渤海有机碳埋藏对近百年沉积汞的约束

贾梦娇, 白亚之, 杜佳宗, 张钰莹, 林福东, 胡利民

贾梦娇,白亚之,杜佳宗,等. 渤海有机碳埋藏对近百年沉积汞的约束[J]. 海洋地质与第四纪地质,2024,44(5): 129-139. DOI: 10.16562/j.cnki.0256-1492.2024071002
引用本文: 贾梦娇,白亚之,杜佳宗,等. 渤海有机碳埋藏对近百年沉积汞的约束[J]. 海洋地质与第四纪地质,2024,44(5): 129-139. DOI: 10.16562/j.cnki.0256-1492.2024071002
JIA Mengjiao,BAI Yazhi,DU Jiazong,et al. Constraints of organic carbon burial on sedimentary mercury in the Bohai Sea over the past century[J]. Marine Geology & Quaternary Geology,2024,44(5):129-139. DOI: 10.16562/j.cnki.0256-1492.2024071002
Citation: JIA Mengjiao,BAI Yazhi,DU Jiazong,et al. Constraints of organic carbon burial on sedimentary mercury in the Bohai Sea over the past century[J]. Marine Geology & Quaternary Geology,2024,44(5):129-139. DOI: 10.16562/j.cnki.0256-1492.2024071002

渤海有机碳埋藏对近百年沉积汞的约束

基金项目: 国家自然科学基金项目“水库调控影响下黄河河流-河口连续体陆源颗粒有机碳输运的多界面耦合过程及其动力约束机制”(42330407),“海洋沉积地球化学:沉积有机质的源汇过程及其环境响应”(41722603);中央高校基本科研业务费项目(202241001)
详细信息
    作者简介:

    贾梦娇(2001—),女,硕士研究生,从事海洋沉积地球化学研究,E-mail:jiamengjiao@stu.ouc.edu.cn

    通讯作者:

    胡利民(1983—),男,教授,主要从事海洋沉积地球化学研究,E-mail:hulimin@ouc.edu.cn

  • 中图分类号: P736

Constraints of organic carbon burial on sedimentary mercury in the Bohai Sea over the past century

  • 摘要:

    全球变暖背景下,近海陆架有机碳埋藏及其环境效应不仅是海洋碳循环的关键环节,而且对全面认识人类活动对近海生态系统的影响也具有重要意义。本研究基于2013年在渤海中部泥质区由箱式取样器采集的53 cm长的沉积岩芯,综合分析了近百年来总有机碳(TOC)及其稳定碳同位素(δ13C)、生物标志物和沉积汞等指标的高分辨率沉积记录,探讨了不同来源有机碳的演变特征及其对沉积汞埋藏的约束作用。通过对有机碳δ13C进行Suess效应校正,并利用双端元混合模型,估算得到海源有机碳贡献率约为59%~90%,且自1970年以来显著增加。海源有机碳与菜籽甾醇和甲藻甾醇的演化趋势基本一致,指示自1970年以来海洋初级生产力显著增加,可能与营养物质输入和气候变暖有关。沉积汞的埋藏记录与上述生产力参数的变化趋势总体一致,并与1970年后的海源有机碳等指标呈显著的正相关,表明近几十年浮游植物生产力的增加可能对沉积汞的累积具有重要作用,因此生物作用可能对近海汞的沉积和归宿具有不可忽视的影响。进一步对比了近期人为大气汞的排放量和沉积汞埋藏量的相对变化,发现大约2000s以后,沉积汞埋藏的比率明显下降(相对于排放量),这可能与同期营养盐和浮游植物群落结构改变(如甲藻显著增加)导致的生物对汞的清除作用效率降低有关。

    Abstract:

    In the global warming scheme, organic carbon burial and its environmental effects on coastal shelves are important in the marine carbon cycle, and a window for understanding the impact of modern human activities on coastal ecosystems. A 53-cm long core was acquired by box-coring in 2013 from the central mud deposition area of the Bohai Sea, North China. The high-resolution sedimentary records of total organic carbon (TOC), stable carbon isotopes (δ13C), biomarkers, and sedimentary mercury over the past century were comprehensively analyzed, and the evolutionary characteristics of organic carbon from various sources and constraining effects on mercury burial were clarified. By correcting the δ13C of organic carbon for the Suess effect and applying a two-endmember mixing model, we estimated that marine organic carbon contributes approximately 59% to 90%, with a marked increase since the 1970. The trends of marine organic carbon align closely with those of brassicasterol and dinosterol, indicating a significant increase in marine primary productivity since the 1970, due likely to increased nutrient input and climate warming. The burial records of sedimentary mercury are generally consistent with the trends of the aforementioned productivity parameters and exhibit a significant positive correlation with marine organic carbon and other indicators since the 1970. This suggests that the increase in phytoplankton productivity in recent decades may have played a crucial role in the accumulation of sedimentary mercury. Therefore, biological processes may have a significant impact on the sequestration and fate of mercury in coastal areas. A further comparison of the relative changes in recent anthropogenic atmospheric mercury emissions and sedimentary mercury burial rates revealed a significant decline in the burial efficiency relative to emissions after the 2000s. This decline may be related to concurrent changes in nutrient levels and phytoplankton community structure, such as a notable increase in dinoflagellates, which potentially reduced the efficiency of biological mercury scavenging.

  • 近海作为连接陆地和海洋的关键区域,是营养盐、碳及人为释放物(如重金属等)生物地球化学循环的重要区域[1-3]。有机碳埋藏在海洋碳循环和全球气候变化中起着至关重要的作用,特别是在人类活动加剧的背景下,随着近海富营养化程度加剧,浮游植物生产力成倍增加,海源有机碳埋藏效率也随之提高[4]。另一方面,输入近海的污染物种类和通量发生了显著变化[5-7],除去自然过程的影响,人类活动的排放(例如工业生产、生物质、化石燃料燃烧和废物焚烧以及采矿和冶炼业)呈现显著增加,人为源已经成为重金属等污染物排放入海的主要贡献源[8-10]。这些人为释放为主的污染物主要可通过大气沉降以及河流输入进入海洋,并通过吸附到有机质和矿物(如铁锰氧化物)上或者生物泵作用等方式,最终埋藏在沉积物中[11-13]

    随着近海环境污染日益严峻,尤其是重金属等污染物的生态风险持续上升,汞作为一种典型的重金属,因其对水生生态系统和人类健康的毒性而受到广泛关注[2, 5, 9]。许多研究表明,沉积有机碳与汞埋藏之间存在显著关联,例如北极湖泊的沉积记录中,沉积汞含量的上升可能不仅代表大气中汞含量的增加,还更多地受到气候变暖驱动的藻类初级生产力增加的影响[14-15]。在一些中低纬度湖泊、河口以及南大洋等区域的研究中也观察到有机碳特别是海源有机碳与汞之间存在显著相关性,这跟浮游植物与汞的相互作用以及藻类来源的有机质颗粒对汞的吸附和清除有关,即汞通过生物清除作用沉降并埋藏在沉积物中[16-18]。综上,对于近海这一陆海相互作用强烈和人类活动影响显著的海区,尤其是在全球变暖导致海洋生产力不断升高的背景下,该区生物泵等作用对于沉积汞的迁移和埋藏的约束作用或还有待进一步评估,这对系统认识近海有机碳的源汇过程及其对关键元素循环和生态系统的影响具有重要的科学意义。

    环渤海经济圈是中国最早工业化的地区,渤海作为中国最为封闭的近海,其生态环境承受了大量周边人类活动的压力,包括重金属污染、持久性有机污染物的积累等,其中汞因高毒性、生物积累、长距离运输以及持久性等特点,已成为学者研究的热点[5, 9, 19-21]。本研究选择渤海中部泥质区为研究靶区,该区距离河口较远,受河流直接输入的影响较小[22],大气沉降是本区汞等重金属进入海洋的主要输入方式[19];同时该区水动力环境较弱,沉积速率相对较高[23],因而是重建海洋生产力演变和重金属埋藏的理想场所。据此,本研究聚焦不同来源有机碳的沉积记录演化对汞埋藏的约束作用,旨在阐明在人类活动影响日益加剧和近海生态系统压力不断增加的背景下,有机碳埋藏与沉积汞之间的内在关系,这有助于评估生物泵作用对区域沉积汞埋藏的贡献,能更加准确地认识人类活动对近海环境演变的影响,可为渤海环境保护和污染治理提供一定的科学依据。

    渤海是中国唯一的半封闭内海,由莱州湾、渤海湾、辽东湾和渤海中部组成,通过山东和辽东半岛之间狭窄的渤海海峡与黄海相连,平均深度18 m,总面积为7.7×104 km2图1),其中渤海中部面积最大,平均深度为22.5 m,其浮游植物生物量约占整个渤海的近一半[24-25]。渤海水动力条件较弱,与外海水体交换能力差,生态系统脆弱性较高[26-27]。环渤海经济圈是中国人口密度和工业化程度最高的地区之一,粗放的海洋开发模式导致大量人为污染物和营养物质通过河流和大气沉降输入渤海[5, 28]。例如,2010至2017年,渤海沿岸主要河流每年输送的污染物总量约为84万t,其中溶解无机氮(DIN)、总磷(TP)和重金属汞的年输入量分别约为4.4万t、0.5万t和6t[21]。渤海中部大气沉降与河流输入的DIN通量相当[29]。需要注意的是,1949年至2012年,中国人为大气汞的排放量从13 t/a增加到了695 t/a,这些汞的相当一部分可通过大气长距离运输最终沉降入渤海[10, 30],相应地,渤海沉积物中汞埋藏通量在同期内也增加了84.3%±1.8%[2]。此外,已有研究表明,近几十年来渤海DIN浓度增加约7倍,溶解无机磷(DIP)浓度有所下降,导致渤海浮游植物生长的限制性生源要素已由氮转变为磷,且过度的养分负荷与高N/P比值导致渤海浮游植物生物量显著增加,浮游植物由硅藻占绝对优势转向硅藻和甲藻共同控制[31-33]

    图  1  研究区概况及取样站位 [34]
    Figure  1.  Overview of the study area and sampling site (M7) [34]

    本研究沉积岩芯(M7)的采样位置为120°27′29.16″N、39°31′56.70″E,位于渤海中部泥质区,水深29 m,于2013年由箱式取样器采集获得。M7岩芯长度为53 cm,以1 cm间隔进行分样并包入铝箔中,保存在预清洁的塑料袋中,置于冰柜于−20°C下冷冻储存直至分析测试。

    本文利用的M7岩芯210Pb和137Cs放射性比活度和测年结果、总有机碳含量(TOC)、生物标志物(菜籽甾醇和甲藻甾醇)以及沉积汞含量数据主要来自课题组前期已经发表的研究资料;同时收集了前人关于渤海周边营养盐输入、水文资料和浮游植物群落结构变化的相关数据资料进行对比研究(表1)。

    表  1  数据资料来源
    Table  1.  Data sources
    数据资料参考文献
    总有机碳含量、生物标志物Xu等(2018)[35]
    沉积汞含量Chen等(2021)[19]
    210Pb和137Cs放射性比活度和测年结果Chen等(2021)[19]
    渤海营养盐(DIN、DIP)数据Li等(2021),
    Wang等(2021)[36-37]
    研究区海表温度(SST)数据网站https://cds.climate.copernicus.eu
    中国人为大气汞排放数据Tian等(2015)[10]
    渤海中部浮游植物细胞丰度调查数据郭术津等(2014)[33]
    下载: 导出CSV 
    | 显示表格

    沉积物总有机碳含量及其稳定碳同位素使用盐酸处理法,分别经元素分析仪和稳定同位素质谱仪测试得到[38];生物标志物使用超声萃取法,经气相色谱仪测试得到[35];沉积总汞含量采用原子荧光光谱法测定[39]。δ13C值以PDB国际标准物质作为参考标准,测试精度为 ±0.3‰。δ13C值的计算公式如下:

    $$ \begin{array}{c}\text{δ}{}_{\text{}}{}^{\text{13}}\text{C}\text=\left[{\text{R}\left({}_{\text{}}{}^{\text{13}}\text{C}\text{∕}{}_{\text{}}{}^{\text{12}}\text{C}\right)}_{\text{样品}}/{\text{R}\left({}_{\text{}}{}^{\text{13}}\text{C}\text{∕}{}_{\text{}}{}^{\text{12}}\text{C}\right)}_{\text{PDB}}{-1}\right]\text{×}\text{1000}\end{array} $$ (1)

    考虑到Suess效应,即工业革命以来人类活动(主要是燃烧化石燃料)向大气中释放大量富含12C的CO2,导致大气中13C/12C比值下降,δ13C值变得偏负,最终影响沉积有机碳稳定碳同位素分布,因此为了更好地揭示不同来源有机碳的沉积记录,本研究对有机碳δ13C进行了校正[40-42]。使用以下公式对δ13C进行Suess效应校正:

    $$ \begin{array}{c}\text{δ}{}^{\text{13}}\text{C}=-\text{4577.8}+\text{7.3430}\text{×}\left({ t}{-10}\right)-\text{3.9213}\text{×}{\text{10}}^{{-3}} \text{×}\\{\left({ t}{-10}\right)}^{\text{2}}\text+\text{6.9812}\text{×}{\text{10}}^{{-7}}\text{×}{\left({ t}{-10}\right)}^{\text{3}}\text+\text{(}-\text{6.31}\text{)}\end{array} $$ (2)

    基于公式(2)得到校正后的δ13C值,式中,t为沉积年代(年),−6.31‰为1840年大气中CO2的δ13C值。采用(t−10)而不是Schelske和Hodell提出的应用于湖泊中的t,这是由于海洋和大气之间的13C平衡需要10~12 a的时间来建立[40, 43]

    近海中的有机碳主要有两种来源,即由河流径流和风尘沉降输送的陆源有机碳以及海洋初级生产者产生的海源有机碳[44]。δ13C可用于示踪沉积环境中有机碳来源,基于沉积物δ13C值的双端元混合模型[45],可以定量计算岩芯中海源和陆源有机碳的贡献比例,分别选取−27‰和−21‰作为陆源和海源有机碳的δ13C端元值[46-47],由此根据校正后的δ13C计算出海源有机碳和陆源有机碳贡献占比,计算公式如下:

    $$ \begin{array}{c}{{f}}_{\text{T}}=\dfrac{{\text{δ}}^{\text{13}}{\text{C}}_{\text{M}}-{\text{δ}}^{\text{13}}{\text{C}}_{\text{S}}}{{\text{δ}}^{\text{13}}{\text{C}}_{\text{M}}-{\text{δ}}^{\text{13}}{\text{C}}_{\text{T}}}\end{array} $$ (3)
    $$ \begin{array}{c}{{f}}_{\text{M}}=\text{1}-{{f}}_{\text{T}}\end{array} $$ (4)

    式中,fT为陆源有机碳贡献系数;δ13CM为海源端元有机碳δ13C;δ13CT为陆源端元有机碳δ13C;δ13CS为沉积物样品校正后的δ13C;fM为海源有机碳贡献系数。

    M7岩芯TOC和校正后δ13C变化特征以1970年为界呈现出两段性变化(图2):1970年以前,TOC含量比较低且稳定,变化范围为0.32%~0.50%,平均值为0.43%±0.04%(图2a);校正后δ13C在波动中呈增加趋势,变化范围为−23.43‰~−22.48‰,平均值为−22.98‰±0.30‰(图2b)。1970年以后,TOC含量开始呈明显的波动增加趋势,从0.43%升高到0.70%,平均值为0.52% ± 0.08%;校正后δ13C呈显著增加趋势,变化范围为−23.09‰~−21.06‰,平均值为−22.26‰±0.38‰。根据校正后的δ13C的双端元混合模型计算出海源有机碳和陆源有机碳贡献占比分别为59%~90%(平均值为74%±0.08%)和10%~41%(平均值为26%±0.08%),在整个沉积时期以海源有机碳贡献为主(图2c、d)。

    图  2  M7岩芯TOC、δ13C、海源和陆源有机碳贡献率的垂向分布
    Figure  2.  Vertical distribution of TOC, δ13C, and contributions of marine and terrestrial organic carbon in Core M7

    将生物标志物数据进行了TOC归一化处理,以避免有机质降解保存的干扰[48-49]。菜籽甾醇和甲藻甾醇具有相似的变化趋势(图3a、b),大致可分为两个阶段:1970年之前菜籽甾醇和甲藻甾醇的含量较低,变化范围分别为0.01~0.06 μg/g TOC(平均值为0.04±0.02 μg/g TOC)和0.05~0.18 μg/g TOC(平均值为0.11±0.04 μg/g TOC);1970年之后二者呈增加趋势,尤其是2000年之后显著增加,变化范围分别为0.01~1.44 μg/g TOC(平均值为0.24±0.29 μg/g TOC)和0.04~0.98 μg/g TOC(平均值为0.37±0.23 μg/g TOC)。菜籽甾醇和甲藻甾醇的总含量在M7岩芯中的垂向分布与上述变化特征类似(图3c),变化范围为0.05~2.42 μg/g TOC,平均值为0.41±0.44 μg/g TOC。菜籽甾醇与甲藻甾醇比值的波动较大,变化范围为0.22~1.47,平均值为0.46±0.22,总体上呈现增加的趋势(图3d)。

    图  3  M7岩芯甾醇和沉积汞含量的垂向分布
    Figure  3.  Vertical distribution of sterol and sedimentary mercury content in Core M7

    沉积汞含量在M7岩芯中的变化特征也以1970年为界分为两段(图3e)。1970年以前沉积汞的含量比较低,变化范围为26.09~36.32 ng/g,平均值为29.54±2.80 ng/g,但在1955年之前存在一个较大的波动,前期从26.43 ng/g上升到36.32 ng/g,1950年后又回到低值29.32 ng/g;1970年后沉积汞含量呈显著增加趋势,从30.59 ng/g上升到52.63 ng/g,平均值为38.43±6.66 ng/g。

    初级生产力是海洋生态系统的重要组成部分,浮游植物在透光层产生的有机质颗粒的沉降和埋藏是沉积物中海源有机碳沉积物的主要来源,因此,海源有机碳是反映生产力最直接的代表[50-52]。通过校正有机碳δ13C和双端元混合模型计算,发现近百年来海源有机碳的贡献占主导地位,并呈持续增加的趋势,尤其是1970年以后显著增加,贡献占比达65%~90%;陆源有机碳贡献相对较低且呈减少趋势,主要与人类活动(建坝、水土保持措施)以及气候变化的影响下河流向渤海输送的泥沙量急剧减少有关(图2c、d)[53]。海源有机碳含量的变化范围为0.20%~0.63%,平均值为0.36%±0.09%,1970年前变化相对较小,1970年后呈明显增加趋势,由0.29%上升至0.56%(图4a),表明1970年以后渤海初级生产力显著增加,与前人的研究结果一致[32, 36]。此外,生物标志物因其来源明确、稳定性高的特点,被广泛用于重建浮游植物生产力和群落结构变化[48, 54-58]。硅藻和甲藻是海洋中重要的浮游植物,是渤海初级生产力的主要贡献者[36, 58],且二者分别是菜籽甾醇和甲藻甾醇的主要生产者[59],因此这两种甾醇总含量通常被用于指示海洋浮游植物生产力。与海源有机碳含量变化指示的初级生产力演化相对应,菜籽甾醇+甲藻甾醇含量自1970年后从0.37 μg/g TOC上升至2.42 μg/g TOC,进一步表明浮游植物生产力自1970年以来显著增加,并在2000年以后增幅变大(图4b)。

    图  4  有机碳沉积记录及其与汞埋藏演变的协变性
    Figure  4.  Covariation of organic carbon sedimentation and mercury burial trends

    与人类活动(如化肥使用、废水排放)相关的营养盐输入显著影响着渤海浮游植物生产力及其群落的演变[21, 60]。DIN和DIP等营养物质是初级生产过程与食物链的基础,其含量高低直接影响海洋生产力和生态结构[61-62]。渤海水体营养盐的年际变化显示,总体上DIN浓度呈现增加趋势(图4g),而DIP浓度呈现降低趋势,1980s至1990s期间DIP浓度略有增加(图4h),营养盐含量的不平衡变化导致营养盐结构改变,DIN/DIP比值呈增加趋势(图4i),尤其是进入21世纪后显著增加。有研究表明,营养盐浓度是控制海洋中浮游植物生物量的关键因素,高营养盐浓度可以促进硅藻和甲藻的生长[4],因此人为营养输入增加引起的DIN含量升高以及N/P比值失衡可能是导致初级生产力增加的重要因素[36, 48]

    另一方面,浮游植物光合作用效率和代谢速率会随着温度升高而增加,从而改变浮游植物的丰度和种类组成[63-65]。本文统计了研究区海表温度(SST)以及10年平均海表温度变化情况(图4j),发现1980年之前,SST波动较大,平均值为12.2±0.59°C;1980年至2000年,SST呈增加趋势,由10.9°C增加至12.7°C;2000年之后SST平均值为12.4±0.40°C。为进一步分析温度对初级生产力的影响,采用SST与时间的回归方程计算了M7岩芯的年平均气温(SSTfit)(图4j中红色直线),通过初级生产力指标与海表温度的线性相关分析发现,SSTfit与TOC、海源有机碳含量以及菜籽甾醇+甲藻甾醇之间呈显著正相关(R分别为0.65、0.78和0.74,p<0.001),表明变暖可能也是导致渤海初级生产力增加的重要因素[66-67]

    海洋环境中沉积汞与有机碳(特别是水生来源)之间普遍存在相关性,指示汞埋藏可能受到初级生产力控制[14, 17]。M7岩芯中沉积汞含量与指示生产力变化的有机碳等参数的垂向变化趋势总体呈现出一致性(图4a-d),表明汞与初级生产力之间可能存在内在联系,为了进一步探究它们之间的潜在关联,对这些指标进行了相关性分析。如图5所示,以初级生产力显著增加的1970年为界分阶段做相关性分析,结果表明1970年之前Hg与有机碳等指标之间不存在相关性;而1970年之后Hg与TOC、菜籽甾醇+甲藻甾醇以及海源有机碳含量之间都呈现出较高的相关性(R分别为0.41,p<0.05;0.76、0.58,p<0.001),且Hg与海源有机碳、生物标志物的相关性高于与TOC的相关性;同时,与陆源有机碳之间呈现负相关。研究指出,汞与海源有机碳之间的相关性可能与海源有机质对汞的吸附和清除作用有关[17- 18]。例如北极湖泊沉积物中汞浓度与藻类来源有机质之间存在显著相关性,与生产力增加导致的有机质对汞的清除作用加强有关[14-15];中低纬湖泊(青海湖和澄海湖)的研究也证明了有机质是影响湖泊沉积物中汞分布的最重要因素之一[16];此外,在南大洋硅质浮游植物软泥沉积记录的研究中,发现沉积汞浓度与初级生产力以及快速沉降的硅藻有机质对水柱中汞的清除有关[18];河口沉积物中发现海洋自生有机碳与汞之间高度相关,海源有机碳比陆源有机碳对汞的亲和力更高[17]。因此,M7岩芯沉积物中藻类来源的有机碳和汞之间的线性相关性(1970年后)表明海源有机碳埋藏对沉积汞可能具有控制作用,进一步说明了生产力对汞埋藏的约束。

    图  5  Hg与TOC、菜籽甾醇+甲藻甾醇以及海源、陆源有机碳含量的相关性分析
    Figure  5.  Correlation analysis of mercury with TOC, brassicasterol + dinosterol, and marine and terrestrial organic carbon content

    已有研究表明,沉积物有机赋存相态的汞占总汞含量的约55% ~ 90%[16-17]。而通过Hg/TOC比值可大体确定沉积汞含量的变化是否由有机碳输入的变化驱动,进而可推断汞的来源和运输路径[68]。M7岩芯中Hg/TOC比值总体呈现上升趋势,在1970年以前,变化范围为60.0~84.8 ng/g TOC,平均值为69.7±7.92 ng/g TOC;1970年之后,变化范围为52.0~115.6 ng/g TOC,平均值为79.1±13.60 ng/g TOC(图4e)。Hg/TOC比值随时间增加的趋势表明单位有机碳结合的汞在增加,可能与以下因素有关:一方面是有机碳来源的变化,近几十年来陆源有机碳输入的比例持续减少(图2d),同时浮游植物生产力增加[32, 36],导致海源有机碳含量显著增加(图4a)。研究表明海源有机碳中的硫醇基和其他活性基团能够与汞形成稳定复合物[69],因此海源有机碳通常比陆源有机碳具有更高的汞结合能力,藻类来源的有机碳可通过吸附和清除作用约束沉积汞的埋藏归宿[14, 17],且浮游植物能够通过光合作用吸收海水中的汞,并在其死亡和沉降后将汞带入沉积物中[13, 18]。因此,海源有机碳埋藏的增加提高了整体Hg/TOC比值,可能加速了汞埋藏到沉积物的过程。另一方面,受人类活动的影响,工业化进程加剧了汞的排放,并可通过大气沉降或河流释放到海洋环境中[3, 9-10],这些大量输入的人为源汞被海源有机碳的有效清除是Hg/TOC比值提高的重要原因。

    图6所示,基于M7岩芯汞含量的沉积记录,计算得出自1970年以来沉积汞含量每10年的绝对增长率,发现沉积汞的埋藏量呈持续增加趋势,其中1980年至1990年的绝对增长率最高,达29.8%;与此同时,中国每年人为大气汞的排放量也显著增加[10],2000s后其绝对增长率高达119.3%。在1980年至1990年期间,沉积汞的增长率以及其与汞排放量的增长率比值达到峰值,反映了该阶段快速工业化导致汞排放量和埋藏量同步增加[3, 19-20],而且如上所述,这一时期初级生产力快速增加促进了汞的埋藏[18, 32]。然而,2000s后,尽管大气汞排放量显著增加,但沉积汞埋藏的比率明显降低(相对于排放量)。考虑到两者前期基本呈同步变化的特征,这可能说明在2000s后浮游植物对汞的清除作用效率相比之前有所降低。事实上,研究已发现2000s以来渤海DIN/DIP比值急剧上升(图4),从而引起浮游植物群落结构产生显著变化[36-37]。渤海中部浮游植物细胞丰度调查显示,21世纪以来该区已经由硅藻主导向硅、甲藻共同控制演替,甲藻/硅藻比值的平均水平较20世纪升高了2.82倍(图6[33, 70-71]。研究已证实在高N/P比值的情况下,甲藻具有相对较强的竞争优势,浮游植物可由优势藻硅藻转变为甲藻[72-73]。浮游植物群落变化可以显著影响有机碳沉积和养分循环[74],并直接影响水体中重金属等元素的迁移清除效率。硅藻因其硅质细胞壁密度大,沉降速度快,能够将汞有效地运输到海底;而甲藻通过休眠孢囊下沉或在水柱中解体,沉降速度较慢,延长了有机物质的分解时间,使汞释放回水相,降低其埋藏效率和相应的清除作用[18, 74-75]。因此,渤海近年来的浮游植物群落结构变化可能对沉积汞的迁移和埋藏归宿具有重要影响,对此还有待进一步深入研究。

    图  6  沉积汞含量与人为大气汞排放量的绝对增长率对比
    Figure  6.  Comparison in absolute growth rate between sedimentary mercury content and anthropogenic atmospheric mercury emissions

    本研究基于渤海中部泥质区M7岩芯的高分辨率沉积记录,探讨了百年来渤海有机碳沉积记录演化及其对沉积汞埋藏的影响,发现1970年前,海源有机碳以及菜籽甾醇与甲藻甾醇含量较低,且Hg与TOC等指标之间无明显相关性;1970年后,受营养物质输入和变暖的影响,渤海有机碳埋藏和初级生产力显著增加,海源有机碳埋藏量从0.29%上升至0.56%,菜籽甾醇与甲藻甾醇的总含量从0.37 μg/g TOC上升至2.42 μg/g TOC,这一时期Hg与海洋生产力相关的参数呈显著正相关,Hg/TOC比值也明显增加,指示浮游植物生产力的增加显著促进了汞的埋藏,说明海源有机碳可能对汞的清除埋藏具有重要作用。2000s以来,人为大气汞排放量与沉积汞的埋藏演变趋势不一致,汞埋藏比率有所下降,这可能与同时期营养盐结构和浮游植物群落结构改变导致的生物清除作用相对减弱有关,对此有待于进一步研究。

    致谢:本研究使用的样品为国家自然科学基金委渤黄海共享航次获得,调查船为东方红2号,感谢参加调查工作的全体考察队员,感谢审稿专家提出的宝贵修改意见。

  • 图  1   研究区概况及取样站位 [34]

    Figure  1.   Overview of the study area and sampling site (M7) [34]

    图  2   M7岩芯TOC、δ13C、海源和陆源有机碳贡献率的垂向分布

    Figure  2.   Vertical distribution of TOC, δ13C, and contributions of marine and terrestrial organic carbon in Core M7

    图  3   M7岩芯甾醇和沉积汞含量的垂向分布

    Figure  3.   Vertical distribution of sterol and sedimentary mercury content in Core M7

    图  4   有机碳沉积记录及其与汞埋藏演变的协变性

    Figure  4.   Covariation of organic carbon sedimentation and mercury burial trends

    图  5   Hg与TOC、菜籽甾醇+甲藻甾醇以及海源、陆源有机碳含量的相关性分析

    Figure  5.   Correlation analysis of mercury with TOC, brassicasterol + dinosterol, and marine and terrestrial organic carbon content

    图  6   沉积汞含量与人为大气汞排放量的绝对增长率对比

    Figure  6.   Comparison in absolute growth rate between sedimentary mercury content and anthropogenic atmospheric mercury emissions

    表  1   数据资料来源

    Table  1   Data sources

    数据资料参考文献
    总有机碳含量、生物标志物Xu等(2018)[35]
    沉积汞含量Chen等(2021)[19]
    210Pb和137Cs放射性比活度和测年结果Chen等(2021)[19]
    渤海营养盐(DIN、DIP)数据Li等(2021),
    Wang等(2021)[36-37]
    研究区海表温度(SST)数据网站https://cds.climate.copernicus.eu
    中国人为大气汞排放数据Tian等(2015)[10]
    渤海中部浮游植物细胞丰度调查数据郭术津等(2014)[33]
    下载: 导出CSV
  • [1]

    Bauer J E, Cai W J, Raymond P A, et al. The changing carbon cycle of the coastal ocean[J]. Nature, 2013, 504(7478):61-70. doi: 10.1038/nature12857

    [2]

    Sun X S, Hu L M, Sun X, et al. Mercury burial in modern sedimentary systems of the East China marginal seas: the role of coastal oceans in global mercury cycling[J]. Global Biogeochemical Cycles, 2023, 37(9):e2023GB007760. doi: 10.1029/2023GB007760

    [3]

    Yin R S, Guo Z G, Hu L M, et al. Mercury inputs to Chinese marginal seas: impact of industrialization and development of China[J]. Journal of Geophysical Research: Oceans, 2018, 123(8):5599-5611. doi: 10.1029/2017JC013691

    [4]

    Cao Y L, Bi R, Wang X C, et al. The sources and burial of marine organic carbon in the eastern China marginal seas[J]. Frontiers in Marine Science, 2022, 9:824181. doi: 10.3389/fmars.2022.824181

    [5] 张桂成, 孙军. 渤海环境污染现状及研究进展[J]. 环境化学, 2023, 42(3):918-930 doi: 10.7524/j.issn.0254-6108.2022101805

    ZHANG Guicheng, SUN Jun. State of environmental pollution in the Bohai Sea, China: a review[J]. Environmental Chemistry, 2023, 42(3):918-930.] doi: 10.7524/j.issn.0254-6108.2022101805

    [6] 王焕松, 雷坤, 李子成, 等. 辽东湾北岸主要入海河流污染物入海通量及其影响因素分析[J]. 海洋学报, 2011, 33(6):110-116

    WANG Huansong, LEI Kun, LI Zicheng, et al. Analysis of major pollutants flux into the sea and influencing factors on the north shore of the Liaodong Gulf[J]. Acta Oceanological Sinica, 2011, 33(6):110-116.]

    [7]

    Zhou Q X, Wang S M, Liu J Q, et al. Geological evolution of offshore pollution and its long-term potential impacts on marine ecosystems[J]. Geoscience Frontiers, 2022, 13(5):101427. doi: 10.1016/j.gsf.2022.101427

    [8]

    Azoury S, Tronczyński J, Chiffoleau J F, et al. Historical records of mercury, lead, and polycyclic aromatic hydrocarbons depositions in a dated sediment core from the eastern mediterranean[J]. Environmental Science & Technology, 2013, 47(13):7101-7109.

    [9]

    Zhu A M, Liu J H, Qiao S Q. Quantitative source apportionment of heavy metals in sediments from the Bohai Sea, China[J]. Marine Pollution Bulletin, 2023, 196:115620. doi: 10.1016/j.marpolbul.2023.115620

    [10]

    Tian H Z, Zhu C Y, Gao J J, et al. Quantitative assessment of atmospheric emissions of toxic heavy metals from anthropogenic sources in China: historical trend, spatial distribution, uncertainties, and control policies[J]. Atmospheric Chemistry and Physics, 2015, 15(17):10127-10147. doi: 10.5194/acp-15-10127-2015

    [11]

    Filgueiras A V, Lavilla I, Bendicho C. Evaluation of distribution, mobility and binding behaviour of heavy metals in surficial sediments of Louro River (Galicia, Spain) using chemometric analysis: a case study[J]. Science of the Total Environment, 2004, 330(1-3):115-129. doi: 10.1016/j.scitotenv.2004.03.038

    [12]

    Bartoli G, Papa S, Sagnella E, et al. Heavy metal content in sediments along the Calore river: relationships with physical–chemical characteristics[J]. Journal of Environmental Management, 2012, 95:S9-S14. doi: 10.1016/j.jenvman.2011.02.013

    [13]

    Le Faucheur S, Campbell P G C, Fortin C, et al. Interactions between mercury and phytoplankton: speciation, bioavailability, and internal handling[J]. Environmental Toxicology and Chemistry, 2014, 33(6):1211-1224. doi: 10.1002/etc.2424

    [14]

    Outridge P M, Sanei L H, Stern G A, et al. Evidence for control of mercury accumulation rates in Canadian High Arctic lake sediments by variations of aquatic primary productivity[J]. Environmental Science & Technology, 2007, 41(15):5259-5265.

    [15]

    Stern G A, Sanei H, Roach P, et al. Historical interrelated variations of mercury and aquatic organic matter in lake sediment cores from a subArctic lake in Yukon, Canada: further evidence toward the algal-mercury scavenging hypothesis[J]. Environmental Science & Technology, 2009, 43(20):7684-7690.

    [16]

    Wu F C, Xu L B, Liao H Q, et al. Relationship between mercury and organic carbon in sediment cores from Lakes Qinghai and Chenghai, China[J]. Journal of Soils and Sediments, 2013, 13(6):1084-1092. doi: 10.1007/s11368-013-0694-2

    [17]

    Chakraborty P, Sarkar A, Vudamala K, et al. Organic matter — A key factor in controlling mercury distribution in estuarine sediment[J]. Marine Chemistry, 2015, 173:302-309. doi: 10.1016/j.marchem.2014.10.005

    [18]

    Zaferani S, Biester H. Biogeochemical processes accounting for the natural mercury variations in the southern Ocean diatom ooze sediments[J]. Ocean Science, 2020, 16(3):729-741. doi: 10.5194/os-16-729-2020

    [19]

    Chen B, Hu L M, Liu J H, et al. High-resolution depositional records of lead isotopes and polycyclic aromatic hydrocarbons in the Bohai Sea, China: implications for a sediment footprint of anthropogenic impact[J]. Marine Geology, 2021, 432:106396. doi: 10.1016/j.margeo.2020.106396

    [20]

    Liu L, Wang J Y, Wang L J, et al. Vertical distributions of mercury in marine sediment cores from central and southern part of Bohai Sea, China[J]. Ecotoxicology and Environmental Safety, 2019, 170:399-406. doi: 10.1016/j.ecoenv.2018.12.003

    [21]

    Zhou D, Yu M, Yu J B, et al. Impacts of inland pollution input on coastal water quality of the Bohai Sea[J]. Science of the Total Environment, 2021, 765:142691. doi: 10.1016/j.scitotenv.2020.142691

    [22]

    Fang Y, Chen Y J, Lin T, et al. Spatiotemporal trends of elemental carbon and char/soot ratios in five sediment cores from eastern China marginal seas: indicators of anthropogenic activities and transport patterns[J]. Environmental Science & Technology, 2018, 52(17):9704-9712.

    [23] 李凤业, 高抒, 贾建军, 等. 黄、渤海泥质沉积区现代沉积速率[J]. 海洋与湖沼, 2002, 33(4):364-369 doi: 10.3321/j.issn:0029-814X.2002.04.004

    LI Fengye, GAO Shu, JIA Jianjun, et al. Contemporary deposition rates of fine-grained sediment in the Bohai and Yellow Seas[J]. Oceanologia et Limnologia Sinica, 2002, 33(4):364-369.] doi: 10.3321/j.issn:0029-814X.2002.04.004

    [24]

    Song J M, Duan L Q. Chapter 17 - The Bohai sea[M]//Sheppard C. World Seas: an Environmental Evaluation. 2nd ed. Amsterdam: Elsevier, 2019: 377-394.

    [25]

    Ding X K, Guo X Y, Zhang C, et al. Water conservancy project on the Yellow River modifies the seasonal variation of chlorophyll-a in the Bohai Sea[J]. Chemosphere, 2020, 254:126846. doi: 10.1016/j.chemosphere.2020.126846

    [26] 赵海萍, 李清雪, 陶建华. 渤海湾表层水质时空变化及污染源识别[J]. 水力发电学报, 2016, 35(10):21-30 doi: 10.11660/slfdxb.20161003

    ZHAO Haiping, LI Qingxue, TAO Jianhua. Spatio-temporal water quality variations and identification of surface water pollutant sources in Bohai Bay[J]. Journal of Hydroelectric Engineering, 2016, 35(10):21-30.] doi: 10.11660/slfdxb.20161003

    [27] 陶磊, 孙健, 刘海英, 等. 潮汐和季风作用下渤海湾水交换研究[J]. 水力发电学报, 2020, 39(5):99-107 doi: 10.11660/slfdxb.20200510

    TAO Lei, SUN Jian, LIU Haiying, et al. Study on water exchange in Bohai Bay under effects of tides and seasonal winds[J]. Journal of Hydroelectric Engineering, 2020, 39(5):99-107.] doi: 10.11660/slfdxb.20200510

    [28]

    Ding X K, Guo X Y, Gao H W, et al. Seasonal variations of nutrient concentrations and their ratios in the central Bohai Sea[J]. Science of the Total Environment, 2021, 799:149416. doi: 10.1016/j.scitotenv.2021.149416

    [29]

    Ding X K, Shi J, Guo X Y, et al. Interannual variations in the nutrient cycle in the central Bohai Sea in response to anthropogenic inputs[J]. Chemosphere, 2023, 313:137620. doi: 10.1016/j.chemosphere.2022.137620

    [30]

    Gao X L, Zhou F X, Chen C T A. Pollution status of the Bohai Sea: an overview of the environmental quality assessment related trace metals[J]. Environment International, 2014, 62:12-30. doi: 10.1016/j.envint.2013.09.019

    [31]

    Wang J J, Yu Z G, Wei Q S, et al. Long-term nutrient variations in the Bohai Sea over the past 40 years[J]. Journal of Geophysical Research: Oceans, 2019, 124(1):703-722. doi: 10.1029/2018JC014765

    [32]

    Xin M, Wang B D, Xie L P, et al. Long-term changes in nutrient regimes and their ecological effects in the Bohai Sea, China[J]. Marine Pollution Bulletin, 2019, 146:562-573. doi: 10.1016/j.marpolbul.2019.07.011

    [33] 郭术津, 李彦翘, 张翠霞, 等. 渤海浮游植物群落结构及与环境因子的相关性分析[J]. 海洋通报, 2014, 33(1):95-105 doi: 10.11840/j.issn.1001-6392.2014.01.013

    GUO Shujin, LI Yanqiao, ZHANG Cuixia, et al. Phytoplankton community in the Bohai Sea and its relationship with environmental factors[J]. Marine Science Bulletin, 2014, 33(1):95-105.] doi: 10.11840/j.issn.1001-6392.2014.01.013

    [34]

    Hu L M, Guo Z G, Shi X F, et al. Temporal trends of aliphatic and polyaromatic hydrocarbons in the Bohai Sea, China: evidence from the sedimentary record[J]. Organic Geochemistry, 2011, 42(10):1181-1193. doi: 10.1016/j.orggeochem.2011.08.009

    [35]

    Xu Y P, Zhou S Z, Hu L M, et al. Different controls on sedimentary organic carbon in the Bohai Sea: River mouth relocation, turbidity and eutrophication[J]. Journal of Marine Systems, 2018, 180:1-8. doi: 10.1016/j.jmarsys.2017.12.004

    [36]

    Li L, Wang Y J, Liu D Y. Phytoplankton shifts in the Central Bohai Sea over the last 250 years reflect eutrophication and input from the Yellow River[J]. Ecological Indicators, 2021, 126:107676. doi: 10.1016/j.ecolind.2021.107676

    [37]

    Wang Y J, Liu D Y, Xiao W P, et al. Coastal eutrophication in China: trend, sources, and ecological effects[J]. Harmful Algae, 2021, 107:102058. doi: 10.1016/j.hal.2021.102058

    [38]

    Hu L M, Shi X F, Guo Z G, et al. Sources, dispersal and preservation of sedimentary organic matter in the Yellow Sea: the importance of depositional hydrodynamic forcing[J]. Marine Geology, 2013, 335:52-63. doi: 10.1016/j.margeo.2012.10.008

    [39]

    Xia P, Meng X W, Yin P, et al. Eighty-year sedimentary record of heavy metal inputs in the intertidal sediments from the Nanliu River estuary, Beibu Gulf of South China Sea[J]. Environmental Pollution, 2011, 159(1):92-99. doi: 10.1016/j.envpol.2010.09.014

    [40]

    Schelske C L, Hodell D A. Using carbon isotopes of bulk sedimentary organic matter to reconstruct the history of nutrient loading and eutrophication in Lake Erie[J]. Limnology and Oceanography, 1995, 40(5):918-929. doi: 10.4319/lo.1995.40.5.0918

    [41]

    Keeling C D, Bacastow R B, Carter A F, et al. A three-dimensional model of atmospheric CO2 transport based on observed winds: 1. Analysis of observational data[M]//Peterson D H. Aspects of Climate Variability in the Pacific and the Western Americas. Washington: American Geophysical Union, 1989: 165-236.

    [42]

    Friedli H, Lötscher H, Oeschger H, et al. Ice core record of the 13C/12C ratio of atmospheric CO2 in the past two centuries[J]. Nature, 1986, 324(6094):237-238. doi: 10.1038/324237a0

    [43]

    Jia G D, Xu S D, Chen W F, et al. 100-year ecosystem history elucidated from inner shelf sediments off the Pearl River estuary, China[J]. Marine Chemistry, 2013, 151:47-55. doi: 10.1016/j.marchem.2013.02.005

    [44]

    Zonneveld K A F, Versteegh G J M, Kasten S, et al. Selective preservation of organic matter in marine environments; processes and impact on the sedimentary record[J]. Biogeosciences, 2010, 7(2):483-511. doi: 10.5194/bg-7-483-2010

    [45]

    Minoura K, Hoshino K, Nakamura T, et al. Late Pleistocene-Holocene paleoproductivity circulation in the Japan Sea: sea-level control on δ13C and δ15N records of sediment organic material[J]. Palaeogeography, Palaeoclimatology, Palaeoecology, 1997, 135(1-4):41-50. doi: 10.1016/S0031-0182(97)00026-6

    [46] 宋逸群, 王传远, 靳文静, 等. 渤海辽东湾海域表层沉积物有机质特征、来源及环境评价分析[J]. 生态科学, 2022, 41(2):84-90 doi: 10.32846/2306-9716/2022.eco.2-41.14

    SONG Yiqun, WANG Chuanyuan, JIN Wenjing, et al. Characteristics, sources of organic matter in surface sediments and environmental assessment of Liaodong Bay, Bohai Sea[J]. Ecological Science, 2022, 41(2):84-90.] doi: 10.32846/2306-9716/2022.eco.2-41.14

    [47]

    Fry B, Sherr E B. δ13C measurements as indicators of carbon flow in marine and freshwater ecosystems[J]. Contributions in Marine Science, 1984, 27:13-47.

    [48]

    Xing L, Zhao M X, Zhang T, et al. Ecosystem responses to anthropogenic and natural forcing over the last 100 years in the coastal areas of the East China Sea[J]. The Holocene, 2016, 26(5):669-677. doi: 10.1177/0959683615618248

    [49]

    Zimmerman A R, Canuel E A. Sediment geochemical records of eutrophication in the mesohaline Chesapeake Bay[J]. Limnology and Oceanography, 2002, 47(4):1084-1093. doi: 10.4319/lo.2002.47.4.1084

    [50]

    Kuypers M M M, Pancost R D, Nijenhuis I A, et al. Enhanced productivity led to increased organic carbon burial in the euxinic North Atlantic Basin during the Late Cenomanian oceanic anoxic event[J]. Paleoceanography, 2002, 17(4):1051.

    [51]

    Algeo T J, Henderson C M, Tong J N, et al. Plankton and productivity during the Permian–Triassic boundary crisis: an analysis of organic carbon fluxes[J]. Global and Planetary Change, 2013, 105:52-67. doi: 10.1016/j.gloplacha.2012.02.008

    [52]

    Krumhardt K M, Lovenduski N S, Long M C, et al. Potential predictability of net primary production in the ocean[J]. Global Biogeochemical Cycles, 2020, 34(6):e2020GB006531. doi: 10.1029/2020GB006531

    [53]

    Wang H J, Yang Z S, Saito Y, et al. Interannual and seasonal variation of the Huanghe (Yellow River) water discharge over the past 50 years: connections to impacts from ENSO events and dams[J]. Global and Planetary Change, 2006, 50(3-4):212-225. doi: 10.1016/j.gloplacha.2006.01.005

    [54] 邢磊, 赵美训, 张海龙, 等. 二百年来黄海浮游植物群落结构变化的生物标志物记录[J]. 中国海洋大学学报, 2009, 39(2):317-322

    XING Lei, ZHAO Meixun, ZHANG Hailong, et al. Biomarker records of phytoplankton community structure changes in the yellow sea over the Last 200 Years[J]. Periodical of Ocean University of China, 2009, 39(2):317-322.]

    [55] 丁玲, 邢磊, 赵美训. 生物标志物重建浮游植物生产力及群落结构研究进展[J]. 地球科学进展, 2010, 25(9):981-989

    DING Ling, XING Lei, ZHAO Meixun. Applications of biomarkers for reconstructing phytoplankton productivity and community structure changes[J]. Advances in Earth Science, 2010, 25(9):981-989.]

    [56] 于培松, 张海生, 扈传昱, 等. 利用沉积生物标志物分析南极普里兹湾浮游植物群落结构变化[J]. 极地研究, 2012, 24(2):143-150

    YU Peisong, ZHANG Haisheng, HU Chuanyu, et al. Using biomarkers in sediments as indicators to rebuild the phytoplankton community in Prydz Bay, Antarctica[J]. Chinese Journal of Polar Research, 2012, 24(2):143-150.]

    [57] 冯旭文, 段杉杉, 石学法, 等. 浙江近岸泥质区百年来浮游植物生产力的变化及对环境的响应[J]. 海洋学报, 2013, 35(4):155-161 doi: 10.3969/j.issn.0253-4193.2013.04.018

    FENG Xuwen, DUAN Shanshan, SHI Xuefa, et al. Changes in phytoplankton productivity and impacts on environment in the Zhejiang coastal mud area during the last 100 years[J]. Acta Oceanological Sinica, 2013, 35(4):155-161.] doi: 10.3969/j.issn.0253-4193.2013.04.018

    [58]

    Xiong W, Mei X, Meng X J, et al. Phytoplankton biomarkers in surface sediments from Liaodong Bay and their potential as indicators of primary productivity[J]. Marine Pollution Bulletin, 2020, 159:111536. doi: 10.1016/j.marpolbul.2020.111536

    [59]

    Volkman J K. A review of sterol markers for marine and terrigenous organic matter[J]. Organic Geochemistry, 1986, 9(2):83-99. doi: 10.1016/0146-6380(86)90089-6

    [60]

    Song Y Y, Guo Y Y, Liu H J, et al. Water quality shifts the dominant phytoplankton group from diatoms to dinoflagellates in the coastal ecosystem of the Bohai Bay[J]. Marine Pollution Bulletin, 2022, 183:114078. doi: 10.1016/j.marpolbul.2022.114078

    [61]

    Malone T C, Newton A. The globalization of cultural eutrophication in the coastal ocean: causes and consequences[J]. Frontiers in Marine Science, 2020, 7:670. doi: 10.3389/fmars.2020.00670

    [62] 冉祥滨, 韦钦胜, 于志刚. 中国近海营养盐结构失衡与磷消耗问题及其生态环境效应的研究进展[J]. 海洋科学, 2023, 47(8):75-89

    RAN Xiangbin, WEI Qinsheng, YU Zhigang. Stoichiometric imbalance in the rates of nutrient and phosphorus depletion in coastal China with implications for the ecological environment[J]. Marine Sciences, 2023, 47(8):75-89.]

    [63]

    De Senerpont Domis L N, Van de Waal D B, Helmsing N R, et al. Community stoichiometry in a changing world: combined effects of warming and eutrophication on phytoplankton dynamics[J]. Ecology, 2014, 95(6):1485-1495. doi: 10.1890/13-1251.1

    [64] 李磊. 黄河口邻近海域浮游植物百年演变特征及与环境变化的响应关系[D]. 华东师范大学博士学位论文, 2021

    LI Lei. A century-long phytoplankton shift and environmental responses in the adjacent sea of the Yellow River Estuary[D]. Doctor Dissertation of East China Normal University, 2021.]

    [65]

    Hutchins D A, Tagliabue A. Feedbacks between phytoplankton and nutrient cycles in a warming ocean[J]. Nature Geoscience, 2024, 17(6):495-502. doi: 10.1038/s41561-024-01454-w

    [66]

    Wang F, Li X G, Tang X H, et al. The seas around China in a warming climate[J]. Nature Reviews Earth & Environment, 2023, 4(8):535-551.

    [67]

    Wan N N, Zhang R P, Kong X L, et al. Effect of aquatic organic matter and global warming on accumulation of PAHs in lakes, East China[J]. Journal of Geophysical Research: Biogeosciences, 2022, 127(11):e2022JG007167. doi: 10.1029/2022JG007167

    [68]

    Lee J H, Kwon S Y, Lee H, et al. Climate-associated changes in mercury sources in the arctic fjord sediments[J]. ACS Earth and Space Chemistry, 2021, 5(9):2398-2407. doi: 10.1021/acsearthspacechem.1c00095

    [69]

    Manceau A, Nagy K L. Thiols in natural organic matter: molecular forms, acidity, and reactivity with mercury(II) from first-principles calculations and high energy-resolution X-ray absorption near-edge structure spectroscopy[J]. ACS Earth and Space Chemistry, 2019, 3(12):2795-2807. doi: 10.1021/acsearthspacechem.9b00278

    [70] 栾青杉, 康元德, 王俊. 渤海浮游植物群落的长期变化(1959~2015)[J]. 渔业科学进展, 2018, 39(4):9-18

    LUAN Qingshan, KANG Yuande, WANG Jun. Long-term changes in the phytoplankton community in the Bohai Sea (1959~2015)[J]. Progress in Fishery Sciences, 2018, 39(4):9-18.]

    [71] 孙军, 刘东艳, 杨世民, 等. 渤海中部和渤海海峡及邻近海域浮游植物群落结构的初步研究[J]. 海洋与湖沼, 2002, 33(5):461-471 doi: 10.3321/j.issn:0029-814X.2002.05.002

    SUN Jun, LIU Dongyan, YANG Shimin, et al. The preliminary study on phytoplankton community structure in the central Bohai Sea and the Bohai Strait and its adjacent area[J]. Oceanologia et Limnologia Sinica, 2002, 33(5):461-471.] doi: 10.3321/j.issn:0029-814X.2002.05.002

    [72]

    Egge J K. Are diatoms poor competitors at low phosphate concentrations?[J]. Journal of Marine Systems, 1998, 16(3-4):191-198. doi: 10.1016/S0924-7963(97)00113-9

    [73]

    Xiao W P, Liu X, Irwin A J, et al. Warming and eutrophication combine to restructure diatoms and dinoflagellates[J]. Water Research, 2018, 128:206-216. doi: 10.1016/j.watres.2017.10.051

    [74]

    Spilling K, Olli K, Lehtoranta J, et al. Shifting diatom—dinoflagellate dominance during spring bloom in the baltic sea and its potential effects on biogeochemical cycling[J]. Frontiers in Marine Science, 2018, 5:327. doi: 10.3389/fmars.2018.00327

    [75]

    Fowler S W, Knauer G A. Role of large particles in the transport of elements and organic compounds through the oceanic water column[J]. Progress in Oceanography, 1986, 16(3):147-194. doi: 10.1016/0079-6611(86)90032-7

图(6)  /  表(1)
计量
  • 文章访问数:  39
  • HTML全文浏览量:  2
  • PDF下载量:  33
  • 被引次数: 0
出版历程
  • 收稿日期:  2024-07-09
  • 修回日期:  2024-08-07
  • 录用日期:  2024-08-06
  • 刊出日期:  2024-10-27

目录

/

返回文章
返回