Citation: | WEI Jilin,LIU Hailong,ZHENG Weipeng,et al. Simulation of the mid-to-low latitudes seaways changes and the impact on the Atlantic Meridional Overturning Circulation and climate during the Miocene[J]. Marine Geology & Quaternary Geology,2024,44(4):32-40. DOI: 10.16562/j.cnki.0256-1492.2024060701 |
Since the Middle Miocene, the opening and closing of the Tethys and Panama seaways may have directly affected the intensity and spatial morphology of the Atlantic Meridional Overturning Current (AMOC). However, systematic studies on the connection between the two key mid- and low-latitude seaways and the AMOC are few. Based on the boundary conditions of the Middle Miocene, we conducted a Middle Miocene climate simulation experiment using a coupled climate model and a sensitivity experiment of the successive closure of the Tethys and Panama seaways. Results show that the openings of Tethys and Panama seaways provided "shortcuts" for tropical Indian and Pacific Ocean waters to enter the North Atlantic, respectively, and transported high-salinity and low-salinity seawater to the North Atlantic, respectively, which played opposite roles in the change of AMOC intensity. The opening of the Tethys Seaway enhanced the AMOC, which offset the weakening of the AMOC caused by the opening of the Panama Seaway. The closure of these two mid- and low-latitude seaways could cause a north-south asymmetric response of global sea surface temperature, and the dividing line was roughly located at the latitude of the Panama Seaway. This study showed that the modern spatial structure of AMOC could be formed only when the Tethys Seaway and the Panama Seaway were closed. Therefore, the closure time of these two mid- and low-latitude seaways is of great significance for studying the evolution of AMOC.
[1] |
Broecker W S. The great ocean conveyor[J]. Oceanography, 1991, 4(2):79-89. doi: 10.5670/oceanog.1991.07
|
[2] |
Speich S, Blanke B, Madec G. Warm and cold water routes of an O. G. C. M. thermohaline conveyor belt[J]. Geophysical Research Letters, 2001, 28(2):311-314. doi: 10.1029/2000GL011748
|
[3] |
Gordon A L. Interocean exchange of thermocline water[J]. Journal of Geophysical Research: Oceans, 1986, 91(C4):5037-5046. doi: 10.1029/JC091iC04p05037
|
[4] |
Coxall H K, Huck C E, Huber M, et al. Export of nutrient rich Northern Component Water preceded early Oligocene Antarctic glaciation[J]. Nature Geoscience, 2018, 11(3):190-196. doi: 10.1038/s41561-018-0069-9
|
[5] |
Hague A M, Thomas D J, Huber M, et al. Convection of North Pacific deep water during the early Cenozoic[J]. Geology, 2012, 40(6):527-530. doi: 10.1130/G32886.1
|
[6] |
McKinley C C, Thomas D J, Levay L J, et al. Nd isotopic structure of the Pacific Ocean 40-10 Ma, and evidence for the reorganization of deep North Pacific Ocean circulation between 36 and 25 Ma[J]. Earth and Planetary Science Letters, 2019, 521:139-149. doi: 10.1016/j.jpgl.2019.06.009
|
[7] |
Thomas D J, Korty R, Huber M, et al. Nd isotopic structure of the Pacific Ocean 70-30 Ma and numerical evidence for vigorous ocean circulation and ocean heat transport in a greenhouse world[J]. Paleoceanography, 2014, 29(5):454-469. doi: 10.1002/2013PA002535
|
[8] |
Frigola A, Prange M, Schulz M. Boundary conditions for the Middle Miocene Climate Transition (MMCT v1.0)[J]. Geoscientific Model Development, 2018, 11(4):1607-1626. doi: 10.5194/gmd-11-1607-2018
|
[9] |
Herold N, Seton M, Müller R D, et al. Middle Miocene tectonic boundary conditions for use in climate models[J]. Geochemistry, Geophysics, Geosystems, 2008, 9(10):Q10009.
|
[10] |
Steinthorsdottir M, Coxall H K, de Boer A M, et al. The miocene: the future of the past[J]. Paleoceanography and Paleoclimatology, 2021, 36(4):e2020PA004037. doi: 10.1029/2020PA004037
|
[11] |
Butzin M, Lohmann G, Bickert T. Miocene ocean circulation inferred from marine carbon cycle modeling combined with benthic isotope records[J]. Paleoceanography, 2011, 26(1):PA1203.
|
[12] |
Lunt D J, Valdes P J, Haywood A, et al. Closure of the Panama Seaway during the Pliocene: implications for climate and Northern Hemisphere glaciation[J]. Climate Dynamics, 2008, 30(1):1-18.
|
[13] |
Rögl F. Mediterranean and paratethys. Facts and hypotheses of an Oligocene to Miocene Paleogeography (short overview)[J]. Geologica Carpathica, 1999, 50(4):339-349.
|
[14] |
Torfstein A, Steinberg J. The Oligo-Miocene closure of the Tethys Ocean and evolution of the proto-Mediterranean Sea[J]. Scientific Reports, 2020, 10(1):13817. doi: 10.1038/s41598-020-70652-4
|
[15] |
Hamon N, Sepulchre P, Lefebvre V, et al. The role of eastern Tethys seaway closure in the Middle Miocene Climatic Transition (ca. 14 Ma)[J]. Climate of the Past, 2013, 9(6):2687-2702. doi: 10.5194/cp-9-2687-2013
|
[16] |
Frigola A, Prange M, Schulz M. A dynamic ocean driven by changes in CO2 and Antarctic ice-sheet in the middle Miocene[J]. Palaeogeography, Palaeoclimatology, Palaeoecology, 2021, 579:110591. doi: 10.1016/j.palaeo.2021.110591
|
[17] |
Herold N, Huber M, Müller R D. Modeling the miocene climatic optimum. Part I: land and atmosphere[J]. Journal of Climate, 2011, 24(24):6353-6372. doi: 10.1175/2011JCLI4035.1
|
[18] |
Knorr G, Lohmann G. Climate warming during Antarctic ice sheet expansion at the Middle Miocene transition[J]. Nature Geoscience, 2014, 7(5):376-381. doi: 10.1038/ngeo2119
|
[19] |
Krapp M, Jungclaus J H. The Middle Miocene climate as modelled in an atmosphere-ocean-biosphere model[J]. Climate of the Past, 2011, 7(4):1169-1188. doi: 10.5194/cp-7-1169-2011
|
[20] |
Nisancioglu K H, Raymo M E, Stone P H. Reorganization of Miocene deep water circulation in response to the shoaling of the Central American Seaway[J]. Paleoceanography, 2003, 18(1):1006.
|
[21] |
Steph S, Tiedemann R, Prange M, et al. Changes in Caribbean surface hydrography during the Pliocene shoaling of the Central American Seaway[J]. Paleoceanography, 2006, 21(4):PA4221.
|
[22] |
Wei J L, Liu H L, Zhao Y, et al. Simulation of the climate and ocean circulations in the Middle Miocene Climate Optimum by a coupled model FGOALS-g3[J]. Palaeogeography, Palaeoclimatology, Palaeoecology, 2023, 617:111509. doi: 10.1016/j.palaeo.2023.111509
|
[23] |
Kirillova V, Osborne A H, Störling T, et al. Miocene restriction of the Pacific-North Atlantic throughflow strengthened Atlantic overturning circulation[J]. Nature Communications, 2019, 10(1):4025. doi: 10.1038/s41467-019-12034-7
|
[24] |
Li L J, Yu Y Q, Tang Y L, et al. The flexible global ocean-atmosphere-land system model grid-point version 3 (FGOALS-g3): description and evaluation[J]. Journal of Advances in Modeling Earth Systems, 2020, 12(9):e2019MS002012. doi: 10.1029/2019MS002012
|
[25] |
Lin P F, Zhao B W, Wei J L, et al. The super-large ensemble experiments of CAS FGOALS-g3[J]. Advances in Atmospheric Sciences, 2022, 39(10):1746-1765. doi: 10.1007/s00376-022-1439-1
|
[26] |
Zheng W P, Yu Y Q, Luan Y H, et al. CAS-FGOALS datasets for the two interglacial epochs of the holocene and the last interglacial in PMIP4[J]. Advances in Atmospheric Sciences, 2020, 37(10):1034-1044. doi: 10.1007/s00376-020-9290-8
|
[27] |
Li L J, Dong L, Xie J B, et al. The GAMIL3: model description and evaluation[J]. Journal of Geophysical Research: Atmospheres, 2020, 125(15):e2020JD032574. doi: 10.1029/2020JD032574
|
[28] |
Lin P F, Yu Z P, Liu H L, et al. LICOM model datasets for the CMIP6 ocean model intercomparison project[J]. Advances in Atmospheric Sciences, 2020, 37(3):239-249. doi: 10.1007/s00376-019-9208-5
|
[29] |
Xie Z H, Wang L H, Wang Y, et al. Land surface model CAS-LSM: model description and evaluation[J]. Journal of Advances in Modeling Earth Systems, 2020, 12(12):e2020MS002339. doi: 10.1029/2020MS002339
|
[30] |
Hunke E C, Lipscomb W H. CICE: the Los Alamos sea ice model documentation and software user's manual version 4.1 LA-CC-06-012[R]. Los Alamos: Los Alamos National Laboratory, 2010.
|
[31] |
Craig A P, Vertenstein M, Jacob R. A new flexible coupler for earth system modeling developed for CCSM4 and CESM1[J]. The International Journal of High Performance Computing Applications, 2012, 26(1):31-42. doi: 10.1177/1094342011428141
|
[32] |
Eyring V, Bony S, Meehl G A, et al. Overview of the Coupled Model Intercomparison Project Phase 6 (CMIP6) experimental design and organization[J]. Geoscientific Model Development, 2016, 9(5):1937-1958. doi: 10.5194/gmd-9-1937-2016
|
[33] |
Beerling D J, Fox A, Anderson C W. Quantitative uncertainty analyses of ancient atmospheric CO2 estimates from fossil leaves[J]. American Journal of Science, 2009, 309(9):775-787. doi: 10.2475/09.2009.01
|
[34] |
Burls N J, Bradshaw C D, De Boer A M, et al. Simulating miocene warmth: insights from an opportunistic multi-model ensemble (MioMIP1)[J]. Paleoceanography and Paleoclimatology, 2021, 36(5):e2020PA004054. doi: 10.1029/2020PA004054
|
[35] |
Ji S C, Nie J S, Lechler A, et al. A symmetrical CO2 peak and asymmetrical climate change during the middle Miocene[J]. Earth and Planetary Science Letters, 2018, 499:134-144. doi: 10.1016/j.jpgl.2018.07.011
|
[36] |
Steinthorsdottir M, Jardine P E, Rember W C. Near-future pCO2 during the hot miocene climatic optimum[J]. Paleoceanography and Paleoclimatology, 2021, 36(1):e2020PA003900. doi: 10.1029/2020PA003900
|
[37] |
Stoll H M, Guitian J, Hernandez-Almeida I, et al. Upregulation of phytoplankton carbon concentrating mechanisms during low CO2 glacial periods and implications for the phytoplankton pCO2 proxy[J]. Quaternary Science Reviews, 2019, 208:1-20. doi: 10.1016/j.quascirev.2019.01.012
|
[38] |
Allen M B, Armstrong H A. Arabia-Eurasia collision and the forcing of mid-Cenozoic global cooling[J]. Palaeogeography, Palaeoclimatology, Palaeoecology, 2008, 265(1-2):52-58. doi: 10.1016/j.palaeo.2008.04.021
|
[39] |
Sun J M, Sheykh M, Ahmadi N, et al. Permanent closure of the Tethyan Seaway in the northwestern Iranian Plateau driven by cyclic sea-level fluctuations in the late Middle Miocene[J]. Palaeogeography, Palaeoclimatology, Palaeoecology, 2021, 564:110172. doi: 10.1016/j.palaeo.2020.110172
|
[40] |
Hüsing S K, Zachariasse W J, van Hinsbergen D J J, et al. Oligocene-Miocene basin evolution in SE Anatolia, Turkey: constraints on the closure of the eastern Tethys gateway[J]. Geological Society, London, Special Publications, 2009, 311(1):107-132. doi: 10.1144/SP311.4
|
[41] |
Bialik O M, Frank M, Betzler C, et al. Two-step closure of the Miocene Indian Ocean Gateway to the Mediterranean[J]. Scientific Reports, 2019, 9(1):8842. doi: 10.1038/s41598-019-45308-7
|
[42] |
Brierley C M, Fedorov A V. Comparing the impacts of Miocene-Pliocene changes in inter-ocean gateways on climate: central American Seaway, Bering Strait, and Indonesia[J]. Earth and Planetary Science Letters, 2016, 444:116-130. doi: 10.1016/j.jpgl.2016.03.010
|
[43] |
Hu A X, Meehl G A, Han W Q, et al. Effects of the Bering Strait closure on AMOC and global climate under different background climates[J]. Progress in Oceanography, 2015, 132:174-196. doi: 10.1016/j.pocean.2014.02.004
|
[44] |
Steele M, Morley R, Ermold W. PHC: a global ocean hydrography with a high-quality Arctic Ocean[J]. Journal of Climate, 2001, 14(9):2079-2087. doi: 10.1175/1520-0442(2001)014<2079:PAGOHW>2.0.CO;2
|
[45] |
de Vries P, Weber S L. The Atlantic freshwater budget as a diagnostic for the existence of a stable shut down of the meridional overturning circulation[J]. Geophysical Research Letters, 2005, 32(9):L09606.
|
[46] |
Deshayes J, Curry R, Msadek R. CMIP5 model intercomparison of freshwater budget and circulation in the North Atlantic[J]. Journal of Climate, 2014, 27(9):3298-3317. doi: 10.1175/JCLI-D-12-00700.1
|
[47] |
Jüling A, Zhang X, Castellana D, et al. The Atlantic's freshwater budget under climate change in the Community Earth System Model with strongly eddying oceans[J]. Ocean Science, 2021, 17(3):729-754. doi: 10.5194/os-17-729-2021
|
[1] | CAI Song, PENG Guangrong, CHEN Zhaoming, JIANG Dapeng, LI Kecheng, WU Jianyao, ZHANG Chujing. Paleogene tectonic evolution of Kaiping Sag, Pearl River Mouth Basin[J]. Marine Geology & Quaternary Geology, 2023, 43(2): 106-118. DOI: 10.16562/j.cnki.0256-1492.2022072702 |
[2] | GAO Yangdong, LIN Heming, WANG Xudong, LIU Pei, LI Zhensheng, ZHANG Qin, XIONG Wanlin. Source rock distribution pattern in an episodic rifting sag and later stage magmatiic reformation: A case from Panyu 4 sag, Zhu I Depression[J]. Marine Geology & Quaternary Geology, 2021, 41(3): 151-160. DOI: 10.16562/j.cnki.0256-1492.2021012501 |
[3] | SHI Chuang, LONG Zulie, ZHU Junzhang, JIANG Zhenglong, HUANG Yuping. Element geochemistry of the Enping Formation in the Baiyun Sag of Pearl River Mouth Basin and their environmental implications[J]. Marine Geology & Quaternary Geology, 2020, 40(5): 79-86. DOI: 10.16562/j.cnki.0256-1492.2020042101 |
[4] | ZHANG Hao, LUAN Xiwu, RAN Weimin, WANG Kuo, WEI Xinyuan, SHI Yanfeng, Mohammad Saiful Islam, WANG Jia. Discussion on fault characteristics and genesis of Wenchang A Sag in the west of the Pearl River Mouth Basin[J]. Marine Geology & Quaternary Geology, 2020, 40(4): 96-106. DOI: 10.16562/j.cnki.0256-1492.2019050901 |
[5] | MA Benjun, QIN Zhiliang, WU Shiguo, MI Lijun, GAO Wei, WANG Lei. Types and genesis of the mixed deposits in the Pearl River Mouth Basin of South China Sea[J]. Marine Geology & Quaternary Geology, 2018, 38(6): 149-158. DOI: 10.16562/j.cnki.0256-1492.2018.06.015 |
[6] | LI Shanshan, PENG Song, DENG Yong, WEI Changfei, LI Hui, ZHAN Yeping. UPPER OLIGOCENE-EARLY LOWER MIOCENE SEDIMENTARY FACIES AND RESERVOIR DISTRIBUTION PATTERN IN WENCHANG H ZONE IN THE WESTERN PEARL RIVER MOUTH BASIN[J]. Marine Geology & Quaternary Geology, 2015, 35(5): 103-110. DOI: 10.16562/j.cnki.0256-1492.2015.05.012 |
[7] | WU Qilin, HUANG SiJing, DAN Zhiwei, XIAO Wei, ZENG Yi, ZHOU Xiaokang, HOU Zhiping. PREDICTION OF CARBONATE RESERVOIRS IN BLOCK A OF HUIZHOU AREA IN PEARL RIVER MOUTH BASIN[J]. Marine Geology & Quaternary Geology, 2015, 35(2): 149-155. DOI: 10.3724/SP.J.1140.2015.02149 |
[8] | GUO Qiaozhen, CHEN Feng, YANG Xianghua, SHU Yu, WU Jing. SHALLOW BRAIDED DELTAIC SYSTEM IN ENPING FORMATION OF HUIZHOU DEPRESSION,PEARL RIVER MOUTH[J]. Marine Geology & Quaternary Geology, 2013, 33(1): 25-32. DOI: 10.3724/SP.J.1140.2013.01025 |
[9] | ZHANG Yang, YE Jiaren, WANG Zisong, TANG Xinyuan, KANG Jianyun. CHARACTERISTICS AND EVOLUTIONARY HISTORY OF OVERPRESSURE IN PANYU 4 SAG, PEARL RIVER MOUTH BASIN[J]. Marine Geology & Quaternary Geology, 2010, 30(4): 171-177. DOI: 10.3724/SP.J.1140.2010.04171 |
[10] | ZHU Yanhe, ZHU Weilin, XU Qiang, WANG Yingmin, LÜ Ming. SEDIMENTARY CHARACTERISTICS AND SEQUENCE FRAMEWORK OF THE ZHUHAI-ZHUJIANG FORMATION IN THE MIDDLE AREA OF PEARL RIVER MOUTH BASIN[J]. Marine Geology & Quaternary Geology, 2009, 29(4): 77-83. DOI: 10.3724/SP.J.1140.2009.04077 |
1. |
刘太勋,孙丰春,彭光荣,汪旭东,孙辉,解斌,苏兆佳. 珠江口盆地白云凹陷东部古近系文昌组沉积演化特征. 中国石油大学学报(自然科学版). 2024(01): 77-90 .
![]() | |
2. |
冯进,马永坤,贾培蒙,史玉玲,邱欣卫,牛胜利,梁浩然. 珠江口盆地西江凹陷XJ-A构造古近系储层特征及对油气成藏的影响. 成都理工大学学报(自然科学版). 2024(03): 392-402+417 .
![]() | |
3. |
邱浩,文敏,吴怡,幸雪松,马楠,李占东,郭天姿. 南海油田惠州潜山裂缝性凝析油气藏控水实验. 新疆石油地质. 2023(01): 84-92 .
![]() | |
4. |
黄鑫,陈维涛,王文勇,何叶. 珠江口盆地西江凹陷北部构造转换背景下文昌组层序地层与沉积充填特征. 海洋地质前沿. 2023(05): 43-54 .
![]() | |
5. |
张兰,何贤科,段冬平,常吟善,汪文基,刘英辉. 东海陆架盆地西湖凹陷平湖斜坡带平湖组煤系地层地震沉积学研究. 海洋地质与第四纪地质. 2023(04): 140-149 .
![]() | |
6. |
吴宇翔,柳保军,张春生,丁琳,谢世文,李小平,龙更生. 珠江口盆地白云凹陷古近纪挠曲缓坡带三角洲沉积过程响应水槽模拟. 石油实验地质. 2022(03): 476-486 .
![]() | |
7. |
何金海,彭光荣,吴静,李振升,蔡国富,汪晓萌,杜晓东,赵超,石创,朱定伟. 珠江口盆地边缘洼陷油气勘探潜力——以西江36洼为例. 海洋地质与第四纪地质. 2022(04): 146-158 .
![]() | |
8. |
张卫卫,刘军,刘力辉,张晓钊,白海军,杨登锋. 珠江口盆地番禺4洼古近系文昌组岩性预测技术及应用. 岩性油气藏. 2022(06): 118-125 .
![]() |