LIU Xiangqi, SONG Lei, WU Qilong, LI Guomin, MAO Xin. Application of the affinity propagation clustering algorithm based on grain-size distribution curve to discrimination of sedimentary environment——A case study in Baiyangdian area[J]. Marine Geology & Quaternary Geology, 2020, 40(1): 198-209. DOI: 10.16562/j.cnki.0256-1492.2018100802
Citation: LIU Xiangqi, SONG Lei, WU Qilong, LI Guomin, MAO Xin. Application of the affinity propagation clustering algorithm based on grain-size distribution curve to discrimination of sedimentary environment——A case study in Baiyangdian area[J]. Marine Geology & Quaternary Geology, 2020, 40(1): 198-209. DOI: 10.16562/j.cnki.0256-1492.2018100802

Application of the affinity propagation clustering algorithm based on grain-size distribution curve to discrimination of sedimentary environment——A case study in Baiyangdian area

More Information
  • Received Date: October 07, 2018
  • Revised Date: January 26, 2019
  • Available Online: February 25, 2020
  • In the paper, 22 sedimentary sections are selected from the Baiyangdian region as research carriers. The affinity propagation (AP) clustering algorithm is adopted to cluster the similar grain size distribution of sediment into clusters. The results are then compared with the characteristics of grain size distribution which are known in typical sedimentary environments. The grain size distribution patterns in different sedimentary environments in Baiyangdian area are concluded and the feasibility of application of the affinity propagation clustering algorithm based on sediment grain characteristics to environmental interpretation discussed. The results suggests that the AP clustering algorithm can gather the sediments formed under the same or similar dynamical conditions into groups, and dig out the sedimentary dynamical information contained in the grain size data; The distribution curves of grain size for all samples are subdivided into 11 clusters. Considering the change in dynamic conditions in the same sedimentary environment, the 11 cluster curves are further categorized into 4 sets of curves, which could be compared with the grain size curves from known environment. 4 sedimentary facies i.e. the lacustrine-swamp facies, lacustrine facies, fluvial facies and alluvial facies are recognized. Among them, in terms of sedimentary dynamics, the lacustrine-swamp facies are similar with the central lake facies, while the lake shore facies similar with alluvial flat facies. The lacustrine-swamp facies and central lake facies are mainly composed of fine silty sand, whereas the lake shore facies and alluvial flat facies composed of coarse silt. River bed facies consist of sand or coarse sand. The contents of coarse silt, medium sand and coarse sand are similar in the flooding deposits, characterized by multi-peak curves. The performance proves that the AP clustering algorithm can provide a new mean for inversion and zonation of sedimentary environment conditions.
  • [1]
    Weltje G J, Prins M A. Muddled or mixed? Inferring palaeoclimate from size distributions of deep-sea clastics [J]. Sedimentary Geology, 2003, 162(1-2): 39-62. doi: 10.1016/S0037-0738(03)00235-5
    [2]
    范天来, 范育新. 频率分布曲线和概率累积曲线在沉积物粒度数据分析中应用的对比[J]. 甘肃地质, 2010, 19(2):32-37. [FAN Tianlai, FAN Yuxin. A comparison of grain size expression methods: A case study [J]. Gansu Geology, 2010, 19(2): 32-37.
    [3]
    曲政. 沉积物粒度数据表征方法的研究[J]. 中国粉体技术, 2001, 7(4):24-31. [QU Zheng. A study on characterization methods of grain-size data of sediment [J]. China Powder Science and Technology, 2001, 7(4): 24-31. doi: 10.3969/j.issn.1008-5548.2001.04.008
    [4]
    孙东怀, 鹿化煜, David R, et al. 中国黄土粒度的双峰分布及其古气候意义[J]. 沉积学报, 2001, 18(3):327-335. [SUN Donghuai, LU Huayu, David R, et al. Bimode grain-size distribution of Chinese loess and its paleoclimate implication [J]. Acta Sedimentologica Sinica, 2001, 18(3): 327-335. doi: 10.3969/j.issn.1000-0550.2001.03.002
    [5]
    Weltje G J. End-member modeling of compositional data: Numerical-statistical algorithms for solving the explicit mixing problem [J]. Mathematical Geology, 1997, 29(4): 503-549. doi: 10.1007/BF02775085
    [6]
    孙吉贵, 刘杰, 赵连宇. 聚类算法研究[J]. 软件学报, 2008, 19(1):48-61. [SUN Jigui, LIU Jie, ZHAO Lianyu. Clustering algorithms research [J]. Journal of Software, 2008, 19(1): 48-61. doi: 10.3724/SP.J.1001.2008.00048
    [7]
    李玉中, 陈沈良. 系统聚类分析在现代沉积环境划分中的应用——以崎岖列岛海区为例[J]. 沉积学报, 2003, 21(3):487-494. [LI Yuzhong, CHEN Shenliang. Application of system cluster analysis to classification of modern sedimentary environment: A case study in Qiqu Archipelago Area [J]. Acta Sedimentologica Sinica, 2003, 21(3): 487-494. doi: 10.3969/j.issn.1000-0550.2003.03.019
    [8]
    杨传慧, 吉根林, 章志刚. AP算法在图像聚类中的应用研究[J]. 计算机与数字工程, 2012, 40(10):119-121. [YANG Chuanhui, JI Genlin, ZHANG Zhigang. Research on application of algorithm AP in images clustering [J]. Computer and Digital Engineering, 2012, 40(10): 119-121. doi: 10.3969/j.issn.1672-9722.2012.10.036
    [9]
    吴娱, 钟诚, 尹梦晓. 基因表达数据的分层近邻传播聚类算法[J]. 计算机工程与设计, 2016, 37(11):2961-2966. [WU Yu, ZHONG Cheng, YIN Mengxiao. Gene expression data clustering algorithm using hierarchical affinity propagation [J]. Computer Engineering and Design, 2016, 37(11): 2961-2966.
    [10]
    肖宇, 于剑. 基于近邻传播算法的半监督聚类[J]. 软件学报, 2008, 19(11):2803-2813. [XIAO Yu, YU Jian. Semi-supervised clustering based on affinity propagation algorithm [J]. Journal of Software, 2008, 19(11): 2803-2813.
    [11]
    许清海, 陈淑英, 孔昭宸, 等. 白洋淀地区全新世以来植被演替和气候变化初探[J]. 植物生态学与地植物学学报, 1988, 12(2):143-151. [XU Qinhai, CHEN Shuying, KONG Zhaochen, et al. Preliminary discussion of vegetation succession and climate change since the Holocene in the Baiyangdian lake district [J]. Acta Phytoecologica et Geobotanica Sinica, 1988, 12(2): 143-151.
    [12]
    王永, 闵隆瑞, 董进, 等. 河北白洋淀全新统沉积特征与地层划分[J]. 地球学报, 2015, 36(5):575-582. [WANG Yong, MIN Longrui, DONG Jin, et al. Sedimentary characteristics and stratigraphic division of Holocene series in Baiyang Dian, Hebei Provence [J]. Acta Geoscientica Sinica, 2015, 36(5): 575-582. doi: 10.3975/cagsb.2015.05.07
    [13]
    杨慧君, 王永, 迟振卿, 等. 河北白洋淀老河头剖面25.5 kaBP以来气候环境变化的沉积记录[J]. 现代地质, 2015, 29(2):291-298. [YANG Huijun, WANG Yong, CHI Zhenqing, et al. Sedimentary record of climate change during the past 25.5 ka of Laohetou profile from Baiyangdian, Hebei Province [J]. Geoscience, 2015, 29(2): 291-298. doi: 10.3969/j.issn.1000-8527.2015.02.011
    [14]
    高彦春, 王金凤, 封志明. 白洋淀流域气温、降水和径流变化特征及其相互响应关系[J]. 中国生态农业学报, 2017, 25(4):467-477. [GAO Yanchun, WANG Jinfeng, FENG Zhiming. Variation trend and response relationship of temperature, precipitation and runoff in Baiyangdian Lake Basin [J]. Chinese Journal of Eco-Agriculture, 2017, 25(4): 467-477.
    [15]
    何乃华, 朱宣清. 白洋淀地区近3万年来的古环境与历史上人类活动的影响[J]. 海洋地质与第四纪地质, 1992, 12(2):79-88. [HE Naihua, ZHU Xuanqing. Palaeoenvironment changes since 30000 aBP and effects of human activities in the Baiyangdian area [J]. Marine Geology and Quaternary Geology, 1992, 12(2): 79-88.
    [16]
    Frey B J, Dueck D. Clustering by passing messages between data points [J]. Science, 2007, 315(5814): 972-976. doi: 10.1126/science.1136800
    [17]
    Brusco M J, Köhn H F. Comment on "Clustering by passing messages between data points" [J]. Science, 2008, 319(5864): 726.
    [18]
    Nelson P A, Bellugi D, Dietrich W E. Delineation of river bed-surface patches by clustering high-resolution spatial grain size data [J]. Geomorphology, 2014, 205: 102-119. doi: 10.1016/j.geomorph.2012.06.008
    [19]
    Baxter M J, Beardah C C, Cool H E M, et al. Compositional data analysis of some alkaline Glasses [J]. Mathematical Geology, 2005, 37(2): 183-196. doi: 10.1007/s11004-005-1308-3
    [20]
    Ordóñez C, Ruiz-Barzola O, Sierra C. Sediment particle size distributions apportionment by means of functional cluster analysis (FCA) [J]. Catena, 2016, 137: 31-36. doi: 10.1016/j.catena.2015.09.006
    [21]
    朱连江, 马炳先, 赵学泉. 基于轮廓系数的聚类有效性分析[J]. 计算机应用, 2010, 30(2):139-141. [ZHU Lianjiang, MA Bingxian, ZHAO Xuequan. Clustering validity analysis based on silhouette coefficient [J]. Journal of Computer Applications, 2010, 30(2): 139-141.
    [22]
    张晋, 李安春, 万世明, 等. 南海南部表层沉积物粒度分布特征及其影响因素[J]. 海洋地质与第四纪地质, 2016, 36(2):1-10. [ZHANG Jin, LI Anchun, WAN Shiming, et al. Grain size distribution of surface sediments in the southern South China Sea and influencing factors [J]. Marine Geology and Quaternary Geology, 2016, 36(2): 1-10.
    [23]
    殷志强, 秦小光, 吴金水, 等. 中国北方部分地区黄土、沙漠沙、湖泊、河流细粒沉积物粒度多组分分布特征研究[J]. 沉积学报, 2009, 27(2):343-351. [YIN Zhiqiang, QIN Xiaoguang, WU Jinshui, et al. The multimodal grain-size distribution characteristics of loess, desert, lake and river sediments in some areas of Northern China [J]. Acta Sedimentologica Sinica, 2009, 27(2): 343-351.
    [24]
    孙东怀, 安芷生, 苏瑞侠, 等. 古环境中沉积物粒度组分分离的数学方法及其应用[J]. 自然科学进展, 2001, 11(3):269-276. [SUN Donghuai, AN Zhisheng, SUN Ruixia, et al. Mathematics method and its application of grain size distribution of Paleoenvironment Sediments [J]. Progress in Natural Sciences, 2001, 11(3): 269-276. doi: 10.3321/j.issn:1002-008X.2001.03.008
    [25]
    张平, 宋春晖, 杨用彪, 等. 稳定湖相沉积物和风成黄土粒度判别函数的建立及其意义[J]. 沉积学报, 2008, 26(3):501-507. [ZHANG Ping, SONG Chunhui, YANG Yongbiao, et al. The significance and establishment of discriminant function with grain size of stable lacustrine sediment and eolian loess [J]. Acta Sedimentologica Sinica, 2008, 26(3): 501-507.
    [26]
    卢连战, 史正涛. 沉积物粒度参数内涵及计算方法的解析[J]. 环境科学与管理, 2010, 35(6):54-60. [LU Lianzhan, SHI Zhengtao. Analysis for sediment grain size parameters of connotations and calculation method [J]. Environmental Science and Management, 2010, 35(6): 54-60. doi: 10.3969/j.issn.1673-1212.2010.06.013
    [27]
    Blott S J, Pye K. GRADISTAT: a grain size distribution and statistics package for the analysis of unconsolidated sediments [J]. Earth Surface Processes and Landforms, 2001, 26(11): 1237-1248. doi: 10.1002/esp.261
  • Related Articles

    [1]TIAN Dongmei, YANG Shengxiong, LIU Xin, LI Yuanheng, HU Guang, CAO Jingya, ZHOU Junming, DENG Yutian. Intelligent identification and application of gas hydrate in South China Sea[J]. Marine Geology & Quaternary Geology, 2024, 44(6): 25-33. DOI: 10.16562/j.cnki.0256-1492.2024092401
    [2]XU Kun, GUAN Xiner, LV Haozhe, ZHAO Xiao, Rezeye RUZI, CHEN Yanhong. Tectonic discrimination of oceanic basalt by machine learning[J]. Marine Geology & Quaternary Geology, 2024, 44(4): 190-199. DOI: 10.16562/j.cnki.0256-1492.2023041101
    [3]SONG Zijun, MENG Fanyi, LI Weiding, CHEN Linying, LUO Min. Preliminary study on source and sedimentary environment in the Mariana Trench[J]. Marine Geology & Quaternary Geology, 2022, 42(4): 84-95. DOI: 10.16562/j.cnki.0256-1492.2022031801
    [4]DUAN Xiaoyong, YIN Ping, LIU Jinqing, CAO Ke, GAO Fei, CHEN Xiaoying. Modern sedimentation environments in the coastal zone of East China[J]. Marine Geology & Quaternary Geology, 2019, 39(2): 14-20. DOI: 10.16562/j.cnki.0256-1492.2018030501
    [5]CHENG Yu, LI Xiangqian, ZHAO Zengyu, ZHANG Ping, ZHANG Xiangyun, GUO Gang. Sedimentary and environment evolutionary records of the southern Lixiahe area in the Subei Plain during Holocene[J]. Marine Geology & Quaternary Geology, 2019, 39(1): 49-58. DOI: 10.16562/j.cnki.0256-1492.2017080104
    [6]SHI Jinghao, LI Guangxue, ZHOU Chunyan. PRELIMINARY STUDY ON HUMAN INFLUENCE ON SEDIMENTARY ENVIRONMENT OF A BAY[J]. Marine Geology & Quaternary Geology, 2010, 30(4): 11-18. DOI: 10.3724/SP.J.1140.2010.04011
    [7]WANG Feifei, ZHAO Quanmin, DING Xuan, LIU Jian. CHARACTERISTICS OF THE FORAMINIFERAL TAPHOCOENOSE IN THE NORTHEAST BOHAI AND RELATIONSHIP TO THE SEDIMENTARY ENVIRONMENT[J]. Marine Geology & Quaternary Geology, 2009, 29(2): 9-14. DOI: 10.3724/SP.J.1140.2009.02009
    [8]MAO Long-jiang, ZHANG Yong-zhan, ZHANG Zhen-ke, WEI Ling, JI Xiao-mei, ZHU Da-kui. CHARACTERISTICS OF SEDIMENTARY ENVIRONMENTS IN SANYA BAY OF HAINAN ISLAND[J]. Marine Geology & Quaternary Geology, 2007, 27(4): 17-22.
    [9]DU Wen-bo, YE Yin-can, ZHUANG Zhen-ye. SEDIMENTARY ENVIRONMENT ANALYSIS OF ANCIENT SAND RIDGES FROM ZK23 HOLE IN THE EAST CHINA SEA[J]. Marine Geology & Quaternary Geology, 2007, 27(2): 11-16.
    [10]XIONG Yong-zhu, LIN Li, ZHU Li-dong, XIA Bin, ZHU Di-cheng, PANG Yan-chun, FU Xiu-gen. APPLICATION OF BIOMARKER PARAMETERS TO QUANTITATIVE DISCRIMINATION OF THE HYDROTHERMAL SEDIMENTARY PALEOENVIRONMENT[J]. Marine Geology & Quaternary Geology, 2006, 26(1): 117-125.
  • Cited by

    Periodical cited type(6)

    1. 陈亦洋,王奥博,唐建辉. 南黄海水体中溴代阻燃剂的时空分布与生态风险评估. 地球化学. 2024(06): 801-814 .
    2. 卢鹏飞,岳英洁,朱龙海,胡日军,尹砚军,冷星. 南黄海西部日照近海悬浮泥沙分布、输运及控制因素. 海洋地质与第四纪地质. 2022(03): 36-49 . 本站查看
    3. 边佳琪,时美楠,吴怀春,汪卫国. 俄罗斯极地海表层海水悬浮体浓度和磁性矿物分布特征及其影响因素. 海洋地质与第四纪地质. 2022(05): 94-102 . 本站查看
    4. 龙小志,王珍岩. 台风“灿鸿”对长江口外海域悬浮体分布的影响. 海洋与湖沼. 2022(06): 1322-1337 .
    5. 密蓓蓓,张勇,梅西,王忠蕾,窦衍光. 南黄海表层沉积物稀土元素分布特征及其物源指示意义. 海洋地质与第四纪地质. 2022(06): 93-103 . 本站查看
    6. 沈小雄,杨敏妮,余志,胡旭跃. 螺旋桨射流对底泥起悬及铅在底泥-水界面处迁移规律的研究. 长沙理工大学学报(自然科学版). 2021(04): 24-31+43 .

    Other cited types(3)

Catalog

    Article views (3749) PDF downloads (56) Cited by(9)

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return