, et al. Petrochemistry, age and isotopic composition of alkali basalts from Ponape Island, Western Pacific [J]. Chemical Geology, 1984, 43(1-2): 1-28. doi: 10.1016/0009-2541(84)90138-4
|
[25] |
McDonough W F, Sun S S. The composition of the Earth [J]. Chemical Geology, 1995, 120(3-4): 223-253. doi: 10.1016/0009-2541(94)00140-4
|
[26] |
Hoernle K, Tilton G, Bas M J L, et al. Geochemistry of oceanic carbonatites compared with continental carbonatites: mantle recycling of oceanic crustal carbonate [J]. Contributions to Mineralogy and Petrology, 2002, 142(5): 520-542. doi: 10.1007/s004100100308
|
[27] |
Sobolev A V, Hofmann A W, Sobolev S V, et al. An olivine-free mantle source of Hawaiian shield basalts [J]. Nature, 2005, 434(7033): 590-597. doi: 10.1038/nature03411
|
[28] |
Sobolev A V, Hofmann A W, Kuzmin D V, et al. The amount of recycled crust in sources of mantle-derived melts [J]. Science, 2007, 316(5823): 412-417. doi: 10.1126/science.1138113
|
[29] |
Herzberg C. Identification of source lithology in the Hawaiian and Canary Islands: implications for origins [J]. Journal of Petrology, 2011, 52(1): 113-146. doi: 10.1093/petrology/egq075
|
[30] |
Prytulak J, Elliott T. TiO2 enrichment in ocean island basalts [J]. Earth and Planetary Science Letters, 2007, 263(3-4): 388-403. doi: 10.1016/j.jpgl.2007.09.015
|
[31] |
Garapić G, Mallik A, Dasgupta R, et al. Oceanic lavas sampling the high-3He/4He mantle reservoir: primitive, depleted, or re-enriched? [J]. American Mineralogist, 2015, 100(10): 2066-2081. doi: 10.2138/am-2015-5154
|
[32] |
Dasgupta R, Hirschmann M M, Stalker K. Immiscible Transition from carbonate-rich to silicate-rich melts in the 3 GPa melting interval of eclogite + CO2 and genesis of silica-undersaturated ocean island lavas [J]. Journal of Petrology, 2006, 47(4): 647-671. doi: 10.1093/petrology/egi088
|
[33] |
Spandler C, Yaxley G, Green D H, et al. Phase relations and melting of anhydrous K-bearing eclogite from 1200 to 1600°C and 3 to 5 GPa [J]. Journal of Petrology, 2008, 49(4): 771-795.
|
[34] |
Herzberg C. Petrology and thermal structure of the Hawaiian plume from Mauna Kea volcano [J]. Nature, 2006, 444(7119): 605-609. doi: 10.1038/nature05254
|
[35] |
Kogiso T, Hirschmann M M, Frost D J. High-pressure partial melting of garnet pyroxenite: possible mafic lithologies in the source of ocean island basalts [J]. Earth and Planetary Science Letters, 2003, 216(4): 603-617. doi: 10.1016/S0012-821X(03)00538-7
|
[36] |
Kogiso T, Hirschmann M M. Partial melting experiments of bimineralic eclogite and the role of recycled mafic oceanic crust in the genesis of ocean island basalts [J]. Earth and Planetary Science Letters, 2006, 249(3-4): 188-199. doi: 10.1016/j.jpgl.2006.07.016
|
[37] |
Andersen T, Neumann E R. Fluid inclusions in mantle xenoliths [J]. Lithos, 2001, 55(1-4): 301-320. doi: 10.1016/S0024-4937(00)00049-9
|
[38] |
Golovin A V, Sharygin V V, Pokhilenko N P. Melt inclusions in olivine phenocrysts in unaltered kimberlites from the Udachnaya-East pipe, Yakutia: some aspects of kimberlite magma evolution during late crystallization stages [J]. Petrology, 2007, 15(2): 168-183. doi: 10.1134/S086959110702004X
|
[39] |
Frezzotti M L, Touret J L R. CO2, carbonate-rich melts, and brines in the mantle [J]. Geoscience Frontiers, 2014, 5(5): 697-710. doi: 10.1016/j.gsf.2014.03.014
|
[40] |
Hudgins T R, Mukasa S B, Simon A C, et al. Melt inclusion evidence for CO2-rich melts beneath the western branch of the East African Rift: implications for long-term storage of volatiles in the deep lithospheric mantle [J]. Contributions to Mineralogy and Petrology, 2015, 169(5): 46. doi: 10.1007/s00410-015-1140-9
|
[1] | OU Fenlan, YU Yanjiang, KOU Beibei, CHEN Liang. Gas hydrate reservoir types, characteristics and development methods[J]. Marine Geology & Quaternary Geology, 2022, 42(1): 194-213. DOI: 10.16562/j.cnki.0256-1492.2021010601 |
[2] | KONG Liru, LUO Min, CHEN Duofu. A tracing study of sediment diagenesis in the Hikurangi subduction zone, New Zealand: Evidence from Sr isotope of pore fluid[J]. Marine Geology & Quaternary Geology, 2021, 41(6): 115-123. DOI: 10.16562/j.cnki.0256-1492.2021071202 |
[3] | YAN Zhonghui, XU Huaning, LI Panfeng, LIU Hong, YANG Jiajia, CHEN Shanshan, YANG Chuangsheng. Research of compensation method for formation Q value based on HHT method[J]. Marine Geology & Quaternary Geology, 2020, 40(1): 175-183. DOI: 10.16562/j.cnki.0256-1492.2018100901 |
[4] | REN Shaofang, ZHENG Xiangmin, AI Dongsheng, ZHOU Limin, WANG Xiaoyong. INFLUENCE OF PRETREATMENT METHODS ON GRAIN-SIZE DISTRIBUTION PATTERN OF THE XIASHU LOESS[J]. Marine Geology & Quaternary Geology, 2014, 34(3): 185-194. DOI: 10.3724/SP.J.1140.2014.03185 |
[5] | ZENG Haiao, WU Jinglu. A METHOD TO EXTRACT AMMONIUM AND NITRATE FROM FRESHWATER FOR NITROGEN ISOTOPE ANALYSIS[J]. Marine Geology & Quaternary Geology, 2013, 33(6): 173-177. DOI: 10.3724/SP.J.1140.2013.06173 |
[6] | NIU Qinghe, QU Jianjun, LIU Benli, WANG Junzhan, XIE Shengbo, WANG Tao. DATING METHODS FOR CHRONOLOGICAL STUDY OF YARDANG LANDFORMS: A REVIEW AND PERSPECTIVE IN APPLICATION[J]. Marine Geology & Quaternary Geology, 2013, 33(4): 201-208. DOI: 10.3724/SP.J.1140.2013.04201 |
[7] | WEI Xiao, WANG Yaping, YANG Yang, CHEN Jian, GAO Jianhua, WANG Aijun, LI Dongyi, HU Guodong. SUSPENDED SEDIMENT CONCENTRATIONS IN SHALLOW SEA: COMPARATIVE STUDY OF METHODS[J]. Marine Geology & Quaternary Geology, 2013, 33(1): 161-170. DOI: 10.3724/SP.J.1140.2013.01161 |
[8] | SHI Jian, WU Zhiqiang, LIU Jiangping, FAN Jianke. NORMAL MOVEOUT STRETCH CORRECTION AND ITS PROCESSING METHOD[J]. Marine Geology & Quaternary Geology, 2011, 31(4): 187-194. DOI: 10.3724/SP.J.1140.2011.04187 |
[9] | ZHOU Xiaojing, CHI Ye, LI Anchun, MENG Qingyong, HU Gang. COMPARISON BETWEEN TWO METHODS USED FOR CALCULATING RELATIVE CLAY MINERAL CONTENTS[J]. Marine Geology & Quaternary Geology, 2009, 29(6): 149-156. DOI: 10.3724/SP.J.1140.2009.06149 |
[10] | GE Shu-lan, SHI Xue-fa, ZHANG Wei-bin. GENERAL REVIEW FOR METHODS OF RELATIVE GEOMAGNETIC PALEOINTENSITY STUDY[J]. Marine Geology & Quaternary Geology, 2007, 27(2): 65-70. |