WEN Hanfeng, ZHAO Nanyu, LIU Chengcheng, ZHOU Pengchao, WANG Guozhen, YAN Hong. High-resolution oxygen isotope records of Tridacna gigas from Palau, Western Pacific and its climatic and environmental implications[J]. Marine Geology & Quaternary Geology, 2021, 41(1): 1-13. DOI: 10.16562/j.cnki.0256-1492.2020101101
Citation: WEN Hanfeng, ZHAO Nanyu, LIU Chengcheng, ZHOU Pengchao, WANG Guozhen, YAN Hong. High-resolution oxygen isotope records of Tridacna gigas from Palau, Western Pacific and its climatic and environmental implications[J]. Marine Geology & Quaternary Geology, 2021, 41(1): 1-13. DOI: 10.16562/j.cnki.0256-1492.2020101101

High-resolution oxygen isotope records of Tridacna gigas from Palau, Western Pacific and its climatic and environmental implications

More Information
  • Received Date: October 10, 2020
  • Revised Date: November 06, 2020
  • Available Online: February 28, 2021
  • Tridacna gigas is the largest marine bivalve, and its hard and dense aragonite shells usually have annual and daily growth lines, which have been demonstrated to be an ideal material for high-resolution paleoclimate research. The oxygen isotope has been widely used in Tridacna paleoclimate studies. However, the oxygen isotope of Tridacna shells must be accurately calibrated by modern geochemical process before paleoclimate reconstructions. Palau is located in the northwestern edge of the Western Pacific Warm Pool. Long-lived Tridacna spp. is a common species in the coral reefs of Palau Islands, which may provide abundant materials for paleoclimate reconstructions. In this study, we present a high-resolution oxygen isotope profile from the inner shell of a modern living T. gigas specimen PL-1 from Palau. The high-resolution chronology of the oxygen isotope profile is determined by the clear daily growth layers in the inner shell. The result suggests that the δ18Oc profile of the T. gigas shell has no obvious trend, indicating that the vital effects have no significant influence on the oxygen isotope of shell. Combining with the instrumental data, we found that the ENSO activities in the tropical Pacific had impacts on the regional hydro-climate changes of Palau, and left some fingerprint in the oxygen isotope of Tridacna shell. This study indicates that the daily growth layer and the oxygen isotope in the inner shell of Tridacna from Palau have the potential for high-resolution paleoclimate research.
  • [1]
    Andreasson F P, Schmitz B. Temperature seasonality in the early middle Eocene North Atlantic region: Evidence from stable isotope profiles of marine gastropod shells [J]. GSA Bulletin, 2000, 112(4): 628-640. doi: 10.1130/0016-7606(2000)112<628:TSITEM>2.0.CO;2
    [2]
    Yan H, Sun L G, Shao D, et al. Seawater temperature seasonality in the South China Sea during the late Holocene derived from high-resolution Sr/Ca ratios of Tridacna gigas [J]. Quaternary Research, 2015, 83(2): 298-306. doi: 10.1016/j.yqres.2014.12.001
    [3]
    林而达, 许吟隆, 蒋金荷, 等. 气候变化国家评估报告(Ⅱ): 气候变化的影响与适应[J]. 气候变化研究进展, 2006, 2(2):51-56 doi: 10.3969/j.issn.1673-1719.2006.02.001

    LIN Erda, XU Yinlong, JIANG Jinhe, et al. National Assessment Report of Climate Change (Ⅱ): Climate change impacts and adaptation [J]. Advances in Climate Change Research, 2006, 2(2): 51-56. doi: 10.3969/j.issn.1673-1719.2006.02.001
    [4]
    Collins M, An S I, Cai W J, et al. The impact of global warming on the tropical Pacific Ocean and El Niño [J]. Nature Geoscience, 2010, 3(6): 391-397. doi: 10.1038/ngeo868
    [5]
    Guo Y P, Tan Z M. The Hadley circulation regime change: Combined effect of the Western Pacific warming and increased ENSO amplitude [J]. Journal of Climate, 2018, 31(23): 9739-9751. doi: 10.1175/JCLI-D-18-0306.1
    [6]
    Hongo C, Kurihara H, Golbuu Y. Coral boulders on Melekeok reef in the Palau Islands: An indicator of wave activity associated with tropical cyclones [J]. Marine Geology, 2018, 399: 14-22. doi: 10.1016/j.margeo.2018.02.004
    [7]
    Schöne B R, Castro A D F, Fiebig J, et al. Sea surface water temperatures over the period 1884-1983 reconstructed from oxygen isotope ratios of a bivalve mollusk shell (Arctica islandica, southern North Sea) [J]. Palaeogeography, Palaeoclimatology, Palaeoecology, 2004, 212(3-4): 215-232. doi: 10.1016/j.palaeo.2004.05.024
    [8]
    Patterson W P, Dietrich K A, Holmden C, et al. Two millennia of North Atlantic seasonality and implications for Norse colonies [J]. Proceedings of the National Academy of Sciences of the United States of America, 2010, 107(12): 5306-5310. doi: 10.1073/pnas.0902522107
    [9]
    Yamanashi J, Takayanagi H, Isaji A, et al. Carbon and oxygen isotope records from Tridacna derasa shells: toward establishing a reliable proxy for sea surface environments [J]. PLoS ONE, 2016, 11(6): e0157659. doi: 10.1371/journal.pone.0157659
    [10]
    Xu J, Kuhnt W, Holbourn A, et al. Indo-Pacific warm pool variability during the Holocene and Last Glacial Maximum [J]. Paleoceanography, 2010, 25(4): PA4230.
    [11]
    孙有斌, 郭飞. 中国黄土记录的季风快速变化[J]. 第四纪研究, 2017, 37(5):963-973 doi: 10.11928/j.issn.1001-7410.2017.05.04

    SUN Youbin, GUO Fei. Rapid monsoon changes recorded by Chinese loess deposits [J]. Quaternary Sciences, 2017, 37(5): 963-973. doi: 10.11928/j.issn.1001-7410.2017.05.04
    [12]
    Greenland Ice-core Project (GRIP) Members. Climate instability during the last interglacial period recorded in the GRIP ice core [J]. Nature, 1993, 364(6434): 203-207. doi: 10.1038/364203a0
    [13]
    Neukom R, Steiger N, Gómez-Navarro J J, et al. No evidence for globally coherent warm and cold periods over the preindustrial Common Era [J]. Nature, 2019, 571(7766): 550-554. doi: 10.1038/s41586-019-1401-2
    [14]
    Jones D S, Williams D F, Romanek C S. Life history of symbiont-bearing giant clams from stable isotope profiles [J]. Science, 1986, 231(4733): 46-48. doi: 10.1126/science.231.4733.46
    [15]
    Rosewater J. The Family Tridacnidae in the Indo-Pacific[M]. The Philippines: Department of Mollusks, Academy of Natural Sciences of Philadelphia, 1965: 374-396.
    [16]
    Jameson S C. Early life history of the giant clams Tridacna crocea Lamarck, Tridacna maxima (Roding), and Hippopus hippopus (Linnaeus) [J]. Pacific Science, 1976, 30(3): 219-233.
    [17]
    Aharon P, Chappell J, Compston W. Stable isotope and sea-level data from New Guinea supports Antarctic ice-surge theory of ice ages [J]. Nature, 1980, 283(5748): 649-651. doi: 10.1038/283649a0
    [18]
    Driscoll R E. PaleoENSO reconstructions of the Holocene and Last Glacial Period[D]. Doctor Dissertation of University of Edinburgh, 2015.
    [19]
    Gannon M E, Pérez-Huerta A, Aharon P, et al. A biomineralization study of the Indo-Pacific giant clam Tridacna gigas [J]. Coral Reefs, 2017, 36(2): 503-517. doi: 10.1007/s00338-016-1538-5
    [20]
    晏宏, 刘成程. 砗磲地球化学与古气候学研究进展[J]. 第四纪研究, 2017, 37(5):1077-1090 doi: 10.11928/j.issn.1001-7410.2017.05.15

    YAN Hong, LIU Chengcheng. Review on Tridacna geochemistry and paleoclimate research [J]. Quaternary Sciences, 2017, 37(5): 1077-1090. doi: 10.11928/j.issn.1001-7410.2017.05.15
    [21]
    梅衍俊, 邵达, 刘文齐, 等. 南海砗磲壳体成分及生物有机特征分析[J]. 中国科学技术大学学报, 2018, 48(7):550-559 doi: 10.3969/j.issn.0253-2778.2018.07.005

    MEI Yanjun, SHAO Da, LIU Wenqi, et al. Analysis of the components and biological organic characteristics of Tridacna spp. shells from South China Sea [J]. Journal of University of Science and Technology of China, 2018, 48(7): 550-559. doi: 10.3969/j.issn.0253-2778.2018.07.005
    [22]
    晏宏, 邵达, 王玉宏, 等. 南海西沙大砗磲高分辨率Sr/Ca温度计及其意义[J]. 地球环境学报, 2011, 2(2):381-386

    YAN Hong, SHAO Da, WANG Yuhong, et al. High resolution Sr/Ca profile of Tridacna gigas from Xisha Islands of South China Sea and its potential application on sea surface temperature reconstruction [J]. Journal of Earth Environment, 2011, 2(2): 381-386.
    [23]
    Aharon P, Chappell J. Carbon and oxygen isotope probes of reef environment histories[M]//Barnes D J. Perspectives on Coral Reefs. Townsville, Australia: Brian Clouston, 1983: 1-15.
    [24]
    Yoshimura T, Tamenori Y, Suzuki A, et al. Element profile and chemical environment of sulfur in a giant clam shell: Insights from μ-XRF and X-ray absorption near-edge structure [J]. Chemical Geology, 2013, 352: 170-175. doi: 10.1016/j.chemgeo.2013.05.035
    [25]
    Aubert A, Lazareth C E, Cabioch G, et al. The tropical giant clam Hippopus hippopus shell, a new archive of environmental conditions as revealed by sclerochronological and δ18O profiles [J]. Coral Reefs, 2009, 28(4): 989-998. doi: 10.1007/s00338-009-0538-0
    [26]
    Warter V, Erez J, Müller W. Environmental and physiological controls on daily trace element incorporation in Tridacna crocea from combined laboratory culturing and ultra-high resolution LA-ICP-MS analysis [J]. Palaeogeography, Palaeoclimatology, Palaeoecology, 2018, 496: 32-47. doi: 10.1016/j.palaeo.2017.12.038
    [27]
    Watanabe T, Oba T. Daily reconstruction of water temperature from oxygen isotopic ratios of a modern Tridacna shell using a freezing microtome sampling technique [J]. Journal of Geophysical Research: Oceans, 1999, 104(C9): 20667-20674. doi: 10.1029/1999JC900097
    [28]
    Duprey N, Lazareth C E, Dupouy C, et al. Calibration of seawater temperature and δ18Oseawater signals in Tridacna maxima’s δ18Oshell record based on in situ data [J]. Coral Reefs, 2015, 34(2): 437-450. doi: 10.1007/s00338-014-1245-z
    [29]
    Komagoe T, Watanabe T, Shirai K, et al. Geochemical and microstructural signals in giant clam Tridacna maxima recorded typhoon events at Okinotori Island, Japan [J]. Journal of Geophysical Research: Biogeosciences, 2018, 123(5): 1460-1474. doi: 10.1029/2017JG004082
    [30]
    Bayer S, Beierlein L, Morán G A, et al. Late Quaternary climatic variability in northern Patagonia, Argentina, based on δ18O of modern and fossil shells of Amiantis purpurata (Bivalvia, Veneridae) [J]. Palaeogeography, Palaeoclimatology, Palaeoecology, 2020, 560: 110012. doi: 10.1016/j.palaeo.2020.110012
    [31]
    Watanabe T, Suzuki A, Kawahata H, et al. A 60-year isotopic record from a mid-Holocene fossil giant clam (Tridacna gigas) in the Ryukyu Islands: physiological and paleoclimatic implications [J]. Palaeogeography, Palaeoclimatology, Palaeoecology, 2004, 212(3-4): 343-354. doi: 10.1016/S0031-0182(04)00358-X
    [32]
    Ayling B F, Chappell J, Gagan M K, et al. ENSO variability during MIS 11 (424-374 ka) from Tridacna gigas at Huon Peninsula, Papua New Guinea [J]. Earth and Planetary Science Letters, 2015, 431: 236-246. doi: 10.1016/j.jpgl.2015.09.037
    [33]
    Yan H, Shao D, Wang Y H, et al. Sr/Ca profile of long-lived Tridacna gigas bivalves from South China Sea: A new high-resolution SST proxy [J]. Geochimica et Cosmochimica Acta, 2013, 112: 52-65. doi: 10.1016/j.gca.2013.03.007
    [34]
    Hori M, Sano Y, Ishida A, et al. Middle Holocene daily light cycle reconstructed from the strontium/calcium ratios of a fossil giant clam shell [J]. Scientific Reports, 2015, 5: 8734. doi: 10.1038/srep08734
    [35]
    Yan H, Liu C C, An Z S, et al. Extreme weather events recorded by daily to hourly resolution biogeochemical proxies of marine giant clam shells [J]. Proceedings of the National Academy of Sciences of the United States of America, 2020, 117(13): 7038-7043. doi: 10.1073/pnas.1916784117
    [36]
    Schwartzmann C, Durrieu G, Sow M, et al. In situ giant clam growth rate behavior in relation to temperature: A one-year coupled study of high-frequency noninvasive valvometry and sclerochronology [J]. Limnology and Oceanography, 2011, 56(5): 1940-1951. doi: 10.4319/lo.2011.56.5.1940
    [37]
    Aharon P, Chappell J. Oxygen isotopes, sea level changes and the temperature history of a coral reef environment in New Guinea over the last 105 years [J]. Palaeogeography, Palaeoclimatology, Palaeoecology, 1986, 56(3-4): 337-379. doi: 10.1016/0031-0182(86)90101-X
    [38]
    Grossman E L, Ku T L. Oxygen and carbon isotope fractionation in biogenic aragonite: temperature effects [J]. Chemical Geology, 1986, 59: 59-74. doi: 10.1016/0168-9622(86)90057-6
    [39]
    Welsh K, Elliot M, Tudhope A, et al. Giant bivalves (Tridacna gigas) as recorders of ENSO variability [J]. Earth and Planetary Science Letters, 2011, 307(3-4): 266-270. doi: 10.1016/j.jpgl.2011.05.032
    [40]
    Arias-Ruiz C, Elliot M, Bézos A, et al. Geochemical fingerprints of climate variation and the extreme La Niña 2010-11 as recorded in a Tridacna squamosa shell from Sulawesi, Indonesia [J]. Palaeogeography, Palaeoclimatology, Palaeoecology, 2017, 487: 216-228. doi: 10.1016/j.palaeo.2017.08.037
    [41]
    Duprey N, Galipaud J C, Cabioch G, et al. Isotopic records from archeological giant clams reveal a variable climate during the southwestern Pacific colonization ca. 3.0 ka BP [J]. Palaeogeography, Palaeoclimatology, Palaeoecology, 2014, 404: 97-108. doi: 10.1016/j.palaeo.2014.04.002
    [42]
    Yan H, Liu C C, Zhang W C, et al. ENSO variability around 2000 years ago recorded by Tridacna gigas δ18O from the South China Sea [J]. Quaternary International, 2017, 452: 148-154. doi: 10.1016/j.quaint.2016.05.011
    [43]
    Hu Y, Sun X M, Cheng H, et al. Evidence from giant-clam δ18O of intense El Ninõ-Southern Oscillation-related variability but reduced frequency 3700 years ago [J]. Climate of the Past, 2020, 16(2): 597-610. doi: 10.5194/cp-16-597-2020
    [44]
    Conroy J L, Noone D, Cobb K M, et al. Paired stable isotopologues in precipitation and vapor: A case study of the amount effect within western tropical Pacific storms [J]. Journal of Geophysical Research: Atmospheres, 2016, 121(7): 3290-3303. doi: 10.1002/2015JD023844
    [45]
    Dansgaard W. Stable isotopes in precipitation [J]. Tellus, 1964, 16(4): 436-468. doi: 10.3402/tellusa.v16i4.8993
    [46]
    Ma X L, Yan H, Fei H B, et al. A high-resolution δ18O record of modern Tridacna gigas bivalve and its paleoenvironmental implications [J]. Palaeogeography, Palaeoclimatology, Palaeoecology, 2020, 554: 109800. doi: 10.1016/j.palaeo.2020.109800
    [47]
    Colin P L. Ocean Warming and the Reefs of Palau [J]. Oceanography, 2018, 31(2): 126-135.
    [48]
    Bruno J, Siddon C, Witman J, et al. El Niño related coral bleaching in Palau, Western Caroline Islands [J]. Coral Reefs, 2001, 20(2): 127-136. doi: 10.1007/s003380100151
    [49]
    Martin L E, Dawson M N, Bell L J, et al. Marine lake ecosystem dynamics illustrate ENSO variation in the tropical western Pacific [J]. Biology Letters, 2006, 2(1): 144-147. doi: 10.1098/rsbl.2005.0382
    [50]
    Colin P L. Marine Environments of Palau[M]. San Diego: Indo-Pacific Press, 2009: 15-25.
    [51]
    Golbuu Y, Bauman A, Kuartei J, et al. The state of coral reef ecosystems of Palau [J]. The state of coral reef ecosystems of the United States and Pacific freely associated states, 2005, 2005: 488-507.
    [52]
    Hardy J T, Hardy S A. Ecology of Tridacna in Palau [J]. Pacific Science, 1969, XXIII: 467-472.
    [53]
    Colin P L. Marine Environments of Palau[M]. San Diego: Indo-Pacific Press, 2009: 365-366.
    [54]
    Grottoli A G. Monthly resolved stable oxygen isotope record in a Palauan sclerosponge Acanthocheatetes wellsi for the period of 1977-2001[C]//Proceedings of the 10th International Coral Reef Symposium. Okinawa, Japan, 2006: 572-579.
    [55]
    Iijima H, Kayanne H, Morimoto M, et al. Interannual sea surface salinity changes in the western Pacific from 1954 to 2000 based on coral isotope analysis [J]. Geophysical Research Letters, 2005, 32(4): L04608.
    [56]
    Osborne M C, Dunbar R B, Mucciarone D A, et al. Regional calibration of coral-based climate reconstructions from Palau, West Pacific Warm Pool (WPWP) [J]. Palaeogeography, Palaeoclimatology, Palaeoecology, 2013, 386: 308-320. doi: 10.1016/j.palaeo.2013.06.001
    [57]
    Wu H C, Grottoli A G. Stable oxygen isotope records of corals and a sclerosponge in the Western Pacific warm pool [J]. Coral Reefs, 2010, 29(2): 413-418. doi: 10.1007/s00338-009-0576-7
    [58]
    Osborne M C, Dunbar R B, Mucciarone D A, et al. A 215-yr coral δ18O time series from Palau records dynamics of the West Pacific Warm Pool following the end of the Little Ice Age [J]. Coral Reefs, 2014, 33(3): 719-731. doi: 10.1007/s00338-014-1146-1
    [59]
    Grottoli A G, Adkins J F, Panero W R, et al. Growth rates, stable oxygen isotopes (δ18O), and strontium (Sr/Ca) composition in two species of Pacific sclerosponges (Acanthocheatetes wellsi and Astrosclera willeyana) with δ18O calibration and application to paleoceanography [J]. Journal of Geophysical Research: Oceans, 2010, 115(C6): C06008.
    [60]
    Pätzold J, Heinrichs J P, Wolschendorf K, et al. Correlation of stable oxygen isotope temperature record with light attenuation profiles in reef-dwelling Tridacna shells [J]. Coral Reefs, 1991, 10(2): 65-69. doi: 10.1007/BF00571825
    [61]
    Jew N P, Dodrill T, Fitzpatrick S M. Evaluating the efficacy of the mollusc Tridacna crocea for reconstructing ancient sea-surface temperatures in the Rock Islands of Palau, Micronesia [J]. Archaeology in Oceania, 2019, 54(2): 107-119. doi: 10.1002/arco.5182
    [62]
    Dodrill T N, Lassuy M G, Jew N P, et al. Stable Oxygen Isotope (δ18O) Analyses and Paleoenvironmental Reconstructions from Mollusks in Palau, Micronesia[C]//Proceedings of the 81st Annual Meeting of the Society for American Archaeology. Orlando, FL, 2016.
    [63]
    Maes C. Salinity variability in the equatorial Pacific Ocean during the 1993-98 period [J]. Geophysical Research Letters, 2000, 27(11): 1659-1662. doi: 10.1029/1999GL011261
    [64]
    Barkley H C, Cohen A L. Skeletal records of community-level bleaching in Porites corals from Palau [J]. Coral Reefs, 2016, 35(4): 1407-1417. doi: 10.1007/s00338-016-1483-3
    [65]
    Elliot M, Welsh K, Chilcott C, et al. Profiles of trace elements and stable isotopes derived from giant long-lived Tridacna gigas bivalves: Potential applications in paleoclimate studies [J]. Palaeogeography, Palaeoclimatology, Palaeoecology, 2009, 280(1-2): 132-142. doi: 10.1016/j.palaeo.2009.06.007
    [66]
    Romanek C S, Grossman E L. Stable Isotope Profiles of Tridacna maxima as Environmental Indicators [J]. Palaios, 1989, 4(5): 402-413. doi: 10.2307/3514585
    [67]
    Morimoto M, Abe O, Kayanne H, et al. Salinity records for the 1997-98 El Niño from Western Pacific corals [J]. Geophysical Research Letters, 2002, 29(11): 35-1-35-4.
    [68]
    Warter V, Müller W. Daily growth and tidal rhythms in Miocene and modern giant clams revealed via ultra-high resolution LA-ICPMS analysis - A novel methodological approach towards improved sclerochemistry [J]. Palaeogeography, Palaeoclimatology, Palaeoecology, 2017, 465: 362-375. doi: 10.1016/j.palaeo.2016.03.019
    [69]
    Yan H, Wang Y H, Sun L G. High resolution oxygen isotope and grayscale records of a medieval fossil giant clam (Tridacna gigas) in the South China Sea: physiological and paleoclimatic implications [J]. Acta Oceanologica Sinica, 2014, 33(8): 18-25. doi: 10.1007/s13131-014-0399-4
    [70]
    Romanek C S, Jones D S, Williams D F, et al. Stable isotopic investigation of physiological and environmental changes recorded in shell carbonate from the giant clam Tridacna maxima [J]. Marine Biology, 1987, 94(3): 385-393. doi: 10.1007/BF00428244
    [71]
    Fairbanks R G, Evans M N, Rubenstone J L, et al. Evaluating climate indices and their geochemical proxies measured in corals [J]. Coral Reefs, 1997, 16(5): S93-S100. doi: 10.1007/s003380050245
    [72]
    洪阿实, 洪鹰, 王庆春, 等. 1994年夏季南海东北部海水氧同位素分布特征[J]. 热带海洋, 1997, 16(2):82-90

    HONG Ashi, HONG Ying, WANG Qingchun, et al. Distributive characteristics of O isotope of the northeastern South China Sea in the summer of 1994 [J]. Tropic Oceanology, 1997, 16(2): 82-90.
    [73]
    Diaz H F, Hoerling M P, Eischeid J K. ENSO variability, teleconnections and climate change [J]. International Journal of Climatology, 2001, 21(15): 1845-1862. doi: 10.1002/joc.631
    [74]
    Bellenger H, Guilyardi E, Leloup J, et al. ENSO representation in climate models: from CMIP3 to CMIP5 [J]. Climate Dynamics, 2014, 42(7-8): 1999-2018. doi: 10.1007/s00382-013-1783-z
    [75]
    Versteegh E A A, Vonhof H B, Troelstra S R, et al. Seasonally resolved growth of freshwater bivalves determined by oxygen and carbon isotope shell chemistry [J]. Geochemistry, Geophysics, Geosystems, 2010, 11(8): Q08022.
    [76]
    Woodroffe C D, Beech M R, Gagan M K. Mid-late Holocene El Niño variability in the equatorial Pacific from coral microatolls [J]. Geophysical Research Letters, 2003, 30(7): 1358.
  • Cited by

    Periodical cited type(1)

    1. 梁承德,韩韬,赵楠钰,文汉锋,王国桢,刘成程,杨昊天,耿鋆,晏宏. 南海西沙群岛现代鳞砗磲内外层壳体稳定碳、氧同位素变化特征及其影响因素. 海洋地质与第四纪地质. 2024(04): 41-53 . 本站查看

    Other cited types(5)

Catalog

    Article views (3476) PDF downloads (135) Cited by(6)

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return