LEI Yanxiang, HE Lei, WANG Yumin, ZHANG Pengpeng, ZHANG Bin, HU Lei, WU Zhiguo, YE Siyuan. Environmental evolution and carbon burial assessment of the west coast of Bohai Bay since Late Pleistocene[J]. Marine Geology & Quaternary Geology, 2021, 41(6): 194-205. DOI: 10.16562/j.cnki.0256-1492.2021020101
Citation: LEI Yanxiang, HE Lei, WANG Yumin, ZHANG Pengpeng, ZHANG Bin, HU Lei, WU Zhiguo, YE Siyuan. Environmental evolution and carbon burial assessment of the west coast of Bohai Bay since Late Pleistocene[J]. Marine Geology & Quaternary Geology, 2021, 41(6): 194-205. DOI: 10.16562/j.cnki.0256-1492.2021020101

Environmental evolution and carbon burial assessment of the west coast of Bohai Bay since Late Pleistocene

More Information
  • Received Date: January 31, 2021
  • Revised Date: May 07, 2021
  • Available Online: September 13, 2021
  • The quantitative assessment of carbon flux in soil or sediments of coastal wetlands has recently become a hotspot in carbon cycle research both at home and abroad. However, most of the depth of the sediment samples studied is less than 1 m (or a maximum no more than 3 meters), and there are few studies on carbon fluxes in deeper sediments or longer time scales, such as the millennium scale available. In order to reveal the carbon fluxes in deeper layers, a hole of 32.68 m deep (BHZK13) was drilled in the old Yellow River Delta on the west bank of Bohai Bay in 2016. Core samples are carefully described and tested for AMS14C and OSL dating, grain size analysis, foraminifera identification, and analysis of total carbon(TC), organic carbon (OC), and major elements (including nutrient elements) in addition to in-situ densities. The results show that since Late Pleistocene, the sedimentary environment of the old Yellow River Delta on the west coast of Bohai Bay can be subdivided into seven sub-environments, namely, the tidal flat in MIS5 (U1), floodplain (U2), river channel (U3), Holocene tidal flat (U4), Yellow River Delta phase one (U5, 5500~3600 cal.aBP), reconstruction layer (U6) and Yellow River Delta phase two (U7). The highest sedimentation rate is found in the deltaic front of the delta phase one (1.99 cm/a), while the lowest found in the tidal flat (0.014 cm/a). Correspondingly, the highest burial rate of organic carbon is found in the deltaic front of the Yellow River Delta phase one (134.56 g/(m2·a)), with the lowest found in river channel deposits. Correlation analysis suggests that the sedimentation rate is the main controlling factor on the burial rate of organic carbon in various sedimentary environments. TC and OC has a very significant correlation with each nutrient element. Although the content of organic carbon in the sediments of the Old Yellow River Delta is relatively low due to the high sedimentation rate of the Delta, the modern Yellow River Delta can still be considered as an excellent carbon sink also due to its high sedimentation rate.
  • [1]
    范德江, 杨作升, 郭志刚. 中国陆架210Pb测年应用现状与思考[J]. 地球科学进展, 2000, 15(3):297-302 doi: 10.3321/j.issn:1001-8166.2000.03.011

    FAN Dejiang, YANG Zuosheng, GUO Zhigang. Review of 210Pb dating in the continental shelf of China [J]. Advance In Earth Sciences, 2000, 15(3): 297-302. doi: 10.3321/j.issn:1001-8166.2000.03.011
    [2]
    Brevik E C, Homburg J A, 20 04. A 5000 year record of carbon sequestration from a coastal lagoon and wetland complex [J]. Southern California, USA. Catena, 2000, 57(3): 221-232.
    [3]
    Smith P. Carbon sequestration in croplands: the potential in Europe and the global context [J]. Agronomy, 2004, 20(3): 229-236.
    [4]
    Duan X N, Wang X K, Lu F, et al. Primary evaluation of carbon sequestration potential of wetlands in China [J]. Acta Ecologica Sinica, 2008, 28(2): 463-469. doi: 10.1016/S1872-2032(08)60025-6
    [5]
    Zhang S P, Wang L, Hu J J, et al. Organic carbon accumulation capability of two typical tidal wetland soils in Chongming Dongtan, China [J]. Journal of Environmental Sciences, 2011, 23(1): 87-94. doi: 10.1016/S1001-0742(10)60377-4
    [6]
    赵广明, 叶思源, 丁喜桂, 袁红明, 王锦. 黄河三角洲全新世以来沉积环境的划分及各环境中碳埋藏速率的评价[J]. 地球科学(中国地质大学学报), 2014(4):80-90

    ZHAO Guangming, YE Siyuan, DING Xigui, et al. Sedimentary Environmental Partitioning of Holocene Strata and Assessment of Carbon Burial Rate of Various Paleo-Environments in the Yellow River Delta [J]. Earth Science, 2014(4): 80-90.
    [7]
    欧莉华, 伊海生, 王刚, 等. 桂西地区乐平统合山组底部海绵骨针硅质岩的发现及古环境意义[J]. 中国地质, 2012, 39(5):1280-1289 doi: 10.3969/j.issn.1000-3657.2012.05.015

    OU Lihua, YI Haisheng, WANG Gang, et al. The discovery of sponge chert on the bottom of the Lopingian Heshan Formation in western Guangxi and its palaeoenvironment [J]. Geology in China, 2012, 39(5): 1280-1289. doi: 10.3969/j.issn.1000-3657.2012.05.015
    [8]
    Ye Siyuan, Laws E A, Wu Qiang, Zhong Shaojun, Ding Xigui, Zhao Guangming, Gong Shaojun. Pyritization of trace metals in estuarine sediments and the controlling factors: a case in Jiaojiang Estuary of Zhejiang Province, China [J]. Environmental Earth Sciences, 2020, 61(5): 973-982.
    [9]
    Ye Siyuan, Laws E A, Zhong Shaojun, Ding Xigui, Pang Shouji. Sequestration of metals through association with pyrite in subtidal sediments of the Nanpaishui Estuary on the Western Bank of the Bohai Sea, China [J]. Marine Pollution Bulletin, 2011, 62(5): 934-941. doi: 10.1016/j.marpolbul.2011.02.052
    [10]
    丁玉蓉, 叶思源, 赵全升. 黄河三角洲新生湿地土壤对营养成分和碳的扣留[J]. 地质论评, 2012, 58(1):183-189 doi: 10.3969/j.issn.0371-5736.2012.01.016

    DING Yurong, YE Siyuan, ZHAO Quansheng. Nutrient sand carbon sequestration the newly created wetland of Yellow River Delta [J]. Geological Review, 2012, 58(1): 183-189. doi: 10.3969/j.issn.0371-5736.2012.01.016
    [11]
    Smith T M, Cramer W P, Dixon R K, et al. The global terrestrial carbon cycle [J]. Water Air and Soil Pollution, 1993, 70(1-4): 19-37. doi: 10.1007/BF01104986
    [12]
    Muller-Karger, Frank E. The importance of continental margins in the global carbon cycle [J]. Geophysical Research Letters, 2015, 32(1): L01602.
    [13]
    Zhao Guangming, Ye Siyuan, Li Guangxue, et al. Late Quaternary Strata and Carbon Burial Records in the Yellow River Delta, China [J]. Journal of Ocean University of China, 2015, 03: 446-456.
    [14]
    丁喜桂, 叶思源, 赵广明, 袁红明, 王锦. 黄河三角洲滨海湿地演化及其对碳与营养成分的扣留[J]. 海洋与湖沼, 2014(1):96-104

    DING Xigui, YE Siyuan, ZHAO Guangming, et al. Accumulation of Carbon and Nutrients in Coastal Wetland in the Yellow River Delta [J]. Oceanloogia et Limnologia Sinica, 2014(1): 96-104.
    [15]
    丁喜桂, 王吉松, 赵广明, 袁红明, 王锦, 叶思源. 黄河三角洲滨海湿地演化过程中的碳埋藏效率及其控制因素[J]. 中国地质, 2016(1):319-328 doi: 10.3969/j.issn.1000-3657.2016.01.024

    DING Xigui, WANG Jisong, ZHAO Guangming, et al. Accretion rate and controlling factors of carbon and nutrients during coastal wetland evolution in Yellow River Delta [J]. China Geology, 2016(1): 319-328. doi: 10.3969/j.issn.1000-3657.2016.01.024
    [16]
    成国栋, 薛春汀. 黄河三角洲沉积地质学[M]. 地质出版社: 1997, 1-8.

    CHENG Guodong, XUE Chunting. Sedimentary Geology of Yellow River Delta[M]. Geological Publishing House: 1997, 1-8.
    [17]
    赵松龄, 杨光复, 苍树溪, 等. 关于渤海湾西岸海相地层与海岸线问题[J]. 海洋与湖沼, 1978, 9:15-25

    ZHAO Songling, YANG Guangfu, CANG Shuxi, et al. On the Marine stratigraphy and coastlines of the western coast of the gulf of Bohai [J]. Oceanologia et Limnologia Sinica, 1978, 9: 15-25.
    [18]
    薛春汀, 成国栋. 渤海西岸贝壳堤及全新世黄河三角洲体系//杨子赓, 林和茂. 中国沿海及近海地区第四纪进程与事件[M]. 海洋出版社: 1989, 117-125.

    XUE Chunting, CHENG Guodong. Shelly ridges in west coast of Bohai Sea and Holocene Yellow River delta system//Yang Zigeng, Lin Hemao. Quaternary Processes and Events in China Offshore and Onshore Areas[M]. ChinaOcean Press: 1989, 117-125.
    [19]
    薛春汀, 周永青, 王桂玲. 古黄河三角洲若干问题的思考[J]. 海洋地质与第四纪地质, 2003, 23(3):23-29

    XUE Chunting, ZHOU Yongqing, WANG Guiling. Reviews of the Yellow River delta superlobes since 700BC [J]. Marine Geology & Quaternary Geology, 2003, 23(3): 23-29.
    [20]
    薛春汀, 周永青, 朱雄华. 晚更新世末至公元前7世纪的黄河流向和黄河三角洲[J]. 海洋学报, 2004, 26(1):48-61

    XUE Chunting, ZHOU Yongqing, ZHU Xionghua. The Yellow River course and delta from end of Late Pleistocene to the 7th century BC [J]. Acta Oceanologica Sinica, 2004, 26(1): 48-61.
    [21]
    Xue Chunting. Historical changes in the Yellow River delta, China [J]. Marine Geology, 1993, 113: 321-330. doi: 10.1016/0025-3227(93)90025-Q
    [22]
    Xue Chunting, Zhu Xionghua, Lin Hemao. Holocene sedimentary sequence, foraminifera and ostracodain westcoastal lowland of BohaiSea, China [J]. Quaternary Science Review, 1995, 14: 521-530. doi: 10.1016/0277-3791(95)00013-F
    [23]
    He Lei, Xue Chunting, Ye Siyuan, Alessandro Amorosi, Yuan Hongming, Yang Shixiong, Edward A. Laws New evidence on the spatial-temporal distribution of superlobes in the Yellow River Delta Complex [J]. Quaternary Science Reviews, 2019, 214: 117-138. doi: 10.1016/j.quascirev.2019.05.003
    [24]
    何磊, 叶思源, 袁红明, 薛春汀. 黄河三角洲利津超级叶瓣时空范围的再认识[J]. 地理学报, 2019, 74(1):146-616 doi: 10.11821/dlxb201901011

    HE Lei, YE Siyuan, YUAN Hongming, XUE Chunting. Rethinking the spatio-temporal distribution of Lijin superlobei n the Yellow River Delta [J]. Acta Geographica Sinica, 2019, 74(1): 146-616. doi: 10.11821/dlxb201901011
    [25]
    雷雁翔, 何磊, 叶思源, 等. 渤海湾晚更新世晚期以来古河道分布和三角洲发育[J]. 中国地质, 2021待刊.

    LEI Yanxiang, HE Lei, YE Siyuan, et al. Paleochannel distribution and delta development since the Late Pleistocene in the Bohai Bay[J]. Geology in China, 2021 to be published.
    [26]
    中国科学院海洋研究所. 渤海地质[M]. 北京: 科学出版社, 1985.

    Institute of Oceanology, Chinese Academy of Sciences. Bohai Sea Geology[M]. Beijing: Science Press, 1985.
    [27]
    董礼先, 苏纪兰, 王康墡. 黄渤海潮流场及其与沉积物搬运的关系[J]. 海洋学报, 1989, 11:102-114

    DONG Lixian, SU Jilan, WANG Kangshan. Tide current in the Yellow Sea and its relationship with sediment transport [J]. Acta Oceanologica Sinica, 1989, 11: 102-114.
    [28]
    赵保仁, 庄国文, 曹德明, 雷方辉. 渤海的环流、潮余流及其对沉积物分布的影响[J]. 海洋与湖沼, 1995, 26(5):466-473 doi: 10.3321/j.issn:0029-814X.1995.05.003

    ZHAO Baoren, ZHUANG Guoqiang, CAO Deming, LEI Fanghui. The circulation and tidal residual current of Bohai Sea and their influence on sediment disribution [J]. Oceanologia et Limnologia Sinica, 1995, 26(5): 466-473. doi: 10.3321/j.issn:0029-814X.1995.05.003
    [29]
    Southon John, Kashgarian Michaele, Fontugne Michel, Merivier Bernard, Yim Wyss. Marine reservoir corrections for the Indian Ocean and Southeast Asia [J]. Radiocarbon, 2002, 44: 167-180. doi: 10.1017/S0033822200064778
    [30]
    Reimer Paula J, Bard Edouard, Bayliss Alex, Beck J Warren, Blackwell Paul G, Ramsey Christopher Bronk, Buck Caitlin E, Cheng Hai, Edwards R Lawrence, Friedrich Michael, Grootes Pieter M, Guilderson Thomas P, Haflidason Haflidi, Hajdas Irka, Hatte Christine, Heaton Timothy J, Hoffmann Dirk L, Hogg Alan G, Hughen Konrad A, Kaiser K Felix, Kromer Bernd, Manning Sturt M, Niu Mu, Reimer Ron W, Richards David A, Scott E Marian, Southon John R, Staff Richard A, Turney Christian S M, Plicht Johannes van der. IntCal13 and Marine13 Radiocarbon Age Calibration Curves 0-50000 Years cal BP [J]. Radiocarbon, 2013, 55: 1869-1887. doi: 10.2458/azu_js_rc.55.16947
    [31]
    Wintle Ann G. Luminescence dating: laboratory procedures and protocols [J]. Radiat. Meas, 1997, 27: 769-817. doi: 10.1016/S1350-4487(97)00220-5
    [32]
    Qiu Jiandong, Liu Jian, Saito Yoshiki, Wang Hong, Yang Zigeng, Nakashima Rei. Sedimentary evolution ofthe Holocene subaqueous clinoform off the Southern Shandong Peninsula in theWestern South Yellow Sea [J]. Ocean Univ. China, 2014, 13(5): 747-760. doi: 10.1007/s11802-014-2227-z
    [33]
    Liu Jin, Ye Siyuan, Allen Laws E, Lu Qingyuan. Sedimentary environment evolution and biogenic silica records over 33, 000 years in the Liaohe delta, China [J]. Limnology and Oceanography, 2017, 62(2): 474-489. doi: 10.1002/lno.10435
    [34]
    王雪飞, 叶思源, 韩宗珠, 等. 近33 ka以来辽河口沉积环境演变与生物硅记录[J]. 中国地质, 2015, 42(4):1092-1102 doi: 10.3969/j.issn.1000-3657.2015.04.023

    WANG Xuefei, YE Siyuan, HAN Zongzhu, et al. The sedimentary environment evolution and biogenic silica records of the Liaohe Estuary since 33 ka BP [J]. Geology in China, 2015, 42(4): 1092-1102. doi: 10.3969/j.issn.1000-3657.2015.04.023
    [35]
    Nair V D, Graetz D A, Reddy K R, Olila O G. Soil development in phosphatemined created wetlands of Florida, USA [J]. Wetlands, 2001, 21(2): 232-239. doi: 10.1672/0277-5212(2001)021[0232:SDIPMC]2.0.CO;2
    [36]
    Azevedo W R, Faquin V, Femandes L A. Boron absorption in lowland soils flux southern of the state of Minas Gerais, Brazil [J]. Pesquisa AgTopecuaria Brasileira, 2001, 36(7): 957-964. doi: 10.1590/S0100-204X2001000700005
    [37]
    Meyers P A. Preservation of elemental and isotopic source identification of sedimentary organic matter [J]. Chemical Geology, 1994, 114(3-4): 289-302. doi: 10.1016/0009-2541(94)90059-0
    [38]
    Meyers P A. Organic geochemical proxies of paleoceanographic, paleolimnologic, and paleoclimatic processe [J]. Organic Geochemistry, 1997, 27(5-6): 213-250. doi: 10.1016/S0146-6380(97)00049-1
    [39]
    Prahl F G, Ertel J R, Goni M A, et al. Terrestrial organic carbon contributions to sediments on the Washington margin [J]. Geochimica et Cosmochimica Acta, 1994, 58(14): 3035-3048. doi: 10.1016/0016-7037(94)90177-5
    [40]
    Thornton S F, McManus J. Application of organic carbon and nitrogen stable isotope and C/N ratios as source indicators of organic matter provenance in estuarine systems: Evidence from the Tay Estuary, Scotland [J]. Estuarine, Coastal and Shelf Science, 1994, 38(3): 219-233. doi: 10.1006/ecss.1994.1015
    [41]
    Ruttenberg K C, Goni M A. Phosphorus distribution, C:N:P ratios, and δ13Corg in arctic, temperate, and tropical coastal sediments: Tools for characterizing bulk sedimentary organic matter [J]. Marine Geology, 1997, 139(1): 123-145.
    [42]
    Andrews J E, Greenaway A M, Dennis P F. Combined carbon isotope and C/N ratios as indicators of source and fate of organic matter in a poorly flushed, tropical estuary: Hunts Bay, Kingston Harbour, Jamaica [J]. Estuarine, Coastal and Shelf Science, 1998, 46(5): 743-756. doi: 10.1006/ecss.1997.0305
    [43]
    Muller A, Mathesius U. The paleoenvironments of coastal lagoons in the southern Baltic Sea, I. The application of sedimentary Corg/N ratios as source indicators of organic matter [J]. Palaeogeography Palaeoclimatology Palaeoecology, 1999, 145(1): 1-16.
    [44]
    Bordovsky O K. Accumulation and transformation of organic substances in marine sediments [J]. Marine Geology, 1965, 3(1-2): 3-114. doi: 10.1016/0025-3227(65)90002-2
    [45]
    Prahl F G, Bennett J T, Carpenter R. The early diagenesis of aliphatic hydrocarbons and organic matter in sedimentary particulates from Dabob Bay, Washington [J]. Geochimica et Cosmochimica Acta, 1980, 44(12): 1967-1976. doi: 10.1016/0016-7037(80)90196-9
    [46]
    Hatton R S, Patrick W H, DeLaune R D. Sedimentation, nutrient accumulation, and early digenesis in Louisiana Barataria Basin coastal marshes. In: Kennedy V S ed. Estuarine Comparisons. Academic Press, New York, USA: 1982, 255—267.
    [47]
    Jia Jianjun, Gao Jianhua, Liu Yifei, Gao Shu, Yang Yang. Environmental changes in Shamei Lagoon, Hainan Island, China: Interactions between natural processes and human activities [J]. Journal of Asian Earth Sciences, 2012, 52(30): 158-168.
    [48]
    Chmura G L, Anisfeld S C, Cahoon D R, et al. Global carbon sequestration in tidal, saline wetland soils [J]. Global Biogeochemistry, 2003, 17(4): 1111-1121.
    [49]
    Craft C B. Freshwater input structures soil properties, vertical accretion, and nutrient accumulation of Georgia and U.S. tidal marshes [J]. Limnol Oceanogr, 2007, 52(3): 1220-1230. doi: 10.4319/lo.2007.52.3.1220
  • Related Articles

    [1]WANG Ti, CONG Shuai, CHEN Jianbin, WANG Hanrui, WEI Yisu, ZHU Pengyu, WANG Houjie, WU Xiao. Variations in sedimentation characteristics of the Yellow River Delta under the remote influence of Typhoon Doksuri[J]. Marine Geology & Quaternary Geology, 2024, 44(5): 50-57. DOI: 10.16562/j.cnki.0256-1492.2024071601
    [2]XING Lvyang, LI Guangxue, LIU Siyu, LI Haonan, PAN Yufeng. Formation of the Diaokou Lobe in Yellow River Delta[J]. Marine Geology & Quaternary Geology, 2023, 43(4): 97-104. DOI: 10.16562/j.cnki.0256-1492.2023040901
    [3]LEI Zhiyu, LIU Rongbo, HU Rijun, QIU Jiandong, ZHU Longhai, ZHU Feng, ZHANG Xiaodong. Controlling factors and distribution of geochemical characteristics of the surface sediments in the Yellow River Delta[J]. Marine Geology & Quaternary Geology, 2022, 42(6): 104-118. DOI: 10.16562/j.cnki.0256-1492.2022041301
    [4]WU Xiao, FAN Yongyong, WANG Houjie, BI Naishuang, XU Congliang, ZHANG Yong, LIU Jingpeng, LU Taian. Evolution of abandoned deltaic river channel−A case from the Diaokou channel of the Yellow River[J]. Marine Geology & Quaternary Geology, 2021, 41(2): 22-29. DOI: 10.16562/j.cnki.0256-1492.2020070101
    [5]ZHANG Xin, LIU Jian, WANG Feifei, QIU Jiandong, WANG Shuang. STUDY OF OPTICALLY STIMULATED LUMINESCENCE (OSL) CHRONOLOGY AND SEDIMENTARY ENVIRONMENTS OF THE YELLOW RIVER DELTA AREA WITH CORE YRD-1402[J]. Marine Geology & Quaternary Geology, 2016, 36(3): 11-22. DOI: 10.16562/j.cnki.0256-1492.2016.03.002
    [6]YUAN Ping, BI Naishuang, WU Xiao, ZHANG Yong, WANG Houjie. SURFACE SEDIMENTS AT THE SUBAQUEOUS YELLOW RIVER DELTA: CLASSIFICATION AND DISTRIBUTION[J]. Marine Geology & Quaternary Geology, 2016, 36(2): 49-57. DOI: 10.16562/j.cnki.0256-1492.2016.02.006
    [7]DU Tingqin, HUANG Haijun, WANG Zhenyan, LIU Yanxia. EVOLUTION OF THE SHELL RIDGE ISLANDS IN THE NORTHERN YELLOW RIVER DELTA[J]. Marine Geology & Quaternary Geology, 2009, 29(3): 23-29. DOI: 10.3724/SP.J.1140.2009.03023
    [8]LI Guang-xue, LI Jun, LIU Yong, SHI Jing-hao. DEFORMATION AND DIAPIRISM OF SOFT STRATA IN THE YELLOW RIVER DELTA[J]. Marine Geology & Quaternary Geology, 2008, 28(5): 29-36.
    [9]YIN Ming-quan, LI Cai. SHORELINE DYNAMICS AND EVOLUTION FORECAST IN THE YELLOW RIVER DELTA ESTUARY[J]. Marine Geology & Quaternary Geology, 2006, 26(6): 35-40.
    [10]LI Wei-hua, LI Jiu-fa, DAI Zhi-jun, CHEN Shen-liang. RESPONSE OF COASTAL SEDIMENT TO THE HYDRODYNAMIC CONDITIONS IN THE FEIYAN BEACH IN THE NORTHERN YELLOW RIVER DELTA[J]. Marine Geology & Quaternary Geology, 2006, 26(1): 17-21.
  • Cited by

    Periodical cited type(7)

    1. 孔凡兴,张哲远,徐方建,董江,李安春,谷玉,胡利民,陈天宇,刘喜停. 末次冰消期以来东海内陆架沉积物活性铁命运及其环境响应. 古地理学报. 2024(06): 1483-1497 .
    2. 韩雪,徐维海,罗云,黎刚,刘建国,朱小畏,程俊,苗莉,向荣,颜文. 南沙群岛南科1井白云岩发育特征及铁白云石成因机制的初步研究. 热带海洋学报. 2022(05): 74-88 .
    3. 徐兆凯,张骞月,常凤鸣. 第四纪黑潮源区沉积物的源-汇过程、主要控制因素及其碳循环效应. 海洋与湖沼. 2021(02): 287-297 .
    4. 李锐,张欢欢,何雨婷,安亚军,张兆峰,唐明金. 燃烧源与沙尘颗粒物中铁的同位素组成. 环境化学. 2021(04): 990-998 .
    5. 蒙泽坤,王振飞,鞠鹏程,黄康俊. 海相沉积岩铁同位素体系及其古环境指示. 地球环境学报. 2021(04): 339-358 .
    6. Ruolin LIU,Bai GUO,Maoyu WANG,Weiqiang LI,Tao YANG,Hongfei LING,Tianyu CHEN. Isotopic fingerprinting of dissolved iron sources in the deep western Pacific since the late Miocene. Science China(Earth Sciences). 2020(11): 1767-1779 .
    7. 刘若琳,郭柏,王茂宇,李伟强,杨涛,凌洪飞,陈天宇. 晚中新世以来西太平洋深水溶解铁来源的同位素示踪. 中国科学:地球科学. 2020(11): 1582-1595 .

    Other cited types(7)

Catalog

    Article views (2384) PDF downloads (171) Cited by(14)

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return