MING Jun, WANG Jianli, LIU Jianhui, WANG Zhiyong, LI Jieli, LIU Guochang. Separation of seismic diffraction wave and its influencing factors in complex fault blocks[J]. Marine Geology & Quaternary Geology, 2021, 41(3): 212-219. DOI: 10.16562/j.cnki.0256-1492.2020070201
Citation: MING Jun, WANG Jianli, LIU Jianhui, WANG Zhiyong, LI Jieli, LIU Guochang. Separation of seismic diffraction wave and its influencing factors in complex fault blocks[J]. Marine Geology & Quaternary Geology, 2021, 41(3): 212-219. DOI: 10.16562/j.cnki.0256-1492.2020070201

Separation of seismic diffraction wave and its influencing factors in complex fault blocks

More Information
  • Received Date: July 01, 2020
  • Revised Date: July 15, 2020
  • Available Online: September 10, 2020
  • The seismic diffraction wave is the seismic responses of subsurface small-scale discontinuous structures, such as fractures, faults, karst caves and pinching-out strata. Correct recognition of diffraction wave is of great significance for exploration of complex fault block oil and gas fields. Based on the characteristics of diffracted and reflected wave signals, a method for separation of diffracted wave is developed in this paper on the basis of plane wave prediction and the analysis of the influences of noise and plane wave prediction filter parameters. The plane wave prediction method can separate seismic reflections and diffraction waves by predicting the event of reflection wave with better continuity and retain the event of discontinuous diffraction wave with greater bending degree through dip estimation. The comparison of simulation data and actual data shows that noise seriously affects the separation of diffracted wave, and the separation result will be inaccurate if the noise is too large; the noise and false image will be introduced if the smooth radius of plane wave prediction filter is too small, and the separation of diffracted wave will not be complete if the smooth radius is too large, and the diffracted wave response of small fault block is difficult to be separated.
  • [1]
    Bansal R, Imhof M G. Diffraction enhancement in prestack seismic data [J]. Geophysics, 2005, 70(3): V73-V79. doi: 10.1190/1.1926577
    [2]
    Khaidukov V, Landa E, Moser T J. Diffraction imaging by focusing-defocusing: An outlook on seismic superresolution [J]. Geophysics, 2004, 69(6): 1478-1490. doi: 10.1190/1.1836821
    [3]
    刘玉金, 李振春, 黄建平, 等. 绕射波叠前时间偏移速度分析及成像[J]. 地球物理学进展, 2013, 28(6):3022-3029

    LIU Yujin, LI Zhenchun, HUANG Jianping, et al. Prestack time migration velocity analysis and imaging of seismic diffractions [J]. Progress in Geophysics, 2013, 28(6): 3022-3029.
    [4]
    Kanasewich E R, Phadke S M. Imaging discontinuities on seismic sections [J]. Geophysics, 1988, 53(3): 334-345. doi: 10.1190/1.1442467
    [5]
    Claerbout J F. Earth Soundings Analysis: Processing Versus Inversion[M]. Cambridge, MA: Blackwell Scientific Publications Inc., 1992.
    [6]
    Fomel S. Applications of plane-wave destruction filters [J]. Geophysics, 2002, 67(6): 1946-1960. doi: 10.1190/1.1527095
    [7]
    Nowak E J, Imhof M G. Diffractor localization via weighted Radon transforms[C]//74th SEG Annual Meeting. Denver, Colorado, USA: SEG, 2004: 2108-2111.
    [8]
    Berkovitch A, Belfer I, Hassin Y, et al. Diffraction imaging by multifocusing [J]. Geophysics, 2009, 74(6): WCA75-WCA81. doi: 10.1190/1.3198210
    [9]
    Koren Z, Ravve I, Levy R. Specular-diffraction imaging by directional angle decomposition[C]//72nd EAGE Conference and Exhibition. Barcelona, Spain: EAGE, 2010.
    [10]
    Klokov A, Baina R, Landa E, et al. Diffraction imaging for fracture detection: synthetic case study[C]//2010 SEG Annual Meeting. Denver, Colorado: SEG, 2010: 3354-3358.
    [11]
    Moser T J, Howard C B. Diffraction imaging in depth [J]. Geophysical Prospecting, 2008, 56(5): 627-641. doi: 10.1111/j.1365-2478.2007.00718.x
    [12]
    Decker L, Klokov A, Fomel S. Comparison of seismic diffraction imaging techniques: plane wave destruction versus apex destruction[C]//2013 SEG Annual Meeting. Houston, Texas: SEG, 2013: 4054-4059.
    [13]
    赵娟娟, 李德春, 匡伟, 等. F-K滤波方法分离地震绕射波和反射波[J]. 能源技术与理论, 2010(3):16-17

    ZHAO Juanjuan, LI Dechun, KUANG Wei, et al. Separation of diffractions and reflections by means of F-K filtering method [J]. Energy Technology and Management, 2010(3): 16-17.
    [14]
    马永生. VSP中绕射波形态的理论分析[J]. 石油物探, 1991, 30(1):64-71

    MA Yongsheng. Theoretical analysis of diffraction wave pattern in VSP [J]. Geophysical Prospecting for Petroleum, 1991, 30(1): 64-71.
    [15]
    黄建平, 李振春, 孔雪, 等. 基于PWD的绕射波波场分离成像方法综述[J]. 地球物理学进展, 2012, 27(6):2499-2510

    HUANG Jianping, LI Zhenchun, KONG Xue, et al. The review of the wave field separation method about reflection and diffraction based on the PWD [J]. Progress in Geophysics, 2012, 27(6): 2499-2510.
    [16]
    朱生旺, 李佩, 宁俊瑞. 局部倾角滤波和预测反演联合分离绕射波[J]. 地球物理学报, 2013, 56(1):280-288

    ZHU Shengwang, LI Pei, NING Junrui. Reflection/diffraction separation with a hybrid method of local dip filter and prediction inversion [J]. Chinese Journal of Geophysics, 2013, 56(1): 280-288.
    [17]
    蒋波, 赵金玉, 邬达理, 等. 基于反射波层拉平的绕射波分离与成像方法[J]. 石油物探, 2014, 53(2):137-141, 148

    JIANG Bo, ZHAO Jinyu, WU Dali, et al. A method for diffraction wave separation and imaging based on horizon-flattening of reflection waves [J]. Geophysical Prospecting for Petroleum, 2014, 53(2): 137-141, 148.
    [18]
    李正伟, 张剑锋, 刘伟. 基于倾角—偏移距域道集的绕射波成像[J]. 地球物理学报, 2018, 61(4):1447-1459

    LI Zhengwei, ZHANG Jianfeng, LIU Wei. Diffraction imaging using dip-angle and offset gathers [J]. Chinese Journal of Geophysics, 2018, 61(4): 1447-1459.
    [19]
    Decker L, Merzlikin D, Fomel S. Diffraction imaging and time-migration velocity analysis using oriented velocity continuation [J]. Geophysics, 2017, 82(2): U25-U35. doi: 10.1190/geo2016-0141.1
    [20]
    Merzlikin D, Fomel S. Analytical path-summation imaging of seismic diffractions [J]. Geophysics, 2017, 82(1): S51-S59. doi: 10.1190/geo2016-0140.1
    [21]
    Decker L, Janson X, Fomel S. Carbonate reservoir characterization using seismic diffraction imaging [J]. Interpretation, 2015, 3(1): SF21-SF30. doi: 10.1190/INT-2014-0081.1
  • Related Articles

    [1]XU Xuechao, LIU Li, YANG Shengli, WEN Chen, LI Rui, ZHANG Jingzhao, WANG Haiyan. Environmental changes during the last glacial in the Eastern Tibetan Plateau revealed by loess sediments in the Aba Basin[J]. Marine Geology & Quaternary Geology, 2024, 44(4): 168-179. DOI: 10.16562/j.cnki.0256-1492.2024022803
    [2]LI Xingyao, LI Zhiwen, ZHU Zhijun, ZHAN Jiangzhen, LI Xiangjie, LI Shiqian. Chromaticity characteristics of the Last Glacial sediments in Houtian section of Nanchang city and its paleoenvironmental significance[J]. Marine Geology & Quaternary Geology, 2023, 43(1): 170-179. DOI: 10.16562/j.cnki.0256-1492.2022060201
    [3]YU Jinyong, LI Li, HE Juan, JIA Guodong. The mystery of the Sunda shelf vegetation during the last glacial period[J]. Marine Geology & Quaternary Geology, 2021, 41(4): 129-141. DOI: 10.16562/j.cnki.0256-1492.2020103101
    [4]LIU Jie, LIU Lihua, WU Nengyou, WU Daidai, JIN Guangrong, YANG Rui. Evolution of gas hydrate stability zone in the deep water of Dongsha sea area since the Last Glaciation Maximum[J]. Marine Geology & Quaternary Geology, 2021, 41(2): 146-155. DOI: 10.16562/j.cnki.0256-1492.2020061801
    [5]FANG Wenli, YAO Zhengquan, SHI Xuefa, GE Chendong, QIAO Shuqing, LI Xiaoyan, DONG Zhi, WANG Ying. Millennial-scale paleoenvironment and paleoclimate changes recorded in the Bohai Sea sediments during the last glacial period[J]. Marine Geology & Quaternary Geology, 2019, 39(3): 61-71. DOI: 10.16562/j.cnki.0256-1492.2018092101
    [6]DENG Chengwen, ZHANG Xia, LIN Chunming, YU Jin, WANG Hong, YIN Yong. GRAIN-SIZE CHARACTERISTICS AND HYDRODYNAMIC CONDITIONS OF THE CHANGJIANG ESTUARINE DEPOSITS SINCE LAST GLACIAL[J]. Marine Geology & Quaternary Geology, 2016, 36(6): 185-198. DOI: 10.16562/j.cnki.0256-1492.2016.06.021
    [7]CHEN Xuemei, LI Guoqiang, HUANG Xiaozhong, ZHAO Hui. THE VEGETATION CHENGES IN ULAN BUH DESERT SINCE THE LAST GLACIAL: POLLEN EVIDENCE FROM CORE WL10ZK-1[J]. Marine Geology & Quaternary Geology, 2013, 33(4): 169-174. DOI: 10.3724/SP.J.1140.2013.04169
    [8]ZOU Jianjun, SHI Xuefa, LIU Yanguang, LIU Jihua. GEOCHEMICAL RECORD OF TERRIGENOUS SEDIMENTS FROM THE SEA OF JAPAN SINCE LAST GLACIAL AND ITS RESPONSE TO SEA LEVEL AND CLIMATE CHANGE[J]. Marine Geology & Quaternary Geology, 2010, 30(2): 75-86. DOI: 10.3724/SP.J.1140.2010.02075
    [9]WU Lu-shan, ZHU Zhao-yu, QIU Yan, CHEN Fang, CHEN Chao-yun, ZHONG He-xian, ZHOU Hou-yun. PLANKTONIC FORAMINIFERA FROM THE SOUTHWESTERN CONTINENTAL SLOPE OF THE SOUTH CHINA SEA SINCE LAST GLACIAL AND THEIR PALEO-CLIMATE IMPLICATION[J]. Marine Geology & Quaternary Geology, 2006, 26(6): 1-8.
    [10]LI Xu-sheng, HAN Zhi-yong, YANG Da-yuan, FANG Ying-san. AEOLIAN-DUST DEPOSIT TO THE SOUTHWEST OF THE POYANG LAKE DURING THE LAST GLACIAL AGE[J]. Marine Geology & Quaternary Geology, 2006, 26(1): 101-108.
  • Cited by

    Periodical cited type(10)

    1. 吴俊峰,魏东岚,张威,王思齐,蒋伟. 辽东半岛末次间冰期砂质沉积物的粒度端元特征与古环境演变. 第四纪研究. 2024(02): 368-379 .
    2. 郭晓敏,王海兵,廖承贤,杨皓钦,华天红,刘旭. 苏宏图戈壁地表沉积物组分变异性及其成因. 中国沙漠. 2024(05): 95-104 .
    3. 贾飞飞,徐成琳,张建伟,孙茹. 晚全新世毛乌素沙地东南缘沉积物粒度特征及其指示的环境变化. 地球科学与环境学报. 2023(06): 1285-1298 .
    4. 孙丽,李志文,苏志珠,张慧娟,杜丁丁,杜兰,黎武标. 烟台市芝罘剖面末次间冰期沉积记录的降水量变化及其淋溶—淀积特征. 干旱区资源与环境. 2022(03): 116-121 .
    5. 孔凡彪,陈海涛,徐树建,苗晓东. 山东章丘黄土粒度指示的粉尘堆积过程及古气候意义. 地理学报. 2021(05): 1163-1176 .
    6. 王兆夺,于东生,汪卫国,罗福生,汤军健,杨金艳. 泉州湾表层沉积物粒度指示的沉积动力端元解析. 热带地理. 2021(05): 975-986 .
    7. 林旭,刘静,吴中海,刘维明,李长安,李志文,王世梅,刘海金,陈济鑫. 末次冰期山东黄土物源研究:来自碎屑锆石U-Pb年龄的约束. 地球科学. 2021(09): 3230-3244 .
    8. 陈海涛,孔凡彪,徐树建,苗晓东. 庙岛群岛晚更新世以来黄土粒度端元揭示的粉尘堆积过程. 第四纪研究. 2021(05): 1306-1316 .
    9. 陈海涛,孔凡彪,徐树建,娄兆军,张军强. 山东仙境源黄土常量元素特征及其古气候环境意义. 海洋地质与第四纪地质. 2020(06): 189-197 . 本站查看
    10. 黎武标,李志文,王志刚,李子康. 山东烟台地区芝罘剖面粒度分维特征及其环境意义. 地球科学与环境学报. 2019(05): 592-603 .

    Other cited types(8)

Catalog

    Article views (2193) PDF downloads (72) Cited by(18)

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return