YANG Jun, ZHAO Yanyan, WU Jiaqing, WEI Haotian, LONG Haiyan, LI Sanzhong, BI Naishuang. Geochemical record of foraminifera and its reflection on climate change in the central South China Sea since Holocene[J]. Marine Geology & Quaternary Geology, 2020, 40(2): 100-110. DOI: 10.16562/j.cnki.0256-1492.2019083001
Citation: YANG Jun, ZHAO Yanyan, WU Jiaqing, WEI Haotian, LONG Haiyan, LI Sanzhong, BI Naishuang. Geochemical record of foraminifera and its reflection on climate change in the central South China Sea since Holocene[J]. Marine Geology & Quaternary Geology, 2020, 40(2): 100-110. DOI: 10.16562/j.cnki.0256-1492.2019083001

Geochemical record of foraminifera and its reflection on climate change in the central South China Sea since Holocene

More Information
  • Corresponding author:

    ZHAO Yanyan, E-mail: zhaoyanyan@ouc.edu.cn

  • Received Date: August 29, 2019
  • Revised Date: November 14, 2019
  • Available Online: April 14, 2020
  • Foraminifera form their crust by absorption or capture of calcium or silica from the seawater they live in. As the results, the geochemical features of the crust are the efficient indicators of palaeoclimate, palaeooceanography and palaeoenvironments during their life. In the year of 2017, columnar samples of a pushcore were collected by the “Jiaolong” submersible precisely at the foot of the Zhenbei seamount near the Huangyan Island in the Middle of South China Sea. The Mg/Ca ratios and the carbon and oxygen isotope compositions of the planktonic foraminifera Globigerinoides ruber and Globeriginoides sacculifer shells were measured to trace the history of sea surface temperatures (SST) and influence parameters. The results show that the SST in the sea area varied from 24.4 to 29.3 ℃ since 12.6 ka with an average of 26.2 ℃. Some cold events can be the obviously identified, which could be correlated with the events of Younger Dryas and Holocene East Asian summer monsoon. These events may be controlled by the ENSO activities and the shift of the mean location of ITCZ, and even influenced by the North Atlantic ice rafting events. In addition, we found that during the period of Holocene the fractionation of Δ13CG.sacculifer-G.ruber between the carbon isotope compositions of G.sacculifer and G.ruber may also be constrained by SST since the Δ13CG.sacculifer-G.ruber values was negatively biased when SST decreased and vice versa.
  • [1]
    Lea D W. Trace elements in foraminiferal calcite[M]//Gupta B K S. Modern Foraminifera. Dordrecht: Springer, 1999: 259-277.
    [2]
    Basak C, Rathburn A E, Pérez M E, et al. Carbon and oxygen isotope geochemistry of live (stained) benthic foraminifera from the Aleutian Margin and the Southern Australian Margin [J]. Marine Micropaleontology, 2009, 70(3-4): 89-101. doi: 10.1016/j.marmicro.2008.11.002
    [3]
    Rae J W B, Foster G L, Schmidt D N, et al. Boron isotopes and B/Ca in benthic foraminifera: Proxies for the deep ocean carbonate system [J]. Earth and Planetary Science Letters, 2011, 302(3-4): 403-413. doi: 10.1016/j.jpgl.2010.12.034
    [4]
    Vigier N, Rollion-Bard C, Levenson Y, et al. Lithium isotopes in foraminifera shells as a novel proxy for the ocean Dissolved Inorganic Carbon (DIC) [J]. Comptes Rendus Geoscience, 2015, 347(1): 43-51. doi: 10.1016/j.crte.2014.12.001
    [5]
    Stott L, Cannariato K, Thunell R, et al. Decline of surface temperature and salinity in the western tropical Pacific Ocean in the Holocene epoch [J]. Nature, 2004, 431(7004): 56-59. doi: 10.1038/nature02903
    [6]
    Schönfeld J, Kudrass H R. Hemipelagic sediment accumulation rates in the South China sea related to Late Quaternary sea-level changes [J]. Quaternary Research, 1993, 40(3): 368-379. doi: 10.1006/qres.1993.1090
    [7]
    汪品先, 赵泉鸿, 翦知湣, 等. 南海三千万年的深海记录[J]. 科学通报, 2003, 48(23):2524-2535. [WANG Pinxian, ZHAO Quanhong, JIAN Zhimin, et al. Thirty million year deep sea records in the South China Sea [J]. Chinese Science Bulletin, 2003, 48(23): 2524-2535. doi: 10.1007/BF03037016
    [8]
    Wang P X, Li Q Y, Tian J, et al. Monsoon influence on planktic δ18O records from the South China Sea [J]. Quaternary Science Reviews, 2016, 142: 26-39. doi: 10.1016/j.quascirev.2016.04.009
    [9]
    Woodson A L, Leorri E, Culver S J, et al. Sea-surface temperatures for the last 7200 years from the eastern Sunda Shelf, South China Sea: climatic inferences from planktonic foraminiferal Mg/Ca ratios [J]. Quaternary Science Reviews, 2017, 165: 13-24. doi: 10.1016/j.quascirev.2017.04.009
    [10]
    Pelejero C, Grimalt J O, Heilig S, et al. High-resolution UK37 temperature reconstructions in the South China Sea over the past 220 kyr [J]. Paleoceanography, 1999, 14(2): 224-231. doi: 10.1029/1998PA900015
    [11]
    Yang Y P, Xiang R, Liu J G, et al. Inconsistent sea surface temperature and salinity changing trend in the northern South China Sea since 7.0 ka BP [J]. Journal of Asian Earth Sciences, 2018, 171: 178-186.
    [12]
    Zhou B, Zheng H B, Yang W G, et al. Climate and vegetation variations since the LGM recorded by biomarkers from a sediment core in the northern South China Sea [J]. Journal of Quaternary Science, 2012, 27(9): 948-955. doi: 10.1002/jqs.2588
    [13]
    Wu M S, Zong Y Q, Mok K M, et al. Holocene hydrological and sea surface temperature changes in the northern coast of the South China Sea [J]. Journal of Asian Earth Sciences, 2017, 135: 268-280. doi: 10.1016/j.jseaes.2017.01.004
    [14]
    Tian J, Huang E Q, Pak D K. East Asian winter monsoon variability over the last glacial cycle: insights from a latitudinal sea-surface temperature gradient across the South China Sea [J]. Palaeogeography, Palaeoclimatology, Palaeoecology, 2010, 292(1-2): 319-324. doi: 10.1016/j.palaeo.2010.04.005
    [15]
    Wang L J, Wang P X. Late Quaternary paleoceanography of the South China Sea: glacial-interglacial contrasts in an enclosed basin [J]. Paleoceanography, 1990, 5(1): 77-90. doi: 10.1029/PA005i001p00077
    [16]
    刘伟. 南海北部陆坡MIS5以来的古环境记录[D]. 中国地质大学(北京)博士学位论文, 2012.

    LIU Wei. Paleoclimatic records from northern slope of South China Sea since the marine isotope stage 5[D]. Doctor Dissertation of China University of Geosciences (Beijing), 2012.
    [17]
    钱永甫, 王谦谦, 朱伯承. 南海海流对冬季风风应力的响应特征[J]. 气象科学, 2000, 20(1):1-8. [QIAN Yongfu, WANG Qianqian, Peter C. Responsive properties of oceanic currents in the South China Sea to wind stress of winter monsoon [J]. Scientia Meteorologica Sinica, 2000, 20(1): 1-8. doi: 10.3969/j.issn.1009-0827.2000.01.001
    [18]
    Zhang H B, Pin Y. Deep-water bottom current research in the northern South China Sea [J]. Marine Georesources & Geotechnology, 2012, 30(2): 122-129.
    [19]
    柴扉, 薛惠洁, 侍茂崇. 南海升降流区域分布及形成机制分析[C]//中国海洋学文集——南海海流数值计算及中尺度特征研究. 北京: 中国海洋学会, 2001.

    CHAI Fei, XUE Huijie, SHI Maochong. Formation and distribution of upwelling and downwelling in the South China Sea[C]//. Beijing: Chinese Society for Oceanography, 2001.
    [20]
    Whitko A N, Hastings D W, Flower B P. Past sea surface temperatures in the tropical South China Sea based on a new foraminiferal Mg calibration [J]. MAR Sci, 2002, 1.
    [21]
    路波. 25万年来西太平洋暖池核心区古海洋学研究[D]. 中国科学院研究生院(海洋研究所)博士学位论文, 2010.

    LU Bo. Past 250 kyr Paleoceanography in west pacific warm pool[D]. Doctor Dissertation of the Institute of Oceanology, Chinese Academy of Sciences, 2010.
    [22]
    潘梦迪, 邬黛黛, 吴能友, 等. 南海北部神狐海域晚末次冰期以来有孔虫特征及其对古海洋环境的指示[J]. 海洋地质与第四纪地质, 2017, 37(2):127-138. [PAN Mengdi, WU Daidai, WU Nengyou, et al. Characteristics of foraminiferal assemblages since Last Glacial from Shenhu area of northern South China Sea and implications for Paleoceanographic environmental changes [J]. Marine Geology & Quaternary Geology, 2017, 37(2): 127-138.
    [23]
    Hastings D W, Kienast M, Steinke S, et al. A comparison of three independent paleotemperature estimates from a high resolution record of Deglacial SST records in the tropical South China Sea[C]//Proceedings of AGU Fall Meeting. 2001: 10.
    [24]
    梁静之, 黄宝琦, 董轶婷, 等. 南海北部MD12-3432站MIS 11期以来底栖有孔虫反映的古环境变化[J]. 地学前缘, 2016, 23(4):292-300. [LIANG Jingzhi, HUANG Baoqi, DONG Yiting, et al. Benthic foraminifera’s implications on Paleo-environment variability in MD12-3432 in the northern South China Sea since MIS 11 [J]. Earth Science Frontiers, 2016, 23(4): 292-300.
    [25]
    汪品先. 西太平洋边缘海的冰期碳酸盐旋回[J]. 海洋地质与第四纪地质, 1998, 18(1):1-11. [WANG Pinxian. Glacial carbonate cycles in western Pacific marginal Seas [J]. Marine Geology & Quaternary Geology, 1998, 18(1): 1-11.
    [26]
    Elderfield H, Ganssen G. Past temperature and δ18O of surface ocean waters inferred from foraminiferal Mg/Ca ratios [J]. Nature, 2000, 405(6785): 442-445. doi: 10.1038/35013033
    [27]
    李建如. 有孔虫壳体的Mg/Ca比值在古环境研究中的应用[J]. 地球科学进展, 2005, 20(8):815-822. [LI Jianru. The application of foraminiferal shell Mg/Ca ratio in Paleo-environmental studies [J]. Advances in Earth Science, 2005, 20(8): 815-822. doi: 10.3321/j.issn:1001-8166.2005.08.001
    [28]
    Andersen K K, Azuma N, Barnola, J M, et al. High-resolution record of Northern Hemisphere climate extending into the Last Interglacial Period [J]. Nature, 2004, 431(7005): 147-151. doi: 10.1038/nature02805
    [29]
    Dykoski C A, Edwards R L, Cheng H, et al. A high-resolution, absolute-dated Holocene and deglacial Asian monsoon record from Dongge Cave, China [J]. Earth and Planetary Science Letters, 2005, 233(1-2): 71-86. doi: 10.1016/j.jpgl.2005.01.036
    [30]
    Steinke S, Chiu H Y, Yu P S, et al. On the influence of sea level and monsoon climate on the southern South China Sea freshwater budget over the last 22, 000 years [J]. Quaternary Science Reviews, 2006, 25(13-14): 1475-1488. doi: 10.1016/j.quascirev.2005.12.008
    [31]
    Wang L, Sarnthein M, Erlenkeuser H, et al. East Asian monsoon climate during the Late Pleistocene: high-resolution sediment records from the South China Sea [J]. Marine Geology, 1999, 156(1-4): 245-284. doi: 10.1016/S0025-3227(98)00182-0
    [32]
    Moy C M, Seltzer G O, Rodbell D T, et al. Variability of El Niño/Southern Oscillation activity at millennial timescales during the Holocene epoch [J]. Nature, 2002, 420(6912): 162-165. doi: 10.1038/nature01194
    [33]
    李小洁. 南海北部沉积物记录的早更新世气候变化[D]. 中国科学院研究生院(地球环境研究所)硕士学位论文, 2015.

    LI Xiaojie. The early Pleistocene climate change recorded in the northern South China Sea sediments[D]. Master Dissertation of Institute of Earth Environment, Chinese Academy of Sciences, 2015.
    [34]
    Geyh M A, Streif H, Kudrass H R. Sea-level changes during the Late Pleistocene and Holocene in the Strait of Malacca [J]. Nature, 1979, 278(5703): 441-443. doi: 10.1038/278441a0
    [35]
    Hanebuth T, Stattegger K, Grootes P M. Rapid flooding of the Sunda shelf: a Late-Glacial sea-level record [J]. Science, 2000, 288(5468): 1033-1035. doi: 10.1126/science.288.5468.1033
    [36]
    Bond G, Kromer B, Beer J, et al. Persistent solar influence on North Atlantic climate during the Holocene [J]. Science, 2001, 294(5549): 2130-2136. doi: 10.1126/science.1065680
    [37]
    Zhong W, Cao J Y, Xue J B, et al. A 15, 400-year record of climate variation from a subalpine lacustrine sedimentary sequence in the western Nanling Mountains in South China [J]. Quaternary Research, 2015, 84(2): 246-254. doi: 10.1016/j.yqres.2015.06.002
    [38]
    Liu Y H, Henderson G M, Hu C Y, et al. Links between the East Asian monsoon and North Atlantic climate during the 8, 200 year event [J]. Nature Geoscience, 2013, 6(2): 117-120. doi: 10.1038/ngeo1708
    [39]
    Hong Y T, Hong B, Lin Q H, et al. Synchronous climate anomalies in the western North Pacific and North Atlantic regions during the last 14, 000 years [J]. Quaternary Science Reviews, 2009, 28(9-10): 840-849. doi: 10.1016/j.quascirev.2008.11.011
    [40]
    Zhao L, Ma C M, Leipe C, et al. Holocene vegetation dynamics in response to climate change and human activities derived from pollen and charcoal records from southeastern China [J]. Palaeogeography, Palaeoclimatology, Palaeoecology, 2017, 485: 644-660. doi: 10.1016/j.palaeo.2017.06.035
    [41]
    李明坤. 南海西北部36 kyr BP以来的古气候环境演变与驱动机制[D]. 中国科学院大学(中国科学院广州地球化学研究所)博士学位论文, 2018.

    LI Mingkun. Paleoclimate and paleoenvironment evolutions in the northwestern South China Sea over the past 36 kyr BP and the forcing mechanisms[D]. Doctor Dissertation of Guangzhou Institute of Geochemistry, Chinese Academy of Sciences, 2018.
    [42]
    邵磊, 李学杰, 耿建华, 等. 南海北部深水底流沉积作用[J]. 中国科学D辑: 地球科学, 2007, 50(7):1060-1066. [SHAO Lei, LI Xuejie, GENG Jianhua, et al. Deep water bottom current deposition in the northern South China Sea [J]. Science in China Series D: Earth Sciences, 2007, 50(7): 1060-1066. doi: 10.1007/s11430-007-0015-y
    [43]
    Chen H, Xie X, Zhang W Y, et al. Deep-water sedimentary systems and their relationship with bottom currents at the intersection of Xisha Trough and Northwest Sub-Basin, South China Sea [J]. Marine Geology, 2016, 378: 101-113. doi: 10.1016/j.margeo.2015.11.002
    [44]
    Yu K F, Zhao J X, Wei G J, et al. Mid–Late Holocene monsoon climate retrieved from seasonal Sr/Ca and δ18O records of Porites lutea corals at Leizhou Peninsula, northern coast of South China Sea [J]. Global and Planetary Change, 2005, 47(2-4): 301-316. doi: 10.1016/j.gloplacha.2004.10.018
    [45]
    Wang Y J, Cheng H, Edwards R L, et al. The Holocene Asian Monsoon: links to solar changes and North Atlantic Climate [J]. Science, 2005, 308(5723): 854-857. doi: 10.1126/science.1106296
    [46]
    Wang X S, Chu G Q, Sheng M, et al. Millennial-scale Asian summer monsoon variations in South China since the last deglaciation [J]. Earth and Planetary Science Letters, 2016, 451: 22-30. doi: 10.1016/j.jpgl.2016.07.006
    [47]
    Zhou X, Sun L G, Zhan T, et al. Time-transgressive onset of the Holocene Optimum in the East Asian monsoon region [J]. Earth and Planetary Science Letters, 2016, 456: 39-46. doi: 10.1016/j.jpgl.2016.09.052
    [48]
    施雅风, 孔昭宸, 王苏民, 等. 中国全新世大暖期的气候波动与重要事件[J]. 中国科学B辑, 1994, 37(3):353-365. [SHI Yafeng, KONG Zhaochen, WANG Sumin, et al. The climatic fluctuation and important events of Holocene Megathermal in China [J]. Scinece in China (Series B), 1994, 37(3): 353-365.
    [49]
    Wang Y J, Cheng H, Edwards R L, et al. A high-resolution absolute-dated Late Pleistocene monsoon record from Hulu Cave, China [J]. Science, 2001, 294(5550): 2345-2348. doi: 10.1126/science.1064618
    [50]
    Wang Y J, Cheng H, Edwards R L, et al. Millennial- and orbital-scale changes in the East Asian monsoon over the past 224, 000 years [J]. Nature, 2008, 451(7182): 1090-1093. doi: 10.1038/nature06692
    [51]
    Berger A, Loutre M F. Insolation values for the climate of the last 10 million years [J]. Quaternary Science Reviews, 1991, 10(4): 297-317. doi: 10.1016/0277-3791(91)90033-Q
    [52]
    Selvaraj K, Chen C T A, Lou J Y. Holocene East Asian monsoon variability: links to solar and tropical Pacific forcing [J]. Geophysical Research Letters, 2007, 34(1): L01703.
    [53]
    Fleitmann D, Burns S J, Mangini A, et al. Holocene ITCZ and Indian monsoon dynamics recorded in stalagmites from Oman and Yemen (Socotra) [J]. Quaternary Science Reviews, 2007, 26(1-2): 170-188. doi: 10.1016/j.quascirev.2006.04.012
    [54]
    Haug G H, Hughen K A, Sigman D M, et al. Southward migration of the Intertropical convergence zone through the holocene [J]. Science, 2001, 293(5533): 1304-1308. doi: 10.1126/science.1059725
    [55]
    Clement A C, Seager R, Cane M A. Suppression of El Niño during the Mid-Holocene by changes in the Earth's orbit [J]. Paleoceanography, 2000, 15(6): 731-737. doi: 10.1029/1999PA000466
    [56]
    Fedorov A V, Philander S G. Is El Niño changing? [J]. Science, 2000, 288(5473): 1997-2002. doi: 10.1126/science.288.5473.1997
    [57]
    Higginson M J, Altabet M A, Wincze L, et al. A solar (irradiance) trigger for millennial-scale abrupt changes in the southwest monsoon? [J]. Paleoceanography, 2004, 19(3): PA3015.
    [58]
    Li J Y, Dodson J, Yan H, et al. Quantitative Holocene climatic reconstructions for the Lower Yangtze region of China [J]. Climate Dynamics, 2018, 50(3): 1101-1113.
    [59]
    Liu Z Y, Kutzbach J, Wu L X. Modeling climate shift of El Nino variability in the Holocene [J]. Geophysical Research Letters, 2000, 27(15): 2265-2268. doi: 10.1029/2000GL011452
    [60]
    Clement A C, Seager R, Cane M A. Orbital controls on the El Niño/Southern Oscillation and the tropical climate [J]. Paleoceanography, 1999, 14(4): 441-456. doi: 10.1029/1999PA900013
  • Related Articles

    [1]LIANG Chengde, HAN Tao, ZHAO Nanyu, WEN Hanfeng, WANG Guozhen, LIU Chengcheng, YANG Haotian, GENG Jun, YAN Hong. Variation and influencing factors of δ13C and δ18O in the inner and outer layers of modern Tridacna squamosa from the Xisha Islands, South China Sea[J]. Marine Geology & Quaternary Geology, 2024, 44(4): 41-53. DOI: 10.16562/j.cnki.0256-1492.2024012501
    [2]TAO Shuqin, LI Yunhai, TANG Zheng, YE Xiang, SUN Heng, GAO Zhongyong, LI Guogang. Composition of organic materials and the control factors of suspended particulates in the surface water of the Ross Sea-Amundsen Sea in marginal sea of the southwestern Antarctic in austral summer 2019-2020[J]. Marine Geology & Quaternary Geology, 2022, 42(4): 24-38. DOI: 10.16562/j.cnki.0256-1492.2022022101
    [3]WEN Hanfeng, ZHAO Nanyu, LIU Chengcheng, ZHOU Pengchao, WANG Guozhen, YAN Hong. High-resolution oxygen isotope records of Tridacna gigas from Palau, Western Pacific and its climatic and environmental implications[J]. Marine Geology & Quaternary Geology, 2021, 41(1): 1-13. DOI: 10.16562/j.cnki.0256-1492.2020101101
    [4]FENG Yu, TIAN Jun. Hydrochemical behaviors of Cd in paleoceans and a review of Cd/Ca ratio in foraminifera shells as a paleoeanographyic proxy[J]. Marine Geology & Quaternary Geology, 2018, 38(5): 122-129. DOI: 10.16562/j.cnki.0256-1492.2018.05.012
    [5]XU Shendong, CHEN Wenhuang, DENG Wenfeng, JIA Guodong. WINTER SURFACE SEAWATER TEMPERATURE IN THE NORTHERN SOUTH CHINA SEA INDUCED FROM TEMPERATURE INDEX OF SHELL OXYGEN ISOTOPE OF GLOBIGERINOIDES RUBER[J]. Marine Geology & Quaternary Geology, 2016, 36(2): 101-107. DOI: 10.16562/j.cnki.0256-1492.2016.02.012
    [6]GE Qian, MENG Xianwei, CHU Fengyou, XUE Zuo, LEI Jijiang. PALEOCEANOGRAPHIC RECORDS OF CORE ZHS-176 FROM THE NORTHERN SOUTH CHINA SEA: OXYGEN ISOTOPE AND ORGANIC CARBON[J]. Marine Geology & Quaternary Geology, 2012, 32(5): 73-80. DOI: 10.3724/SP.J.1140.2012.05073
    [7]JIN Haiyan, JIAN Zhimin, QIAO Peijun, CHENG Xinrong. THE SEA SURFACE TEMPERATURE AND OXYGEN ISOTOPE CHANGES IN THE WESTERN PACIFIC WARM POOL DURING THE MID-PLEISTOCENE TRANSITION PERIOD[J]. Marine Geology & Quaternary Geology, 2012, 32(4): 107-113. DOI: 10.3724/SP.J.1140.2012.04107
    [8]ZHANG Weihong, WU Jiangying. ECOLOGICAL RESPONSE OF δ13C TO HOLOCENE CLIMATE CHANGES FROM STALAGMITE RECORD IN NUANHE CAVE, LIAONING[J]. Marine Geology & Quaternary Geology, 2012, 32(3): 147-154. DOI: 10.3724/SP.J.1140.2012.03147
    [9]SU Xiang, LIU Chuanlian. RESPONSE OF COCCOLITH RECORDS IN THE SOUTH CHINA SEA TO CARBON ISOTOPE MINIMUM EVENTS[J]. Marine Geology & Quaternary Geology, 2010, 30(6): 67-72. DOI: 10.3724/SP.J.1140.2010.06067
    [10]WANG Jun-bo, ZHU Li-ping. THE RESPONSE OF ORGANIC MATTER δ13C TO COLD/WARM FLUCTUATION OF CHEN CO LAKE SEDIMENT, SOUTHERN TIBET[J]. Marine Geology & Quaternary Geology, 2007, 27(2): 113-120.
  • Cited by

    Periodical cited type(3)

    1. 刘博华,吴芳,张绪教,崔加伟,董晓朋. 青藏高原东北缘红寺堡盆地晚更新世沉积物元素地球化学特征及其环境指示意义. 地质通报. 2024(01): 33-45 .
    2. 蒋富清,周晓静,李传顺. 220 ka以来西菲律宾海黏土矿物输入变化及其控制因素. 海洋地质与第四纪地质. 2023(05): 85-95 . 本站查看
    3. 颜钰,蒋富清,曾志刚. 西太平洋暖池区沉积物源示踪研究进展. 海洋地质与第四纪地质. 2023(05): 148-159 . 本站查看

    Other cited types(2)

Catalog

    Article views (2524) PDF downloads (57) Cited by(5)

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return