LIU Jie, LIU Lihua, WU Nengyou, WU Daidai, JIN Guangrong, YANG Rui. Evolution of gas hydrate stability zone in the deep water of Dongsha sea area since the Last Glaciation Maximum[J]. Marine Geology & Quaternary Geology, 2021, 41(2): 146-155. DOI: 10.16562/j.cnki.0256-1492.2020061801
Citation: LIU Jie, LIU Lihua, WU Nengyou, WU Daidai, JIN Guangrong, YANG Rui. Evolution of gas hydrate stability zone in the deep water of Dongsha sea area since the Last Glaciation Maximum[J]. Marine Geology & Quaternary Geology, 2021, 41(2): 146-155. DOI: 10.16562/j.cnki.0256-1492.2020061801

Evolution of gas hydrate stability zone in the deep water of Dongsha sea area since the Last Glaciation Maximum

More Information
  • Received Date: June 17, 2020
  • Revised Date: September 22, 2020
  • Available Online: April 07, 2021
  • The evolutionary history of the gas hydrate stability zone (GHSZ) in the Dongsha deep water area since the last glacial maximum (LGM) is simulated and predicted using the CSMHYD program, and the fluctuations of sea level and bottom water temperature and their effects on the thickness of gas hydrate stability zone as well as the effects of hydrate decomposition on environment are carefully investigated and discussed. The results show that: (1) Gas hydrate could form in the sea area at a water depth more than 595 m; the current theoretical thickness of GHSZ is 245 m on average, and the maximum could be over 380 m which is located in the eastern part of the study area. Another area with large thickness is found at the juncture of the Dongsha continental slope and the Taiwan shoal continental slope. (2) The thickness of GHSZ in the Dongsha sea area has changed in an asymmetrical pattern since the LGM. It can be divided chronologically into five complete cycles, named TC1, TC2, TC3, TC4 and TC5 respectively. The thinning half-cycles are longer in time than those of the thickening ones. The thickness of GHSZ in cycles of TC1-TC4 is controlled by sea level fluctuation, while the thickness of cycle TC5 mainly controlled by sea bottom temperature. (3) The seabed temperature and sea level changes bring stronger effects on GHSZ thickness in the intermediate water area rather than in the deep water area. Meanwhile, the pressure effect is relatively obvious in the intermediate water depth area. The influence of sea level variation on GHSZ in the deep water area is limited. The abnormal decrease in CaCO3 content in the Dongsha sea area is possibly due to the acidification caused by the methane released from gas hydrates dissociation.
  • [1]
    Majorowicz J, Safanda J, Osadetz K. Inferred gas hydrate and permafrost stability history models linked to climate change in the Beaufort-Mackenzie Basin, Arctic Canada [J]. Climate of the Past, 2012, 8(2): 667-682. doi: 10.5194/cp-8-667-2012
    [2]
    Handwerger A L, Rempel A W, Skarbek R M. Submarine landslides triggered by destabilization of high-saturation hydrate anomalies [J]. Geochemistry, Geophysics, Geosystems, 2017, 18(7): 2429-2445. doi: 10.1002/2016GC006706
    [3]
    Riboulot V, Ker S, Sultan N, et al. Freshwater lake to salt-water sea causing widespread hydrate dissociation in the Black Sea [J]. Nature Communications, 2018, 9(1): 117. doi: 10.1038/s41467-017-02271-z
    [4]
    Serie C, Huuse M, Schødt N H. Gas hydrate pingoes: Deep seafloor evidence of focused fluid flow on continental margins [J]. Geology, 2012, 40(3): 207-210. doi: 10.1130/G32690.1
    [5]
    叶黎明, 初凤友, 葛倩, 等. 新仙女木末期南海北部天然气水合物分解事件[J]. 地球科学-中国地质大学学报, 2013, 38(6):1299-1308. [YE Liming, CHU Fengyou, GE Qian, et al. A rapid gas hydrate dissociation in the northern South China Sea since the Late Younger Dryas [J]. Earth Science-Journal of China University of Geosciences, 2013, 38(6): 1299-1308. doi: 10.3799/dqkx.2013.127
    [6]
    陈芳, 陆红锋, 刘坚, 等. 南海东北部陆坡天然气水合物多期次分解的沉积地球化学响应[J]. 地球科学-中国地质大学学报, 2016, 41(10):1619-1629. [CHEN Fang, LU Hongfeng, LIU Jian, et al. Sedimentary geochemical response to gas hydrate episodic release on the northeastern slope of the South China Sea [J]. Earth Science-Journal of China University of Geosciences, 2016, 41(10): 1619-1629. doi: 10.3799/dqkx.2016.120
    [7]
    Musgrave R J, Bangs N L, Larrasoaña J C, et al. Rise of the base of the gas hydrate zone since the last glacial recorded by rock magnetism [J]. Geology, 2006, 34(2): 117-120. doi: 10.1130/G22008.1
    [8]
    宋海斌, 江为为, 张岭. 海洋天然气水合物的地球物理研究(Ⅳ): 双似海底反射[J]. 地球物理学进展, 2003, 18(3):497-502. [SONG Haibin, JIANG Weiwei, ZHANG Ling. Geophysical researches on marine gas hydrates(Ⅳ): Double bottom simulating reflections [J]. Progress in Geophysics, 2003, 18(3): 497-502.
    [9]
    Zander T, Haeckel M, Berndt C, et al. On the origin of multiple BSRs in the Danube deep-sea fan, Black Sea [J]. Earth & Planetary Science Letters, 2017, 462: 15-25.
    [10]
    张光学, 陈芳, 沙志彬, 等. 南海东北部天然气水合物成藏演化地质过程[J]. 地学前缘, 2017, 24(4):15-23. [ZHANG Guangxue, CHEN Fang, SHA Zhibin, et al. The geological evolution process of natural gas hydrate reservoirs in the northeastern South China Sea [J]. Earth Science Frontiers, 2017, 24(4): 15-23.
    [11]
    陈芳, 庄畅, 张光学, 等. 南海东沙海域末次冰期异常沉积事件与水合物分解[J]. 地球科学-中国地质大学学报, 2014, 39(11):1617-1616. [CHEN Fang, ZHUANG Chang, ZHANG Guangxue, et al. Abnormal sedimentary events and gas hydrate dissociation in Dongsha area of the South China Sea during Last Glacial Period [J]. Earth Science-Journal of China University of Geosciences, 2014, 39(11): 1617-1616.
    [12]
    殷绍如, 王嘹亮, 郭依群, 等. 东沙海底峡谷的地貌沉积特征及成因[J]. 中国科学: 地球科学, 2015, 58(6):971-985. [YIN Shaoru, WANG Liaoliang, GUO Yiqun, et al. Morphology, sedimentary characteristics, and origin of the Dongsha submarine canyon in the northeastern continental slope of the South China Sea [J]. Science China Earth Sciences, 2015, 58(6): 971-985. doi: 10.1007/s11430-014-5044-8
    [13]
    Shao L, Li X J, Geng J H, et al. Deep water bottom current deposition in the northern South China Sea [J]. Science in China Series D: Earth Sciences, 2007, 50(7): 1060-1066. doi: 10.1007/s11430-007-0015-y
    [14]
    Chen C T A, Wang S L. Influence of intermediate water in the western Okinawa Trough by the outflow from the South China Sea [J]. Journal of Geophysical Research, 1998, 103(C6): 12683-12688. doi: 10.1029/98JC00366
    [15]
    李前裕, 赵泉鸿, 钟广法, 等. 新近纪南海深层水的增氧与分层[J]. 地球科学-中国地质大学学报, 2008, 33(1):1-11. [LI Qianyu, ZHAO Quanhong, ZHONG Guangfa, et al. Deep water ventilation and stratification in the Neogene South China Sea [J]. Earth Science-Journal of China University of Geosciences, 2008, 33(1): 1-11. doi: 10.3799/dqkx.2008.001
    [16]
    Schlitzer R. Ocean Data View Software[EB/OL]. http://odv.awi.de/ (last access: 7 May 2015), 2009.
    [17]
    Sloan E D, Koh C A. Clathrate Hydrates of Natural Gases[M]. 3rd ed. Florida: CRC Press, 2008.
    [18]
    Zeng L L, Wang Q, Xie Q, et al. Hydrographic field investigations in the Northern South China Sea by open cruises during 2004-2013 [J]. Science Bulletin, 2015, 60(6): 607-615. doi: 10.1007/s11434-015-0733-z
    [19]
    Bintanja R, van de Wal R S W, Oerlemans J. Modelled atmospheric temperatures and global sea levels over the past million years [J]. Nature, 2005, 437(7055): 125-128. doi: 10.1038/nature03975
    [20]
    Bates S L, Siddall M, Waelbroeck C. Hydrographic variations in deep ocean temperature over the mid-Pleistocene transition [J]. Quaternary Science Reviews, 2014, 88: 147-158. doi: 10.1016/j.quascirev.2014.01.020
    [21]
    Shyu C T, Chen Y J, Chiang S T, et al. Heat flow measurements over bottom simulating reflectors, offshore southwestern Taiwan [J]. Terrestrial, Atmospheric and Oceanic Sciences, 2006, 17(4): 845-869. doi: 10.3319/TAO.2006.17.4.845(GH)
    [22]
    Yang X Q, Shi X B, Zhao J F, et al. Bottom water temperature measurements in the South China Sea, eastern Indian Ocean and western Pacific Ocean [J]. Journal of Tropical Oceanography, 2018, 37(5): 86-97.
    [23]
    Kennett J P, Cannariato K G, Hendy I L, et al. Carbon isotopic evidence for methane hydrate instability during quaternary interstadials [J]. Science, 2000, 288(5463): 128-133. doi: 10.1126/science.288.5463.128
    [24]
    徐行, 李亚敏, 罗贤虎, 等. 南海北部陆坡水合物勘探区典型站位不同类型热流对比[J]. 地球物理学报, 2012, 55(3):998-1006. [XU Xing, LI Yamin, LUO Xianhu, et al. Comparison of different-type heat flows at typical sites in natural gas hydrate exploration area on the northern slope of the South China Sea [J]. Chinese Journal of Geophysics, 2012, 55(3): 998-1006.
    [25]
    施小斌, 王振峰, 蒋海燕, 等. 张裂型盆地地热参数的垂向变化与琼东南盆地热流分布特征[J]. 地球物理学报, 2015, 58(3):939-952. [SHI Xiaobin, WANG Zhenfeng, JIANG Haiyan, et al. Vertical variations of geothermal parameters in rifted basins and heat flow distribution features of the Qiongdongnan Basin [J]. Chinese Journal of Geophysics, 2015, 58(3): 939-952.
    [26]
    施小斌, 于传海, 陈梅, 等. 南海北部陆缘热流变化特征及其影响因素分析[J]. 地学前缘, 2017, 24(3):56-64. [SHI Xiaobin, YU Chuanhai, CHEN Mei, et al. Analyses of variation features and influential factors of heat flow in the northern margin of the South China Sea [J]. Earth Science Frontiers, 2017, 24(3): 56-64.
    [27]
    Liao W Z, Lin A T, Liu C S, et al. Heat flow in the rifted continental margin of the South China Sea near Taiwan and its tectonic implications [J]. Journal of Asian Earth Sciences, 2014, 92: 233-244. doi: 10.1016/j.jseaes.2014.01.003
    [28]
    栾锡武, 张亮, 岳保静. 南海北部陆坡海底火山活动对天然气水合物成藏的影响[J]. 现代地质, 2010, 24(3):424-432. [LUAN Xiwu, ZHANG Liang, YUE Baojing. Influence on gas hydrates formation produced by volcanic activity on northern South China Sea slope [J]. Geoscience, 2010, 24(3): 424-432.
    [29]
    Wallmann K, Pinero E, Burwicz E, et al. The global inventory of methane hydrate in marine sediments: A theoretical approach [J]. Energies, 2012, 5(7): 2449-2498. doi: 10.3390/en5072449
    [30]
    Johnson J E, Phillips S C, Torres M E, et al. Influence of total organic carbon deposition on the inventory of gas hydrate in the Indian continental margins [J]. Marine & Petroleum Geology, 2014, 58: 406-424.
    [31]
    Matveva T V, Soloviev V A. Geological control over gas hydrate accumulation on the Blake outer ridge, western North Atlantic (from DSDP and ODP data) [J]. Russian Geology and Geophysics, 2002, 43(7): 662-671.
    [32]
    Riedel M, Collett T S, Kumar P, et al. Seismic imaging of a fractured gas hydrate system in the Krishna-Godavari Basin offshore India [J]. Marine and Petroleum Geology, 2010, 27(7): 1476-1493. doi: 10.1016/j.marpetgeo.2010.06.002
    [33]
    Boswell R, Frye M, Shelander D, et al. Architecture of gas-hydrate-bearing sands from Walker Ridge 313, Green Canyon 955, and Alaminos Canyon 21: Northern deepwater Gulf of Mexico [J]. Marine and Petroleum Geology, 2012, 34(1): 134-149. doi: 10.1016/j.marpetgeo.2011.08.010
    [34]
    Noguchi S, Shimoda N, Takano O, et al. 3-D internal architecture of methane hydrate-bearing turbidite channels in the eastern Nankai Trough, Japan [J]. Marine and Petroleum Geology, 2011, 28(10): 1817-1828. doi: 10.1016/j.marpetgeo.2011.02.004
    [35]
    陈芳, 苏新, Nurnberg D, et al. 南海东沙海域末次冰期最盛期以来的沉积特征[J]. 海洋地质与第四纪地质, 2006, 26(6):9-17. [CHEN Fang, SU Xin, Nurnberg D, et al. Lithologic features of sediments characterized by high sedimentation rates since the last glacial maximum from dongsha area of the south china sea [J]. Marine Geology and Quaternary Geology, 2006, 26(6): 9-17.
    [36]
    赵绍华, 刘志飞, 陈全, 等. 南海北部末次冰期以来深水沉积物组成及其堆积速率的时空变化特征[J]. 中国科学: 地球科学, 2017, 60(7):1368-1381. [ZHAO Shaohua, LIU Zhifei, CHEN Quan, et al. Spatiotemporal variations of deep-sea sediment components and their fluxes since the last glaciation in the northern South China Sea [J]. Science China Earth Sciences, 2017, 60(7): 1368-1381. doi: 10.1007/s11430-016-9058-6
    [37]
    Huang W, Wang P X. A quantitative approach to deep-water sedimentation in the South China Sea: Changes since the last glaciation [J]. Science in China Series D: Earth Sciences, 1998, 41(2): 195-201.
    [38]
    Li L, Liu H J, Zhang X, et al. BSRs, estimated heat flow, hydrate-related gas volume and their implications for methane seepage and gas hydrate in the Dongsha region, northern South China Sea [J]. Marine and Petroleum Geology, 2015, 67: 785-794. doi: 10.1016/j.marpetgeo.2015.07.008
    [39]
    Mienert J, Vanneste M, Bünz S, et al. Ocean warming and gas hydrate stability on the mid-Norwegian margin at the Storegga Slide [J]. Marine and Petroleum Geology, 2005, 22(1-2): 233-244. doi: 10.1016/j.marpetgeo.2004.10.018
    [40]
    刘斌. 南海北部陆坡东沙海域海底丘状体气体与水合物分布[J]. 海洋学报, 2017, 39(3):68-75. [LIU Bin. Gas and gas hydrate distribution around seafloor mound in the Dongsha area, north slope of the South China Sea [J]. Haiyang Xuebao, 2017, 39(3): 68-75.
    [41]
    张丙坤, 李三忠, 夏真, 等. 南海北部海底滑坡与天然气水合物形成与分解的时序性[J]. 大地构造与成矿学, 2014, 38(2):434-440. [ZHANG Bingkun, LI Sanzhong, XIA Zhen, et al. Time sequence of submarine landslides and gas hydrates in the northern South China Sea [J]. Geotectonica et Metallogenia, 2014, 38(2): 434-440.
    [42]
    黄怡, 王淑红, 颜文, 等. 南海北部东沙海域天然气水合物分解事件及其与海底滑塌的关系[J]. 热带海洋学报, 2018, 37(4):61-69. [HUANG Yi, WANG Shuhong, YAN Wen, et al. Gas hydrate dissociation event and its relationship with submarine slide in Dongsha Area of northern South China Sea [J]. Journal of Tropical Oceanography, 2018, 37(4): 61-69.
  • Related Articles

    [1]FANG Wenli, YAO Zhengquan, SHI Xuefa, GE Chendong, QIAO Shuqing, LI Xiaoyan, DONG Zhi, WANG Ying. Millennial-scale paleoenvironment and paleoclimate changes recorded in the Bohai Sea sediments during the last glacial period[J]. Marine Geology & Quaternary Geology, 2019, 39(3): 61-71. DOI: 10.16562/j.cnki.0256-1492.2018092101
    [2]WU Daidai, YANG Fei, HUANG Xia, PAN Mengdi, SUN Tiantian, LIU Lihua, WU Nengyou. RARE EARTH ELEMENTAL GEOCHEMISTRY OF THE SEDIMENTS IN COLD-SEEP AREA IN DONGSHA AREA OF SOUTH CHINA SEA[J]. Marine Geology & Quaternary Geology, 2017, 37(5): 59-69. DOI: 10.16562/j.cnki.0256-1492.2017.05.006
    [3]CHEN Fang, ZHOU Yang, ZHUANG Chang, LU Hongfeng, WU Cong. ORIGIN OF THE HIATUS OF LAST GLACIAL PERIOD IN COLD SEEP AREA of NORTHEASTERN SOUTH CHINA SEA[J]. Marine Geology & Quaternary Geology, 2016, 36(2): 19-27. DOI: 10.16562/j.cnki.0256-1492.2016.02.003
    [4]ZHENG Hongbo, YAN Pin, LIU Hailin, WANG Yanlin. THE APPLICATION OF SUB-BOTTOM PROFILE TO GAS HYDRATE INVESTIGATION IN SOUTHWEST DONGSHA SEA AREA,NORTHERN SOUTH CHINA SEA[J]. Marine Geology & Quaternary Geology, 2012, 32(2): 115-120. DOI: 10.3724/SP.J.1140.2012.02115
    [5]WU Daidai, WU Nengyou, FU Shaoying, LIANG Jinqiang, GUAN Hongxiang. GEOCHEMICAL CHARACTERISTICS OF SHALLOW SEDIMENTS IN THE GAS HYDRATE DISTRIBUTION AREA OF DONGSHA, THE NORTHERN SOUTH CHINA SEA[J]. Marine Geology & Quaternary Geology, 2010, 30(5): 41-51. DOI: 10.3724/SP.J.1140.2010.05041
    [6]ZOU Jianjun, SHI Xuefa, LIU Yanguang, LIU Jihua. GEOCHEMICAL RECORD OF TERRIGENOUS SEDIMENTS FROM THE SEA OF JAPAN SINCE LAST GLACIAL AND ITS RESPONSE TO SEA LEVEL AND CLIMATE CHANGE[J]. Marine Geology & Quaternary Geology, 2010, 30(2): 75-86. DOI: 10.3724/SP.J.1140.2010.02075
    [7]ZHOU Yang, CHEN Fang, SU Xin, LIU Guanghu, CHEN Chaoyun. BENTHIC FORAMINIFERA COMMUNITIES IN METHANE-RICH ENVIRONMENT SHOWED BY CORE HD319 IN DONGSHA SEA AREA OF THE SOUTH CHINA SEA[J]. Marine Geology & Quaternary Geology, 2009, 29(3): 1-8. DOI: 10.3724/SP.J.1140.2009.03001
    [8]GONG Yue-hua, WU Shi-guo, ZHANG Guang xue, WANG Hong-bin, LIANG Jin-qiang, GUO Yi-qun, SHA Zhi-bin. RELATION BETWEEN GAS HYDRATE AND GEOLOGIC STRUCTURES IN DONGSHA ISLANDS SEA AREA OF SOUTH CHINE SEA[J]. Marine Geology & Quaternary Geology, 2008, 28(1): 99-104.
    [9]CHEN Fang, SU Xin, D Nurnberg, LU Hong-feng, ZHU You-hua, LIU Jian, LIAO Zhi-liang. LITHOLOGIC FEATURES OF SEDIMENTS CHARACTERIZED BY HIGH SEDIMENTATION RATES SINCE THE LAST GLACIAL MAXIMUM FROM DONGSHA AREA OF THE SOUTH CHINA SEA[J]. Marine Geology & Quaternary Geology, 2006, 26(6): 9-17.
    [10]WU Lu-shan, ZHU Zhao-yu, QIU Yan, CHEN Fang, CHEN Chao-yun, ZHONG He-xian, ZHOU Hou-yun. PLANKTONIC FORAMINIFERA FROM THE SOUTHWESTERN CONTINENTAL SLOPE OF THE SOUTH CHINA SEA SINCE LAST GLACIAL AND THEIR PALEO-CLIMATE IMPLICATION[J]. Marine Geology & Quaternary Geology, 2006, 26(6): 1-8.

Catalog

    Article views (1972) PDF downloads (48) Cited by()

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return