Citation: | DONG Hao, DAI Liming, LI Sanzhong, HU Zeming. Dynamic connection between Archean magma vents and Dome-and-Keel Structures[J]. Marine Geology & Quaternary Geology, 2020, 40(4): 116-126. DOI: 10.16562/j.cnki.0256-1492.2020050301 |
[1] |
Debaille V, Brandon A D, O’Neill C, et al. Early martian mantle overturn inferred from isotopic composition of nakhlite meteorites [J]. Nature Geoscience, 2009, 2(8): 548-552. doi: 10.1038/ngeo579
|
[2] |
Dhuime B, Hawkesworth C J, Cawood P A, et al. A change in the geodynamics of continental growth 3 billion years ago [J]. Science, 2012, 335(6074): 1334-1336. doi: 10.1126/science.1216066
|
[3] |
李三忠, 王光增, 索艳慧, 等. 板块驱动力: 问题本源与本质[J]. 大地构造与成矿学, 2019, 43(4):605-643. [LI Sanzhong, WANG Guangzeng, SUO Yanhui, et al. Driving force of plate tectonics: Origin and nature [J]. Geotectonica et Metallogenia, 2019, 43(4): 605-643.
|
[4] |
刘大瞻, 刘跃文. 三道溜河地区太古宙岩浆一构造事件[J]. 吉林地质, 1994, 13(3):46-54. [LIU Dazhan, LIU Yuewen. The archean magma tectonic event of the sandaoliuhe area [J]. Jilin Geology, 1994, 13(3): 46-54.
|
[5] |
赵国春, 孙敏, Wilde S A. 华北克拉通基底构造单元特征及早元古代拼合[J]. 中国科学 D辑: 地球科学, 2002, 32(7):538-549. [ZHAO Guochun, SUN Min, Wilde S A. Characteristics of Proterozoic tectonic units of the basement of the North China Craton and Proterozoic amalgamation [J]. Science in China Series D: Earth Sciences, 2002, 32(7): 538-549.
|
[6] |
翟明国. 华北克拉通的形成以及早期板块构造[J]. 地质学报, 2012, 86(9):1335-1349. [ZHAI Mingguo. Evolution of the North China craton and early Plate Tectonics [J]. Acta Geologica Sinica, 2012, 86(9): 1335-1349. doi: 10.3969/j.issn.0001-5717.2012.09.002
|
[7] |
吴鸣谦, 左梦璐, 张德会, 等. TTG岩套的成因及其形成环境[J]. 地质论评, 2014, 60(3):503-514. [WU Mingqian, ZUO Menglu, ZHANG Dehui, et al. Genesis and diagenetic environment of TTG suite [J]. Geological Review, 2014, 60(3): 503-514.
|
[8] |
李三忠, 戴黎明, 张臻, 等. 前寒武纪地球动力学(Ⅳ): 前板块体制[J]. 地学前沿, 2015, 22(6):46-64. [LI Sanzhong, DAI Liming, ZHANG Zhen, et al. Precambrian geodynamics (Ⅳ): pre-plate regime [J]. Earth Science Frontiers, 2015, 22(6): 46-64.
|
[9] |
万渝生, 董春艳, 任鹏, 等. 华北克拉通太古宙TTG岩石的时空分布、组成特征及形成演化: 综述[J]. 岩石学报, 2017, 33(5):1405-1419. [WAN Yusheng, DONG Chunyan, REN Peng, et al. Spatial and temporal distribution, compositional characteristics and formation and evolution of Archean TTG rocks in the North China Craton: a synthesis [J]. Acta Petrologica Sinica, 2017, 33(5): 1405-1419.
|
[10] |
Kaur P, Chaudhri N, Eliyas N. Origin of trondhjemite and albitite at the expense of A-type granite, Aravalli orogen, India: evidence from new metasomatic replacement fronts [J]. Geoscience Frontiers, 2019, 10(5): 1891-1913. doi: 10.1016/j.gsf.2018.09.019
|
[11] |
Johnson T, Brown M, VanTongeren J. Sink or swim? The fate of Archean primary crust and the generation of TTG magmas[C]//EGU General Assembly 2013. Vienna, Austria: EGU, 2013: 2112.
|
[12] |
Lana C, Tohver E, Cawood P. Quantifying rates of dome-and-keel formation in the Barberton granitoid-greenstone belt, South Africa [J]. Precambrian Research, 2010, 177(1-2): 199-211. doi: 10.1016/j.precamres.2009.12.001
|
[13] |
Li S Z, Zhao G C, Santosh M, et al. Paleoproterozoic structural evolution of the southern segment of the Jiao-Liao-Ji Belt, North China Craton [J]. Precambrian Research, 2012, 200-203: 59-73. doi: 10.1016/j.precamres.2012.01.007
|
[14] |
Gerya T. Precambrian geodynamics: concepts and models [J]. Gondwana Research, 2014, 25(2): 442-463. doi: 10.1016/j.gr.2012.11.008
|
[15] |
王伟, 翟明国, Santosh M. 鲁西太古宙表壳岩的成因及其对地壳演化的制约[J]. 中国科学: 地球科学, 2016, 59(8):1583-1596. [WANG Wei, ZHAI Mingguo, Santosh M. The genesis of Archean supracrustal rocks in the western Shandong Province of North China Craton: Constraints on regional crustal evolution [J]. Science China Earth Sciences, 2016, 59(8): 1583-1596. doi: 10.1007/s11430-016-5300-1
|
[16] |
韩宁, 江思宏, 白大明, 等. 西澳大利亚伊尔岗克拉通铁矿床研究进展[J]. 地质通报, 2015, 34(6):1086-1099. [HAN Ning, JIANG Sihong, BAI Daming, et al. The progress in the study of the iron ore deposits in Yilgarn Craton, Western Australia [J]. Geological Bulletin of China, 2015, 34(6): 1086-1099. doi: 10.3969/j.issn.1671-2552.2015.06.009
|
[17] |
彭俊, 袁杨森, 司建涛, 等. 坦桑尼亚维多利亚湖绿岩带变质火山岩地球化学特征及成岩机制[J]. 矿场勘查, 2018, 9(3):485-494. [PENG Jun, YUAN Yangsen, SI Jiantao, et al. Geochemical characteristics and petrogenesis of the metavolcanics rocks in Victoria Lake greenstone belt, Tanzania [J]. Mineral Exploration, 2018, 9(3): 485-494.
|
[18] |
翟明国. 华北克拉通构造演化[J]. 地质力学学报, 2019, 25(5):722-725. [ZHAI Mingguo. Tectonic evolution of the North China Craton [J]. Journal of Geomechanics, 2019, 25(5): 722-725. doi: 10.12090/j.issn.1006-6616.2019.25.05.063
|
[19] |
张连昌, 翟明国, 万渝生, 等. 华北克拉通前寒武纪BIF铁矿研究: 进展与问题[J]. 岩石学报, 2012, 28(11):3431-3445. [ZHANG Lianchang, ZHAI Mingguo, WAN Yusheng, et al. Study of the Precambrian BIF-iron deposits in the North China Craton: progresses and questions [J]. Acta Petrologica Sinica, 2012, 28(11): 3431-3445.
|
[20] |
南景博, 黄华, 王长乐, 等. 内蒙古固阳绿岩带条带状铁建造地球化学特征与沉积环境讨论[J]. 中国地质, 2017, 44(2):331-345. [NAN Jingbo, HUANG Hua, WANG Changle, et al. Geochemistry and depositional setting of Banded Iron Formations in Guyang greenstone belt, Inner Mongolia [J]. Geology in China, 2017, 44(2): 331-345.
|
[21] |
彭自栋, 张连昌, 王长乐, 等. 新太古代清原绿岩带下甸子BIF铁矿地质特征及含黄铁矿条带BIF的成因探讨[J]. 岩石学报, 2018, 34(2):398-426. [PENG Zidong, ZHANG Lianchang, WANG Changle, et al. Geological features and genesis of the Neoarchean pyritebearing Xiadianzi BIF, Qingyuan greenstone belt [J]. Acta Petrologica Sinica, 2018, 34(2): 398-426.
|
[22] |
张连昌, 彭自栋, 翟明国, 等. 华北克拉通北缘新太古代清原绿岩带BIF与VMS共生矿床的构造背景及成因联系[J]. 地球科学, 2020, 45(1):1-16. [ZHANG Lianchang, PENG Zidong, ZHAI Mingguo, et al. Tectonic setting and genetic relationship between BIF and VMS-in the Qingyuan Neoarchean greenstone belt, Northern North China Craton [J]. Earth Science, 2020, 45(1): 1-16.
|
[23] |
Joly A, Miller J, McCuaig T C. Archean polyphase deformation in the Lake Johnston Greenstone Belt area: implications for the understanding of ore systems of the Yilgarn Craton [J]. Precambrian Research, 2010, 177(1-2): 181-198. doi: 10.1016/j.precamres.2009.11.010
|
[24] |
罗迪柯, 陈靖, 姚仲友, 等. 南美洲圭亚那地盾北部绿岩带地质特征、典型金矿床及金成矿作用[J]. 地学通报, 2017, 36(12):2197-2207. [LUO Dike, CHEN Jing, YAO Zhongyou, et al. Geological features of greenstone belt, typical gold deposits and gold mineralization in northern Guiana shield, South America [J]. Geological Bulletin of China, 2017, 36(12): 2197-2207.
|
[25] |
孙武国, 廉涛, 刘冰. 中非共和国Bambari绿岩带地质特征及找矿意义[J]. 地质与资源, 2016, 25(2):208-212. [SUN Wuguo, LIAN Tao, LIU Bing. Geological characteristics and prospecting significance of the Bambari greenstone belt in the Central African Republic [J]. Geology and Resources, 2016, 25(2): 208-212. doi: 10.3969/j.issn.1671-1947.2016.02.021
|
[26] |
王建光, 彭俊, 袁杨森, 等. 坦桑尼亚西北部苏库马绿岩带含金石英脉成矿特征[J]. 世界地质, 2016, 35(4):982-992. [WANG Jianguang, PENG Jun, YUAN Yangsen, et al. Mineralization characteristics of gold-bearing quartz veins in Sukumaland greenstone belt of northwestern Tanzania [J]. Global Geology, 2016, 35(4): 982-992. doi: 10.3969/j.issn.1004-5589.2016.04.007
|
[27] |
张德成. 坦桑尼亚绿岩带型金矿[J]. 华北国土资源, 2016(3):60-61. [ZHANG Decheng. Greenstone belt type gold deposit in Tanzania [J]. Huabei Land and Resources, 2016(3): 60-61. doi: 10.3969/j.issn.1672-7487.2016.03.029
|
[28] |
张克川, 义爱文, 杨继兵, 等. 坦桑尼亚芒果金矿成矿地质特征及金赋存状态研究[J]. 矿产勘查, 2018, 9(4):761-765. [ZHANG Kechuan, YI Aiwen, YANG Jibing, et al. Study on geological characteristics and gold occurrence of Manangu gold mine in Tanzania [J]. Mineral Exploration, 2018, 9(4): 761-765. doi: 10.3969/j.issn.1674-7801.2018.04.039
|
[29] |
李俊生, 白德胜, 卫建征, 等. 坦桑尼亚马拉绿岩带金矿床地质特征[J]. 矿产勘查, 2018, 9(5):977-984. [LI Junsheng, BAI Desheng, WEI Jianzheng, et al. Characteristics of gold deposits in Mara greenstone belt, Tanzania [J]. Mineral Exploration, 2018, 9(5): 977-984. doi: 10.3969/j.issn.1674-7801.2018.05.023
|
[30] |
宋建潮, 王恩德, 贾三石, 等. 辽北-吉南地区太古宙矿产形成特点分析[J]. 地质调查与研究, 2008, 31(2):125-129. [SONG Jianchao, WANG Ende, JIA Sanshi, et al. Archean characteristics of mineral formation in the region of Northern Liaoning Province and Southern Jilin Province [J]. Geological Survey and Research, 2008, 31(2): 125-129. doi: 10.3969/j.issn.1672-4135.2008.02.007
|
[31] |
Moore W B, Webb A A G. Heat-pipe earth [J]. Nature, 2013, 501(7468): 501-505. doi: 10.1038/nature12473
|
[32] |
Moore W B, Simon J I, Webb A A G. Heat-pipe planets [J]. Earth and Planetary Science Letters, 2017, 474: 13-19. doi: 10.1016/j.jpgl.2017.06.015
|
[33] |
Henson P A, Blewett R S, Roy I G, et al. 4D architecture and tectonic evolution of the Laverton region, eastern Yilgarn Craton, Western Australia [J]. Precambrian Research, 2010, 183(2): 338-355. doi: 10.1016/j.precamres.2010.08.003
|
[34] |
Thébaud N, Rey P F. Archean gravity-driven tectonics on hot and flooded continents: controls on long-lived mineralised hydrothermal systems away from continental margins [J]. Precambrian Research, 2013, 229: 93-104. doi: 10.1016/j.precamres.2012.03.001
|
[35] |
Lin S F, Parks J, Heaman L M, et al. Diapirism and sagduction as a mechanism for deposition and burial of "Timiskaming-type" sedimentary sequences, Superior Province: evidence from detrital zircon geochronology and implications for the Borden Lake conglomerate in the exposed middle to lower crust in the Kapuskasing uplift [J]. Precambrian Research, 2013, 238: 148-157. doi: 10.1016/j.precamres.2013.09.012
|
[36] |
Fischer R, Gerya T. Early earth plume-lid tectonics: a high-resolution 3D numerical modelling approach [J]. Journal of Geodynamics, 2016, 100: 198-214. doi: 10.1016/j.jog.2016.03.004
|
[37] |
Sizova E, Gerya T, Brown M, et al. What drives metamorphism in early Archean greenstone belts? Insights from numerical modeling [J]. Tectonophysics, 2018, 746: 587-601. doi: 10.1016/j.tecto.2017.07.020
|
[38] |
Sizova E, Gerya T, Stüwe K, et al. Generation of felsic crust in the Archean: a geodynamic modeling perspective [J]. Precambrian Research, 2015, 271: 198-224. doi: 10.1016/j.precamres.2015.10.005
|
[39] |
Gerya T V, Yuen D A. Characteristics-based marker-in-cell method with conservative finite-differences schemes for modeling geological flows with strongly variable transport properties [J]. Physics of the Earth and Planetary Interiors, 2003, 140(4): 293-318. doi: 10.1016/j.pepi.2003.09.006
|
[40] |
Li Z H, Xu Z Q, Gerya T, et al. Collision of continental corner from 3-D numerical modeling [J]. Earth and Planetary Science Letters, 2013, 380: 98-111. doi: 10.1016/j.jpgl.2013.08.034
|
[41] |
Liao J, Gerya T. Influence of lithospheric mantle stratification on craton extension: insight from two-dimensional thermo-mechanical modeling [J]. Tectonophysics, 2014, 631: 50-64. doi: 10.1016/j.tecto.2014.01.020
|
[42] |
Li Z H. A review on the numerical geodynamic modeling of continental subduction, collision and exhumation [J]. Science China Earth Sciences, 2014, 57(1): 47-69. doi: 10.1007/s11430-013-4696-0
|
[43] |
刘泽, 戴黎明, 李三忠, 等. 东海陆架盆地南部中生代成盆过程的数值模拟[J]. 海洋地质与第四纪地质, 2017, 37(4):167-180. [LIU Ze, DAI Liming, LI Sanzhong, et al. Numerical simulation of mesozoic tectonic processes in the southern part of East China Sea continental shelf basin [J]. Marine Geology & Quaternary Geology, 2017, 37(4): 167-180.
|
[44] |
Huangfu P, Li Z H, Gerya T, et al. Multi-terrane structure controls the contrasting lithospheric evolution beneath the western and central–eastern Tibetan plateau [J]. Nature Communications, 2018, 9(1): 3780. doi: 10.1038/s41467-018-06233-x
|
[45] |
Dai L M, Li S Z, Li Z H, et al. Dynamics of exhumation and deformation of HP-UHP orogens in double subduction-collision systems: numerical modeling and implications for the Western Dabie Orogen [J]. Earth-Science Reviews, 2018, 182: 68-84. doi: 10.1016/j.earscirev.2018.05.005
|
[46] |
马芳芳, 楼达, 戴黎明, 等. 俯冲板片熔融柱的数值模拟: 上覆板块破坏及动力地形效应[J]. 海洋地质与第四纪地质, 2019, 39(5):186-196. [MA Fangfang, LOU Da, DAI Liming, et al. Numerical simulation of subduction-induced molten plume: Destruction of overriding plate and its dynamic topographic responses [J]. Marine Geology & Quaternary Geology, 2019, 39(5): 186-196.
|
[47] |
陶建丽, 楼达, 戴黎明, 等. 中国东部大陆边缘中生代晚期增生过程的数值模拟: 以那丹哈达为例[J]. 海洋地质与第四纪地质, 2019, 39(5):174-185. [TAO Jianli, LOU Da, DAI Liming, et al. Numerical simulation of Late Mesozoic accretion process along the continental margin of East China: A case study of the Nadanhada Terrane [J]. Marine Geology & Quaternary Geology, 2019, 39(5): 174-185.
|
[48] |
刘昕悦, 李伟民, 刘永江, 等. 辽东鞍山地区太古代构造样式及其数值模拟[J]. 岩石学报, 2019, 35(4):1071-1084. [LIU Xinyue, LI Weimin, LIU Yongjiang, et al. Archean tectonic pattern and its numerical simulation in Anshan area, eastern Liaoning Province [J]. Acta Petrologica Sinica, 2019, 35(4): 1071-1084.
|
[49] |
Ranalli G, Murphy D C. Rheological stratification of the lithosphere [J]. Tectonophysics, 1987, 132(4): 281-295. doi: 10.1016/0040-1951(87)90348-9
|
[50] |
Bédard J H. A catalytic delamination-driven model for coupled genesis of Archaean crust and sub-continental lithospheric mantle [J]. Geochimica et Cosmochimica Acta, 2006, 70(5): 1188-1214. doi: 10.1016/j.gca.2005.11.008
|
[51] |
Taylor J, Stevens G, Armstrong R, et al. Granulite facies anatexis in the Ancient Gneiss Complex, Swaziland, at 2.73 Ga: mid-crustal metamorphic evidence for mantle heating of the Kaapvaal craton during Ventersdorp magmatism [J]. Precambrian Research, 2010, 177(1-2): 88-102. doi: 10.1016/j.precamres.2009.11.005
|
[52] |
Smithies R H, Lu Y J, Johnson T E, et al. No evidence for high-pressure melting of Earth’s crust in the Archean [J]. Nature Communications, 2019, 10(1): 5559. doi: 10.1038/s41467-019-13547-x
|
[53] |
Manikyamba C, Kerrich R, Polat A, et al. Arc picrite-potassic adakitic-shoshonitic volcanic association of the Neoarchean Sigegudda greenstone terrane, western Dharwar craton: transition from arc wedge to lithosphere melting [J]. Precambrian Research, 2012, 212-213: 207-224. doi: 10.1016/j.precamres.2012.05.006
|
[54] |
Liu F, Guo J H, Peng P, et al. Zircon U-Pb ages and geochemistry of the Huai’an TTG gneisses terrane: petrogenesis and implications for ~2.5 Ga crustal growth in the North China Craton [J]. Precambrian Research, 2012, 212-213: 225-244. doi: 10.1016/j.precamres.2012.06.006
|
[55] |
Wang Y F, Li X H, Jin W, et al. Eoarchean ultra-depleted mantle domains inferred from ca. 3.81 Ga Anshan trondhjemitic gneisses, North China Craton [J]. Precambrian Research, 2015, 263: 88-107. doi: 10.1016/j.precamres.2015.03.005
|
[56] |
Gao L, Liu S W, Hu Y L, et al. Late Neoarchean geodynamic evolution: evidence from the metavolcanic rocks of the Western Shandong Terrane, North China Craton [J]. Gondwana Research, 2020, 80: 303-320. doi: 10.1016/j.gr.2019.10.017
|
[57] |
Van Kranendonk M J, Collins W J, Hickman A, et al. Critical tests of vertical vs. horizontal tectonic models for the Archaean East Pilbara Granite-Greenstone Terrane, Pilbara Craton, Western Australia [J]. Precambrian Research, 2004, 131(3-4): 173-211. doi: 10.1016/j.precamres.2003.12.015
|
[58] |
Bouhallier H, Chardon D, Choukroune P. Strain patterns in Archaean dome-and-basin structures: the Dharwar craton (Karnataka, South India) [J]. Earth and Planetary Science Letters, 1995, 135(1-4): 57-75. doi: 10.1016/0012-821X(95)00144-2
|
[1] | LI Fakun, DAI Liming, DU Xiaodong, CAI Guofu, LI Sanzhong, DONG Hao, WANG Yu. Numerical modeling of the coupling between strike-slip faulting and sedimentation: A case from the Yangjiang Sag of northern South China Sea[J]. Marine Geology & Quaternary Geology, 2021, 41(5): 139-150. DOI: 10.16562/j.cnki.0256-1492.2021040601 |
[2] | SUN Luyi, ZHANG Guangxu, WANG Xiujuan, JIN Jiapeng, HE Min, ZHU Zhenyu. Numerical modeling of gas hydrate saturation for the Shenhu area, South China Sea[J]. Marine Geology & Quaternary Geology, 2021, 41(2): 210-221. DOI: 10.16562/j.cnki.0256-1492.2020050501 |
[3] | MA Fangfang, LOU Da, DAI Liming, LI Sanzhong, DONG Hao, TAO Jianli, LI Fakun, WANG Liangliang, LIU Ze. Numerical simulation of subduction-induced molten plume: Destruction of overriding plate and its dynamic topographic responses[J]. Marine Geology & Quaternary Geology, 2019, 39(5): 186-196. DOI: 10.16562/j.cnki.0256-1492.2019040102 |
[4] | TAO Jianli, LOU Da, DAI Liming, LI Sanzhong, DONG Hao, MA Fangfang, LAN Haoyuan, LI Fakun, WANG Liangliang, LIU Ze. Numerical simulation of Late Mesozoic accretion process along the continental margin of East China: A case study of the Nadanhada Terrane[J]. Marine Geology & Quaternary Geology, 2019, 39(5): 174-185. DOI: 10.16562/j.cnki.0256-1492.2019040101 |
[5] | LI Canping, GOU Limin, YOU Jiachun, OU Chuling. STUDY ON NUMERICAL MODELS ABOUT BUBBLE PLUMES IN THE COLD SEEPAGE ACTIVE REGION[J]. Marine Geology & Quaternary Geology, 2017, 37(5): 141-150. DOI: 10.16562/j.cnki.0256-1492.2017.05.014 |
[6] | LIU Ze, DAI Liming, LI Sanzhong, MA Fangfang, SUO Yanhui, GUO Lingli, TAO Jianli, YANG Chuansheng, ZHANG Jiaqi. NUMERICAL SIMULATION OF MESOZOIC TECTONIC PROCESSES IN THE SOUTHERN PART OF EAST CHINA SEA CONTINENTAL SHELF BASIN[J]. Marine Geology & Quaternary Geology, 2017, 37(4): 167-180. DOI: 10.16562/j.cnki.0256-1492.2017.04.011 |
[7] | HU Mengying, LI Sanzhong, DAI Liming, SUO Yanhui, GUO Lingli, LIU Ze, MA Fangfang, TAO Jianli. NUMERICAL DYNAMIC MODELING OF TECTONIC INVERSION IN THE NORTHEASTERN XIHU SAG[J]. Marine Geology & Quaternary Geology, 2017, 37(4): 151-166. DOI: 10.16562/j.cnki.0256-1492.2017.04.010 |
[8] | WANG Yongming, LI Sanzhong, LI Xiyao, DAI Liming. DESTRUCTION MECHANISMS OF THE NORTH CHINA CRATON: A REVIEW FROM NUMERICAL SIMULATIONS[J]. Marine Geology & Quaternary Geology, 2017, 37(4): 137-150. DOI: 10.16562/j.cnki.0256-1492.2017.04.009 |
[9] | QIAN Jin, WANG Xiujuan, DONG Dongdong, WU Shiguo. SEISMIC ANISOTROPIC MODELING OF FRACTURE-FILLING GAS HYDRATE[J]. Marine Geology & Quaternary Geology, 2015, 35(4): 149-154. DOI: 10.16562/j.cnki.0256-1492.2015.04.016 |
[10] | QIAO Lulu, SHI Jinghao, GAO Fei, YIN Ping, LI Jianchao. NUMERICAL SIMULATION OF SEDIMENT DYNAMIC PROCESSES FOR MUD AREAS ON THE EAST CHINA SEA CONTINENTAL SHELVES: A REVIEW[J]. Marine Geology & Quaternary Geology, 2014, 34(3): 155-166. DOI: 10.3724/SP.J.1140.2014.03155 |