WANG Hu, WU Tao, ZHANG Shijie, SUN Zhenyin, ZHOU Yadi, ZHU Tao. Experimental study on the relation between compressional wave velocity and physical properties of sandy sediments[J]. Marine Geology & Quaternary Geology, 2021, 41(2): 222-230. DOI: 10.16562/j.cnki.0256-1492.2020051001
Citation: WANG Hu, WU Tao, ZHANG Shijie, SUN Zhenyin, ZHOU Yadi, ZHU Tao. Experimental study on the relation between compressional wave velocity and physical properties of sandy sediments[J]. Marine Geology & Quaternary Geology, 2021, 41(2): 222-230. DOI: 10.16562/j.cnki.0256-1492.2020051001

Experimental study on the relation between compressional wave velocity and physical properties of sandy sediments

More Information
  • Received Date: May 09, 2020
  • Revised Date: August 10, 2020
  • Available Online: April 07, 2021
  • Sand is one of the main type of submarine sediments. Figuring out the relation between acoustic and physical properties of sandy sediments is critical to seafloor and sub-bottom detection. In this paper, by using the ultrasonic detector and the self-developed sample preparation device, sand samples in different physical states are prepared to simulate different natural sedimentary conditions. Acoustic and physical properties are tested simultaneously, so as to reveal the effective measuring methods and its influence factors, and to explore the internal connection between the compressive wave velocity (CWV) and physical parameters of sandy sediments. Results and analysis indicate that the multipath propagation of sound wave can affect the measurement accuracy for the method with ultrasonic transducers touching the side wall of sediment container, while this effect can be avoided by measuring with a direct contact between transducers and sediment. No effects are found with different test frequencies among 30 kHz to 100 kHz. The CWV of sandy sediments, which shows good correlation with density, porosity and water content, with correlation coefficients 0.87, 0.86, and 0.84, respectively, increases with increasing density, while decreases with increasing porosity and water content. While the correlation coefficient between CWV and medium diameter is smaller than 0.6, which shows that the CWV of sandy sediments has no clear link to grading distribution. The correlation of acoustic impedance with bulk density, porosity and water content is bigger than that of CWV with them. In addition, special attention should be paid to the saturation of sediments because the CWV is very sensitive to saturation, for example, the CWV increases dramatically from 393.3 m·s−1 to 748.5 m·s−1 as the saturation increases from 0.971 to 0.994.
  • [1]
    Kim G Y, Richardson M D, Bibee D L, et al. Sediment types determination using acoustic techniques in the Northeastern Gulf of Mexico [J]. Geosciences Journal, 2004, 8(1): 95-103. doi: 10.1007/BF02910282
    [2]
    金翔龙. 海洋地球物理研究与海底探测声学技术的发展[J]. 地球物理学进展, 2007, 22(4):1243-1249. [JIN Xianglong. The development of research in marine geophysics and acoustic technology for submarine exploration [J]. Progress in Geophysics, 2007, 22(4): 1243-1249. doi: 10.3969/j.issn.1004-2903.2007.04.034
    [3]
    Hamilton E L. Low sound velocities in high-porosity sediments [J]. The Journal of the Acoustical Society of America, 1956, 28(1): 16. doi: 10.1121/1.1908208
    [4]
    Hamilton E L. Sound velocity and related properties of marine sediments [J]. The Journal of the Acoustical Society of America, 1982, 72(6): 1891. doi: 10.1121/1.388539
    [5]
    Anderson R S. Statistical correlation of physical properties and sound velocity in sediments[M]//Hampton L. Physics of Sound in Marine Sediments. Boston, MA: Springer, 1974: 481-518.
    [6]
    Richardson M D, Muzi E, Troiano L. Shear wave velocity in surfictal marine sediments: A comparison of in situ and laboratory measurements [J]. Journal of the Acoustical Society of America, 1988, 83(1): S78. doi: 10.1121/1.396188
    [7]
    Bae S H, Kim D C, Lee G S, et al. Physical and acoustic properties of inner shelf sediments in the South Sea, Korea [J]. Quaternary International, 2014, 344: 125-142. doi: 10.1016/j.quaint.2014.03.058
    [8]
    Endler M, Endler R, Bobertz B, et al. Linkage between acoustic parameters and seabed sediment properties in the south-western Baltic Sea [J]. Geo-Marine Letters, 2015, 35(2): 145-160. doi: 10.1007/s00367-015-0397-3
    [9]
    Kim S R, Lee G S, Kim D C, et al. Physical properties and geoacoustic provinces of surficial sediments in the southwestern part of the Ulleung Basin in the East Sea [J]. Quaternary International, 2017, 459: 35-44. doi: 10.1016/j.quaint.2017.08.027
    [10]
    Hou Z Y, Wang J Q, Chen Z, et al. Sound velocity predictive model based on physical properties [J]. Earth and Space Science, 2019, 6(8): 1561-1568. doi: 10.1029/2018EA000545
    [11]
    Lu B, Li G X, Huang S J, et al. Physical properties of sediments on the northern continental shelf of the South China Sea [J]. Marine Georesources & Geotechnology, 2006, 24(1): 47-60.
    [12]
    Hou Z Y, Guo C S, Wang J Q, et al. Seafloor sediment study from south China sea: Acoustic & physical property relationship [J]. Remote Sensing, 2015, 7(9): 11570-11585. doi: 10.3390/rs70911570
    [13]
    Liu B H, Han T C, Kan G M, et al. Correlations between the in situ acoustic properties and geotechnical parameters of sediments in the Yellow Sea, China [J]. Journal of Asian earth Sciences, 2013, 77: 83-90. doi: 10.1016/j.jseaes.2013.07.040
    [14]
    邹大鹏, 阚光明, 龙建军. 海底浅表层沉积物原位声学测量方法探讨[J]. 海洋学报, 2014, 36(11):111-119. [ZOU Dapeng, KAN Guangming, LONG Jianjun. Methods of in-situ acoustic measurement of seafloor surface sediment [J]. Acta Oceanologica Sinica, 2014, 36(11): 111-119.
    [15]
    阚光明, 邹大鹏, 孙蕾, 等. 浅海沉积声学原位探测系统研制及深海功能拓展[J]. 海洋测绘, 2014, 34(5):79-82. [KAN Guangming, Zou Dapeng, Sun Lei, et al. Development of sediment acoustic in situ measurement system for shallow water and its functioned expansional for deep sea [J]. Hydrographic Surveying and Charting, 2014, 34(5): 79-82. doi: 10.3969/j.issn.1671-3044.2014.05.022
    [16]
    段晓勇, 印萍, 刘金庆, 等. 中国东部近海现代沉积环境[J]. 海洋地质与第四纪地质, 2019, 39(2):17-23. [DUAN Xiaoyong, YIN Ping, LIU Jinqing, et al. Modern sedimentation environments in the coastal zone of East China [J]. Marine Geology & Quaternary Geology, 2019, 39(2): 17-23.
    [17]
    Biot M A. Theory of propagation of elastic waves in a fluid-saturated porous solid. I. Low-frequency range [J]. The Journal of the Acoustical Society of America, 1956, 28(2): 168. doi: 10.1121/1.1908239
    [18]
    Biot M A. Theory of propagation of elastic waves in a fluid-saturated porous solid. II. Higher frequency range [J]. The Journal of the Acoustical Society of America, 1956, 28(2): 179. doi: 10.1121/1.1908241
    [19]
    Stoll R D. Marine sediment acoustics [J]. The Journal of the Acoustical Society of America, 1985, 77(5): 1789-1799. doi: 10.1121/1.391928
    [20]
    Zou D P, Kan G M, Long J J, et al. Influence of hydrostatic pressure on the sound speed of surficial seafloor sediments [J]. Marine Georesources & Geotechnology, 2018, 37(3): 277-281.
    [21]
    Sessarego J P, Ivakin A N, Ferrand D. Frequency dependence of phase speed, group speed, and attenuation in water-saturated sand: Laboratory experiments [J]. IEEE Journal of Oceanic Engineering, 2009, 33(4): 359-366.
    [22]
    天津大学. 一种海底沉积物超声测量装置及其超声测量方法: 中国, 201811088311.2[P]. 2019-01-18.

    Tianjin University. Seafloor sediment ultrasonic-measurement device and ultrasonic measurement method thereof: CN, 201811088311.2[P]. 2019-01-18.
    [23]
    Richardson M D, Briggs K B. In situ and laboratory geoacoustic measurements in soft mud and hard-packed sand sediments: Implications for high-frequency acoustic propagation and scattering [J]. Geo-Marine Letters, 1996, 16(3): 196-203. doi: 10.1007/BF01204509
    [24]
    国家质量技术监督局, 中华人民共和国建设部. GB 50123-1999 土工试验方法标准[2007版][S]. 北京: 中国计划出版社, 1999.

    State Bureau of Quality and Technical Supervision, Ministry of Construction of the People's Republic of China. GB 50123-1999 Standard for soil test method[S]. Beijing: China Planning Press, 1999.
    [25]
    朱俊高, 李翔, 徐佳成, 等. 粗粒土浸水饱和时间试验研究[J]. 重庆交通大学学报: 自然科学版, 2016, 35(1):85-89, 183. [ZHU Jungao, LI Xiang, XU Jiacheng, et al. Experimental study of saturation time of coarse-grained soil [J]. Journal of Chongqing Jiaotong University: Natural Sciences, 2016, 35(1): 85-89, 183.
    [26]
    冯若. 超声手册[M]. 南京: 南京大学出版社, 1999.

    FENG Ruo. Ultrasonics Handbook[M]. Nanjing: Nanjing University Press, 1999.
    [27]
    Kumar J, Madhusudhan B N. Dynamic properties of sand from dry to fully saturated states [J]. Géotechnique, 2012, 62(1): 45-54. doi: 10.1680/geot.10.P.042
    [28]
    Hou Z Y, Chen Z, Wang J Q, et al. Acoustic impedance properties of seafloor sediments off the coast of Southeastern Hainan, South China Sea [J]. Journal of Asian Earth Sciences, 2018, 154: 1-7. doi: 10.1016/j.jseaes.2017.12.003
    [29]
    Hamilton E L. Sound velocity as a function of depth in marine sediments [J]. The Journal of the Acoustical Society of America, 1985, 78(4): 1348. doi: 10.1121/1.392905
    [30]
    侯正瑜. 南海南部海底沉积物声学性质及物理参数相关关系研究 [D]. 青岛: 中国科学院研究生院(海洋研究所), 2016.

    HOU Zhengyu. The correlation of seafloor sediment acoustic properties and physical parameters in the southern south China sea[D]. Qingdao: The Institute of Oceanology, Chinese Academy of Sciences, 2016.
    [31]
    Emerson M, Foray P. Laboratory P-wave measurements in dry and saturated sand [J]. Acta Geotechnica, 2006, 1(3): 167-177. doi: 10.1007/s11440-006-0015-7
    [32]
    Tsukamoto Y, Ishihara K, Nakazawa H, et al. Resistance of partly saturated sand to liquefaction with reference to longitudinal and shear wave velocities [J]. Soils and Foundations, 2002, 42(6): 93-104. doi: 10.3208/sandf.42.6_93
    [33]
    Mory M, Michallet H, Bonjean D, et al. A field study of momentary liquefaction caused by waves around a coastal structure [J]. Journal of Waterway, Port, Coastal, and Ocean Engineering, 2007, 133(1): 28-38. doi: 10.1061/(ASCE)0733-950X(2007)133:1(28)
    [34]
    朱祖扬, 王东, 周建平, 等. 基于非饱和Biot-Stoll模型的海底沉积物介质声频散特性研究[J]. 地球物理学报, 2012, 55(1):180-188. [ZHU Zuyang, WANG Dong, ZHOU Jianping, et al. Acoustic wave dispersion and attenuation in marine sediment based on partially gas-saturated Biot-Stoll model [J]. Chinese Journal of Geophysics, 2012, 55(1): 180-188. doi: 10.6038/j.issn.0001-5733.2012.01.017
    [35]
    贾永刚, 董好刚, 单红仙, 等. 黄河三角洲粉质土硬壳层特征及成因研究[J]. 岩土力学, 2007, 28(10):2029-2035. [JIA Yonggang, DONG Haogang, SHAN Hongxian, et al. Study of characters and formation mechanism of hard crust on tidal flat of Yellow River estuary [J]. Rock and Soil Mechanics, 2007, 28(10): 2029-2035. doi: 10.3969/j.issn.1000-7598.2007.10.004
    [36]
    徐东升, 汪稔, 孟庆山, 等. 黄河三角洲粉土原位力学性能试验研究[J]. 岩石力学与工程学报, 2010, 29(2):409-416. [XU Dongsheng, WANG Ren, MENG Qingshan, et al. Experimental research on in-situ mechanical properties of silt in Yellow River delta [J]. Chinese Journal of Rock Mechanics and Engineering, 2010, 29(2): 409-416.
    [37]
    黄博, 汪清静, 凌道盛, 等. 饱和砂土三轴试验中反压设置与抗剪强度的研究[J]. 岩土工程学报, 2012, 34(7):1313-1319. [HUANG Bo, WANG Qingjing, LING Daosheng, et al. Effects of back pressure on shear strength of saturated sand in triaxial tests [J]. Chinese Journal of Geotechnical Engineering, 2012, 34(7): 1313-1319.
  • Cited by

    Periodical cited type(3)

    1. 陈磊. 波速测试与标贯试验在预估黏性土力学指标中的应用研究. 砖瓦. 2023(03): 73-76 .
    2. 孙洪新,左鹏. 地震剪切波速度测试在岩土工程勘察中的应用. 工程机械与维修. 2023(02): 105-107 .
    3. 周福强,刘伟珉. 岩土体弹性波速测试及岩土体波速与物理参数的相关性研究. 工程机械与维修. 2023(02): 197-199 .

    Other cited types(1)

Catalog

    Article views (1643) PDF downloads (28) Cited by(4)

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return