ZHAO Han,ZHANG Guoliang,ZHANG Ji,et al. Magma genesis and evolution of source composition during the weakening of Caroline mantle plume activity[J]. Marine Geology & Quaternary Geology,2022,42(4):122-134. DOI: 10.16562/j.cnki.0256-1492.2022012202
Citation: ZHAO Han,ZHANG Guoliang,ZHANG Ji,et al. Magma genesis and evolution of source composition during the weakening of Caroline mantle plume activity[J]. Marine Geology & Quaternary Geology,2022,42(4):122-134. DOI: 10.16562/j.cnki.0256-1492.2022012202

Magma genesis and evolution of source composition during the weakening of Caroline mantle plume activity

More Information
  • Received Date: January 21, 2022
  • Revised Date: April 11, 2022
  • Accepted Date: April 11, 2022
  • Available Online: May 11, 2022
  • The Caroline seamount chain consists of Chuuk (14.8~4.3 Ma), Pohnpei (8.7~<1 Ma), Kosrae (2~1 Ma) islands and a series of seamounts as the result of late-stage mantle plume. Geochemical variations in the seamount chain can deepen the understanding of late activity of the mantle plume. The whole rock major- and trace-elements, electron probe mineral analyses of the samples from Chuuk and Kosrae islands were conducted, and the results were compared with published data of Pohnpei. Kosrae and Chuuk islands are composed of nephelinites and alkaline basalts, reflecting typical ocean-island alkaline basalts in trace element patterns. Olivine phenocrysts in the samples are Ni-enriched but Ca-Mn–depleted, which is similar to olivines from Hawaiian OIB (ocean island basalt), suggesting the existence of pyroxenite in the mantle source. The presence of carbonate melt inclusions in the olivine phenocryst (Fo=85 mol%) of Kosrae nephelinite indicates that CO2 plays an important role in mantle melting and magma generation. The average La/Sm ratio of volcanic rocks gradually increases from Chuuk, Ponape, to Kosrae, which may reflect the decreasing degree of mantle melting during the weakening of the Caroline hot spot activity. In addition, the Nb/Nb* ratio decreases with the increase of La/Sm, Sm/Yb ratios and the decrease of SiO2, indicating the enhancing effect of CO2 due to the decrease in mantle melting degree. Therefore, the continuous geochemical changes of volcanic rocks from Chuuk, Ponape, Kosrae islands are caused by the gradual weakening of Caroline mantle plume activity, during which CO2 plays an increasingly obvious role in genesis of volcanic rocks.
  • [1]
    Ruttor S, Nebel O, Nebel-Yacobsen Y, et al. Alkalinity of ocean island lavas decoupled from enriched source components: a case study from the EM1-PREMA Tasmantid mantle plume [J]. Geochimica et Cosmochimica Acta, 2021, 314: 140-158. doi: 10.1016/j.gca.2021.09.023
    [2]
    Garcia M O, Jorgenson B A, Mahoney J J, et al. An evaluation of temporal geochemical evolution of Loihi Summit Lavas: results from Alvin submersible dives [J]. Journal of Geophysical Research:Solid Earth, 1993, 98(B1): 537-550. doi: 10.1029/92JB01707
    [3]
    Garcia M O, Foss D J P, West H B, et al. Geochemical and isotopic evolution of Loihi Volcano, Hawaii [J]. Journal of Petrology, 1995, 36(6): 1647-1674.
    [4]
    Naumann T R, Geist D J. Generation of alkalic basalt by crystal fractionation of tholeiitic magma [J]. Geology, 1999, 27(5): 423-426. doi: 10.1130/0091-7613(1999)027<0423:GOABBC>2.3.CO;2
    [5]
    Hirose K. Partial melt compositions of carbonated peridotite at 3 GPa and role of CO2 in alkali-basalt magma generation [J]. Geophysical Research Letters, 1997, 24(22): 2837-2840. doi: 10.1029/97GL02956
    [6]
    Dasgupta R, Hirschmann M M, Smith N D. Partial Melting experiments of peridotite + CO2 at 3 GPa and genesis of alkalic ocean island basalts [J]. Journal of Petrology, 2007, 48(11): 2093-2124. doi: 10.1093/petrology/egm053
    [7]
    Gerbode C, Dasgupta R. Carbonate-fluxed melting of MORB-like pyroxenite at 2·9 GPa and genesis of HIMU ocean island basalts [J]. Journal of Petrology, 2010, 51(10): 2067-2088. doi: 10.1093/petrology/egq049
    [8]
    Kiseeva E S, Yaxley G M, Hermann J, et al. An experimental study of carbonated eclogite at 3·5–5·5 GPa—implications for silicate and carbonate metasomatism in the cratonic mantle [J]. Journal of Petrology, 2012, 53(4): 727-759. doi: 10.1093/petrology/egr078
    [9]
    Kiseeva E S, Litasov K D, Yaxley G M, et al. Melting and phase relations of carbonated eclogite at 9–21 GPa and the petrogenesis of alkali-rich melts in the deep mantle [J]. Journal of Petrology, 2013, 54(8): 1555-1583. doi: 10.1093/petrology/egt023
    [10]
    Mallik A, Dasgupta R. Reactive infiltration of MORB-eclogite-derived carbonated silicate melt into fertile peridotite at 3 GPa and genesis of alkalic magmas [J]. Journal of Petrology, 2013, 54(11): 2267-2300. doi: 10.1093/petrology/egt047
    [11]
    Mallik A, Dasgupta R. Effect of variable CO2 on eclogite-derived andesite and lherzolite reaction at 3 GPa-Implications for mantle source characteristics of alkalic ocean island basalts [J]. Geochemistry, Geophysics, Geosystems, 2014, 15(4): 1533-1557. doi: 10.1002/2014GC005251
    [12]
    Zhang G L, Chen L H, Jackson M G, et al. Evolution of carbonated melt to alkali basalt in the South China Sea [J]. Nature Geoscience, 2017, 10(3): 229-235. doi: 10.1038/ngeo2877
    [13]
    Yao J H, Zhang G L, Wang S, et al. Recycling of carbon from the stagnant paleo-Pacific slab beneath Eastern China revealed by olivine geochemistry [J]. Lithos, 2021, 398-399: 106249. doi: 10.1016/j.lithos.2021.106249
    [14]
    Jackson M G, Dasgupta R. Compositions of HIMU, EM1, and EM2 from global trends between radiogenic isotopes and major elements in ocean island basalts [J]. Earth and Planetary Science Letters, 2008, 276(1-2): 175-186. doi: 10.1016/j.jpgl.2008.09.023
    [15]
    Jackson M G, Weis D, Huang S C. Major element variations in Hawaiian shield lavas: source features and perspectives from global ocean island basalt (OIB) systematics [J]. Geochemistry, Geophysics, Geosystems, 2012, 13(9): Q09009.
    [16]
    Dasgupta R, Jackson M G, Lee C Y A. Major element chemistry of ocean island basalts — Conditions of mantle melting and heterogeneity of mantle source [J]. Earth and Planetary Science Letters, 2010, 289(3-4): 377-392. doi: 10.1016/j.jpgl.2009.11.027
    [17]
    Mattey D P. The minor and trace element geochemistry of volcanic rocks from Truk, Ponape and Kusaie, Eastern Caroline Islands; the evolution of a young hot spot trace across old Pacific Ocean Crust [J]. Contributions to Mineralogy and Petrology, 1982, 80(1): 1-13. doi: 10.1007/BF00376730
    [18]
    Keating B H, Mattey D P, Naughton J, et al. Age and origin of Truk Atoll, eastern Caroline Islands: geochemical, radiometric-age, and paleomagnetic evidence [J]. GSA Bulletin, 1984, 95(3): 350-356. doi: 10.1130/0016-7606(1984)95<350:AAOOTA>2.0.CO;2
    [19]
    Keating B H, Mattey D P, Helsley C E, et al. Evidence for a hot spot origin of the Caroline Islands [J]. Journal of Geophysical Research:Solid Earth, 1984, 89(B12): 9937-9948. doi: 10.1029/JB089iB12p09937
    [20]
    Jackson M G, Price A A, Blichert-Toft J, et al. Geochemistry of lavas from the Caroline hotspot, Micronesia: evidence for primitive and recycled components in the mantle sources of lavas with moderately elevated 3He/4He [J]. Chemical Geology, 2017, 455: 385-400. doi: 10.1016/j.chemgeo.2016.10.038
    [21]
    Zhang G L, Zhang J, Wang S, et al. Geochemical and chronological constraints on the mantle plume origin of the Caroline Plateau [J]. Chemical Geology, 2020, 540: 119566. doi: 10.1016/j.chemgeo.2020.119566
    [22]
    Zhang G L, Wang S, Zhang J, et al. Evidence for the essential role of CO2 in the volcanism of the waning Caroline mantle plume [J]. Geochimica et Cosmochimica Acta, 2020, 290: 391-407. doi: 10.1016/j.gca.2020.09.018
    [23]
    Batanova V G, Thompson J M, Danyushevsky L V, et al. New olivine reference material for in situ microanalysis [J]. Geostandards and Geoanalytical Research, 2019, 43(3): 453-473. doi: 10.1111/ggr.12266
    [24]
    Dixon T H, Batiza R, Futa K, et al. Petrochemistry, age and isotopic composition of alkali basalts from Ponape Island, Western Pacific [J]. Chemical Geology, 1984, 43(1-2): 1-28. doi: 10.1016/0009-2541(84)90138-4
    [25]
    McDonough W F, Sun S S. The composition of the Earth [J]. Chemical Geology, 1995, 120(3-4): 223-253. doi: 10.1016/0009-2541(94)00140-4
    [26]
    Hoernle K, Tilton G, Bas M J L, et al. Geochemistry of oceanic carbonatites compared with continental carbonatites: mantle recycling of oceanic crustal carbonate [J]. Contributions to Mineralogy and Petrology, 2002, 142(5): 520-542. doi: 10.1007/s004100100308
    [27]
    Sobolev A V, Hofmann A W, Sobolev S V, et al. An olivine-free mantle source of Hawaiian shield basalts [J]. Nature, 2005, 434(7033): 590-597. doi: 10.1038/nature03411
    [28]
    Sobolev A V, Hofmann A W, Kuzmin D V, et al. The amount of recycled crust in sources of mantle-derived melts [J]. Science, 2007, 316(5823): 412-417. doi: 10.1126/science.1138113
    [29]
    Herzberg C. Identification of source lithology in the Hawaiian and Canary Islands: implications for origins [J]. Journal of Petrology, 2011, 52(1): 113-146. doi: 10.1093/petrology/egq075
    [30]
    Prytulak J, Elliott T. TiO2 enrichment in ocean island basalts [J]. Earth and Planetary Science Letters, 2007, 263(3-4): 388-403. doi: 10.1016/j.jpgl.2007.09.015
    [31]
    Garapić G, Mallik A, Dasgupta R, et al. Oceanic lavas sampling the high-3He/4He mantle reservoir: primitive, depleted, or re-enriched? [J]. American Mineralogist, 2015, 100(10): 2066-2081. doi: 10.2138/am-2015-5154
    [32]
    Dasgupta R, Hirschmann M M, Stalker K. Immiscible Transition from carbonate-rich to silicate-rich melts in the 3 GPa melting interval of eclogite + CO2 and genesis of silica-undersaturated ocean island lavas [J]. Journal of Petrology, 2006, 47(4): 647-671. doi: 10.1093/petrology/egi088
    [33]
    Spandler C, Yaxley G, Green D H, et al. Phase relations and melting of anhydrous K-bearing eclogite from 1200 to 1600°C and 3 to 5 GPa [J]. Journal of Petrology, 2008, 49(4): 771-795.
    [34]
    Herzberg C. Petrology and thermal structure of the Hawaiian plume from Mauna Kea volcano [J]. Nature, 2006, 444(7119): 605-609. doi: 10.1038/nature05254
    [35]
    Kogiso T, Hirschmann M M, Frost D J. High-pressure partial melting of garnet pyroxenite: possible mafic lithologies in the source of ocean island basalts [J]. Earth and Planetary Science Letters, 2003, 216(4): 603-617. doi: 10.1016/S0012-821X(03)00538-7
    [36]
    Kogiso T, Hirschmann M M. Partial melting experiments of bimineralic eclogite and the role of recycled mafic oceanic crust in the genesis of ocean island basalts [J]. Earth and Planetary Science Letters, 2006, 249(3-4): 188-199. doi: 10.1016/j.jpgl.2006.07.016
    [37]
    Andersen T, Neumann E R. Fluid inclusions in mantle xenoliths [J]. Lithos, 2001, 55(1-4): 301-320. doi: 10.1016/S0024-4937(00)00049-9
    [38]
    Golovin A V, Sharygin V V, Pokhilenko N P. Melt inclusions in olivine phenocrysts in unaltered kimberlites from the Udachnaya-East pipe, Yakutia: some aspects of kimberlite magma evolution during late crystallization stages [J]. Petrology, 2007, 15(2): 168-183. doi: 10.1134/S086959110702004X
    [39]
    Frezzotti M L, Touret J L R. CO2, carbonate-rich melts, and brines in the mantle [J]. Geoscience Frontiers, 2014, 5(5): 697-710. doi: 10.1016/j.gsf.2014.03.014
    [40]
    Hudgins T R, Mukasa S B, Simon A C, et al. Melt inclusion evidence for CO2-rich melts beneath the western branch of the East African Rift: implications for long-term storage of volatiles in the deep lithospheric mantle [J]. Contributions to Mineralogy and Petrology, 2015, 169(5): 46. doi: 10.1007/s00410-015-1140-9
  • Related Articles

    [1]WEI Jilin, LIU Hailong, ZHENG Weipeng, LIN Pengfei, ZHAO Yan. Simulation of the mid-to-low latitudes seaways changes and the impact on the Atlantic Meridional Overturning Circulation and climate during the Miocene[J]. Marine Geology & Quaternary Geology, 2024, 44(4): 32-40. DOI: 10.16562/j.cnki.0256-1492.2024060701
    [2]LEI Baohua, ZHANG Yinguo, WANG Mingjian, CHEN Jianwen, LIANG Jie, WANG Wenjuan. Structural characteristics and hydrocarbon exploration prospect of the Laoshan uplift in the South Yellow Sea Basin[J]. Marine Geology & Quaternary Geology, 2022, 42(2): 131-143. DOI: 10.16562/j.cnki.0256-1492.2021101201
    [3]LI Xiang, YE Jun, LIU Xijun, SHI Xuefa, LI Chuanshun, YAN Shijuan. Mineralogical and geological significance of hydrothermal products: A case from the Chihu hydrothermal field, South Mid-Atlantic Ridge[J]. Marine Geology & Quaternary Geology, 2022, 42(2): 46-58. DOI: 10.16562/j.cnki.0256-1492.2021062301
    [4]YE Xiaoxian, Harunur Rashid. Changes of the upper water column at the 45°N North Atlantic since marine isotope stage 3[J]. Marine Geology & Quaternary Geology, 2021, 41(3): 114-123. DOI: 10.16562/j.cnki.0256-1492.2020073102
    [5]ZHOU Baochun, WANG Rujian, MEI Jing. THE SPREADING OF ATLANTIC WATER ONTO CHUKCHI PLATEAU AFTER LAST DEGLACIATION: EVIDENCE FROM FOSSIL OSTRACODS[J]. Marine Geology & Quaternary Geology, 2015, 35(3): 73-82. DOI: 10.3724/SP.J.1140.2015.03073
    [6]YANG Yongcai, SUN Yumei, LI Youchuan, ZHANG Shulin. DISTRIBUTION OF THE SOURCE ROCKS AND MECHANISMS FOR PETROLEUM ENRICHMENT IN THE CONJUGATE BASINS ON THE SOUTH ATLANTIC PASSIVE MARGINS: CASES STUDIES FROM THE SANTOS AND NAMIBE BASINS[J]. Marine Geology & Quaternary Geology, 2015, 35(2): 157-167. DOI: 10.3724/SP.J.1140.2015.02157
    [7]DING Xue, LI Jun, ZHENG Changqing, HUANG Wei, CUI Ruyong, DOU Yanguang, SUN Zhilei. CHEMICAL COMPOSITION OF THE BASALTS ON EAST PACIFIC RISE (1.5°N~1.5°S) AND SOUTH MID-ATLANTIC RIDGE (13.2°S)[J]. Marine Geology & Quaternary Geology, 2014, 34(5): 57-66. DOI: 10.3724/SP.J.1140.2014.05057
    [8]WANG Zhangshi, ZHONG Guangfa, SHI Hesheng, WANG Liaoliang. SEISMIC SEQUENCE FRAMEWORK AND DEPOSITIONAL EVOLUTION OF THE SEDIMENT DRIFT AT ODP SITE 1144, DONGSHA SLOPE, NORTHERN SOUTH CHINA SEA[J]. Marine Geology & Quaternary Geology, 2011, 31(6): 55-63. DOI: 10.3724/SP.J.1140.2011.06055
    [9]SHI Fengdeng, CHENG Zhenbo, SHI Xuefa, WU Yonghua, LI Xiaoyan, ZHANG Yulan, JU Xiaohua. PALYNOLOGICAL ASSEMBLAGES AND THEIR PALEOENVIRONMENTAL SIGNIFICANCE IN CORE CJ08-185 SINCE THE ATLANTIC PERIOD,SOUTH YELLOW SEA[J]. Marine Geology & Quaternary Geology, 2009, 29(6): 83-87. DOI: 10.3724/SP.J.1140.2009.06083
    [10]CAO Qiang, YE Jia-ren, SHI Wan-zhong. APPLICATION OF THE METHOD OF SEISMIC ATTRIBUTION TO PREDICTION OF SOURCE ROCK THICKNESS IN NEW EXPLORATION AREAS OF NORTH DEPRESSION IN SOUTH YELLOW SEA BASIN[J]. Marine Geology & Quaternary Geology, 2008, 28(5): 109-114.
  • Cited by

    Periodical cited type(4)

    1. 秦雨珂,程珂珂,杨波,郑惠娜,蔡中华,肖宝华,周进. 珊瑚共生体碳代谢特征研究进展. 生态学报. 2024(09): 3561-3574 .
    2. 陈雨梅,齐钊,尹连政,常逢彤,鞠涵烨,刁晓平. 不同珊瑚对酸化、苯并[a]芘单一和复合胁迫的生理响应. 生态毒理学报. 2023(03): 456-464 .
    3. 胡子恒. 海水酸化和升温对三角褐指藻光合和呼吸的影响. 生物化工. 2023(06): 125-128 .
    4. 陈柳云,吴苑,张玉强. MEBM视角下的广东徐闻珊瑚礁保护研究进展. 生态科学. 2022(04): 231-241 .

    Other cited types(8)

Catalog

    Article views (2297) PDF downloads (69) Cited by(12)

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return