阿坝盆地黄土记录的青藏高原东部末次冰期环境变化

徐雪超, 刘丽, 杨胜利, 问琛, 李睿, 张景钊, 王海燕

徐雪超,刘丽,杨胜利,等. 阿坝盆地黄土记录的青藏高原东部末次冰期环境变化[J]. 海洋地质与第四纪地质,2024,44(4): 168-179. DOI: 10.16562/j.cnki.0256-1492.2024022803
引用本文: 徐雪超,刘丽,杨胜利,等. 阿坝盆地黄土记录的青藏高原东部末次冰期环境变化[J]. 海洋地质与第四纪地质,2024,44(4): 168-179. DOI: 10.16562/j.cnki.0256-1492.2024022803
XU Xuechao,LIU Li,YANG Shengli,et al. Environmental changes during the last glacial in the Eastern Tibetan Plateau revealed by loess sediments in the Aba Basin[J]. Marine Geology & Quaternary Geology,2024,44(4):168-179. DOI: 10.16562/j.cnki.0256-1492.2024022803
Citation: XU Xuechao,LIU Li,YANG Shengli,et al. Environmental changes during the last glacial in the Eastern Tibetan Plateau revealed by loess sediments in the Aba Basin[J]. Marine Geology & Quaternary Geology,2024,44(4):168-179. DOI: 10.16562/j.cnki.0256-1492.2024022803

阿坝盆地黄土记录的青藏高原东部末次冰期环境变化

基金项目: 国家自然科学基金项目“青藏高原东部古土壤S1记录的末次间冰期高原环境变化及其驱动机制”(42271159);科技部第二次青藏高原综合科学考察研究项目“粉尘气溶胶及其气候环境效应”(2019QZKK0602)
详细信息
    作者简介:

    徐雪超(1998—),女,硕士研究生,主要从事光释光测年与环境变化研究,E-mail:xuxch2022@lzu.edu.cn

    通讯作者:

    杨胜利(1975—),男,教授,主要从事黄土粉尘与环境变化研究,E-mail:shlyang@lzu.edu.cn

  • 中图分类号: P531

Environmental changes during the last glacial in the Eastern Tibetan Plateau revealed by loess sediments in the Aba Basin

  • 摘要:

    青藏高原东部广泛分布的风成黄土沉积是记录过去气候变化和大气粉尘活动历史的重要陆地档案,恢复和重建其环境记录可以为深入理解高原环境演化过程和机制提供重要证据。本研究基于石英光释光测年建立了阿坝盆地各莫黄土剖面的年代框架,并利用多种环境代用指标重建了阿坝黄土记录的青藏高原东部约47 ka以来的环境变化历史。黄土磁化率、色度和碳酸盐记录表明深海氧同位素3阶段(MIS3)中晚期印度夏季风加强,青藏高原环境相对湿润。粒度重建结果记录了4次海因里希(Heinrich)事件和新仙女木(YD)事件,表明青藏高原末次冰期粉尘活动强烈,气候变化具有快速波动的特征。区域记录对比显示,北半球高纬地区气候系统对青藏高原地区快速气候变化有重要影响,大西洋经向翻转环流可能是高原地区粉尘活动和气候变化的主要控制因素。该研究为更好地认识青藏高原末次冰期环境演化过程提供了重要证据。

    Abstract:

    Loess deposits are widespread in the Eastern Tibetan Plateau (TP), and act as crucial terrestrial archives for past climate changes and dust activity. Studying their environmental signatures in detail offers valuable evidence to unravel the TP's environmental evolution processes and mechanisms. This study employs quartz optically stimulated luminescence dating to establish a robust chronology for the Gemo loess sequence in the Aba Basin. Utilizing multiple environmental proxies, we reconstructed the environmental change history since ~47 ka in the Aba Basin. Magnetic susceptibility, color index, and carbonate content records suggest a strengthened Indian summer monsoon during the Marine Isotope Stage 3, leading to a relatively humid Tibetan Plateau. The grain size records of the Gemo loess revealed four Heinrich events and Younger Dryas event, indicating the periods of intense dust activity and rapid climate change on the TP during the last glacial period. Comparisons with regional records highlight the significant influence of high-latitude climate system in the Northern Hemisphere on rapid climate change in the TP. Our results suggest that the Atlantic Meridional Overturning Circulation may be the controlling factor of dust activity and climate change in the TP. This study provided crucial evidence for deep understanding of the environmental evolution in TP during the last glacial period.

  • 过去气候变化的研究是认识地球气候系统演化特征和动态过程的重要途径,可以为更好地预测未来气候变化和人类适应提供科学依据[1]。末次冰期以来全球经历了一系列快速气候突变事件[2],例如海因里希(Heinrich)事件[3]、Dansgaard-Oeschger事件(D-O旋回)[4]和新仙女木事件(Younger Dryas,简称YD)[5]等,这些气候突变事件对理解和研究现代以及未来全球气候变化具有重要指示意义。中国黄土和石笋记录也证实了末次冰期以来的快速气候波动[6-7]。但是目前我们对气候突变的准确时间和区域同步性的理解还不完整。最近基于63个精确定年的洞穴记录结果的研究表明,末次冰期的气候突变具有全球同步性[8],然而这一结果还需要更多证据的支持。

    青藏高原是世界上海拔最高、面积最广的高原,被称为地球“第三极”[9-11],其独特的地理环境不仅能敏感地响应全球气候变化,而且可以对全球环境变化产生重大影响[12-13]。冰芯、湖泊沉积记录显示青藏高原地区末次冰期存在快速气候变化的特征[14-15],但是由于测年结果的不确定性导致关于“高原大湖期”的时代、氧同位素3阶段(MIS3)气候变化特征等存在诸多争议[14-19]

    青藏高原是北半球的重要粉尘贡献者之一,对全球粉尘循环产生重要影响[20-21]。青藏高原东部广泛分布的风成黄土堆积不仅是高原生态系统和景观的重要组成部分[22],而且敏感地记录了高原过去的气候和环境变化,成为研究过去粉尘活动和环境变化历史的理想材料[23-27]。最近的研究显示了青藏高原黄土堆积在揭示末次冰期轨道尺度和千年尺度快速气候变化方面的巨大潜力[22,28-29]。进一步研究青藏高原黄土古环境记录是揭示青藏高原末次冰期气候变化特征和机制的重要途经,可以为解决上述高原环境变化的争议提供新证据。

    阿坝盆地位于青藏高原东部,属于川西高原西北部,地势西北高东南低,盆地内黄土分布广泛[30-32]。王建民[31]对阿坝盆地黄土沉积物的粒度、碳酸盐、化学元素等进行了初步分析。最近刘向军等[32]对阿坝地区黄土进行了光释光定年研究,发现阿坝黄土记录了末次冰期约47 ka以来的粉尘堆积过程。但是目前仍缺少基于可靠年代控制的阿坝黄土环境变化历史的重建记录,从而影响了对青藏高原东部环境变化过程和机制的深入理解。

    本研究选择阿坝盆地保存良好的各莫黄土-古土壤序列,开展石英光释光(OSL)测年,并进行粒度、磁化率、色度和碳酸钙含量等多种环境代用指标的综合分析,重建了阿坝盆地末次冰期以来的环境变化历史,以探讨青藏高原地区末次冰期环境变化过程和机制,为深入理解青藏高原环境变化及其对全球变化响应以及预测未来全球环境变化提供科学依据。

    阿坝盆地属于高原寒温带半湿润季风气候,昼夜温差大,主要受印度季风和西风环流的控制[33-35]图1a)。阿坝县多年平均降水量为711.3 mm,且主要集中在5—9月,约占全年降水量的81%;多年平均气温为4℃,其中1月平均温度为–6.8℃,7月平均温度为13.1℃(图1c),表现为显著的季风气候特征。

    图  1  研究区地理位置、气候特征和研究剖面照片
    a:研究区和剖面位置(GM:阿坝各莫剖面,XS:甘孜新市剖面,MLS:马尔康莫拉寺剖面); b:各莫剖面附近遥感图像(图像来源https://www.google.com/maps); c:阿坝县1981—2010年月平均降水和气温(数据来源:http://data.cma.cn/); d:各莫黄土剖面野外照片。
    Figure  1.  Geographical location of the study area, climatic characteristics, and photograph of the Gemo section
    a: Locations of the Gemo section and other loess sections (GM: Gemo, XS: Xinshi, MLS: Molasi); b: remote sensing image near the Gemo section in the Aba Basin (https://www.google.com/maps); c: average annual precipitation and temperature at Aba station (1981-2010) (http://data.cma.cn/); d: photograph of the Gemo loess section.

    各莫(GM)黄土剖面位于四川省阿坝县北部各莫乡附近(32°59.65′N、101°36.05′E,海拔3271m)。该剖面位于岷江支流阿柯河的二级(T2)阶地上(图1b、d),整个黄土剖面厚度为8.6 m,其下为河流砾石层,根据野外观察和磁化率变化,剖面可以划分为全新世古土壤层(S0)和2个弱古土壤层(L1S1和L1S2),以及3个黄土层(L1L1、L1L2、L1L3)(图1d)。其中古土壤层对应的深度大致如下:0~40 cm为耕作层;40~100 cm为全新世古土壤层(S0);300~385 cm为L1S1弱古土壤层;515~610 cm为L1S2弱古土壤层。

    光释光样品采集时,将长30 cm、直径5 cm的不锈钢管垂直砸入新开挖剖面,然后将钢管取出,并用避光材料密封保存。本研究共采集5个光释光年代样品,同时还以5 cm间隔采集了173个散样,用于粒度、磁化率、色度等环境指标分析。

    样品前处理:在弱红光的暗室中将密封的样品打开,取钢管两端长3~5 cm的部分用于含水率和剂量率分析。钢管中间部分样品用于石英颗粒提纯。首先用湿筛法筛取63~90 μm或38~63 μm组分,再分别加入10%的稀盐酸和30%的双氧水去除碳酸盐和有机质;然后使用多钨酸钠重液分离法提取粒径63~90 μm的石英颗粒,再用40%的 HF溶液刻蚀60 min,最后用稀盐酸去除氟化物沉淀并清洗、烘干[36]。对于38~63 μm组分使用35%的氟硅酸(H2SiF6)刻蚀两周去除长石;再用1 mol/L的稀盐酸冲洗,获得提纯的石英颗粒[37-38]。所有提纯的石英样品都经过了纯度检验,结果显示所有样品的钾长石红外信号与石英光释光信号比值均小于10%[39]

    等效剂量(De)测定:等效剂量测试采用丹麦生产的Risø TL/OSL DA-20全自动释光测试系统,仪器配备90Sr/90Y型β辐射源,使用7.5 mm Hoya U-340滤光片检测石英OSL信号。石英样品的等效剂量测试采用标准单片再生剂量(SAR)法[40-41],每个样品测量12~24个测片,并通过中间年龄模型(CAM)[42]计算最终的等效剂量。以上测试均在兰州大学西部环境教育部重点实验室释光定年实验室完成。

    剂量率分析和年代计算:样品的U、Th、K和Rb含量,在西安地调中心利用电感耦合等离子体质谱(ICP-MS)进行测试。根据Guérin等[43]建议的转换系数计算剂量率。宇宙射线剂量率依据样品的经纬度、海拔及样品的埋藏深度计算获得[44]。环境剂量率和最终的OSL年代通过LDAC(1.2)程序计算[45]。根据石英测年结果,利用rbacon软件包(v 3.2.0)建立了各莫剖面的年龄–深度模型[46]

    本研究通过粒度指示风力和粉尘活动,通过磁化率、色度和碳酸钙指示夏季风降水和有效湿度的变化。环境指标测试在兰州大学西部环境教育部重点实验室完成。利用Malvern Mastersizer 2000激光粒度仪进行粒度分析,共测试173个样品。样品预处理使用浓度30%的双氧水和10%的稀盐酸去除有机物和碳酸盐;然后加入10 mL浓度为0.05 mol/L的六偏磷酸钠溶液,并用超声波震荡10 min,确保样品完全分散后使用激光粒度仪进行测试。

    磁化率分析用英国生产的Bartington MS2型磁化率仪测量。全部样品在室温下干燥和研磨后,分别测量低频(470 Hz)磁化率(χlf)和高频(4700 Hz)磁化率(χhf),并计算频率磁化率:χfd=χlfχhf。碳酸盐分析采用Bascomb国际标准碳酸盐计进行测定,每个样品重复测量3次,并取平均值,绝对误差控制在0.5%以内。黄土色度分析采用日本美能达公司生产的SPAD-503便携式土色计测量,使用CIE1976(L*a*b*)表色系统。将样品晾干并研磨后,每个样品测试3次,取平均值,共测试173个样品。

    图2为各莫黄土剖面的石英OSL生长曲线与衰减曲线。石英OSL信号较强,衰减曲线表明OSL信号在激发的前2 s内快速衰减到背景值,表明石英OSL信号以快组分为主。生长曲线可以使用单饱和指数函数很好地拟合(图2),并且所有样品的De值远小于2D0,显示未达到饱和范围[47]。样品回授比小于5%表明没有发生明显的热转移,循环比为0.9~1.1表明感量变化校正成功。这些良好的光释光特性均表明SAR法适用于各莫黄土石英的等效剂量测试(图2)。

    图  2  阿坝盆地各莫黄土剖面的石英光释光衰减曲线与生长曲线
    橙色点:再生剂量;红色点:天然剂量。
    Figure  2.  Decay and dose-response curves of quartz OSL for the Gemo loess
    Orange point: regeneration dose; red point: natural dose.

    阿坝盆地各莫黄土剖面石英样品等效剂量De值的核密度图呈近正态或偏正态分布(图3),除GM10样品外,其他样品的离散度(OD)在4%~18%之间(图3表1),表明这些样品的De具有很好的一致性。GM10距离顶部0.1 m,其OD值为30%,可能受到人为活动的干扰而导致样品颗粒的混合(表1),但总体上仍服从正态分布。因此,本研究采用中间年龄模型(Central Age Model)[42]计算所有样品的De。根据实测的样品含水率,并参考之前的研究,我们采用估计含水率15% ± 5%计算了样品的年剂量率[29,48]

    图  3  阿坝盆地各莫黄土剖面石英样品等效剂量放射图和核密度图
    Figure  3.  Radial plots and kernel density plots of equivalent dose for quartz samples from the Gemo loess section in the Aba Basin
    表  1  阿坝盆地各莫黄土剖面石英光释光测年结果
    Table  1.  Quartz optically stimulated luminescence dating results for the Gemo section in the Aba Basin
    实验编号野外
    编号
    深度/m有效测片/总测片粒径
    /μm
    等效剂量
    /Gy
    离散度
    /%
    U
    /(µg/g)
    Th
    /(µg/g)
    K
    /%
    Rb
    /(µg/g)
    年剂量率
    /(Gy/ka)
    年代
    /ka
    LZU19133GM100.112/1263~904.70±0.4230±72.18±0.312.41±0.71.97±0.04106±53.19±0.131.47±0.15
    LZU19134GM500.523/2463~9026.18±1.0118±32.21±0.312.70±0.72.01±0.04107±53.33±0.147.87±0.45
    LZU19135GM2002.016/1638~63109.43±4.6614±42.27±0.312.32±0.72.07±0.04109±53.44±0.1831.8±2.2
    LZU19119GM19-26.512/1263~90144.19±3.564±32.27±0.312.90±0.72.12±0.04111±53.29±0.1443.8±2.1
    LZU19123GM19-18.512/1263~90153.23±5.4710±32.57±0.415.96±0.82.27±0.04128±53.64±0.1642.1±2.4
    下载: 导出CSV 
    | 显示表格

    各莫剖面的等效剂量、元素含量、剂量率和最终年代结果见表1。光释光测年结果显示,剖面样品等效剂量值为(4.70 ± 0.42 )~(153.23 ± 5.47) Gy,对应的光释光年代为(1.47 ± 0.15)~(42.1 ± 2.4) ka,其De和年代结果均在石英光释光测年的有效范围内,低估的可能性较小。各莫黄土剖面的等效剂量和OSL年代,整体趋势都随深度的增加而增大,符合地层顺序,表明该剖面主要沉积于末次冰期。深度6.5、8.5 m处的年代结果在误差范围内一致,可能与该阶段沉积速率较高有关。

    各莫剖面粒度频率分布表现为典型的风成黄土粒度特征。图4显示,各莫黄土和古土壤样品粒径分布范围为0.3~180 μm,呈偏正态分布,粉砂粒级组分含量最高。黄土样品(L1LI、L1L2、L1L3)的平均粒径大于古土壤样品(S0、L1S1、L1S2),两者峰值粒径出现在30~50 μm,但古土壤样品峰值粒径略低于黄土层。总体上,黄土层粗颗粒组分含量较高,古土壤层中细粒组分含量相对较高。各莫剖面平均粒径为20~55 μm,沿深度变化波动显著,总体上黄土层较粗,而古土壤层较细(图5)。总的来说,各莫剖面粒度各参数均表现为沿着深度快速波动的特征。在L1L3层平均粒径波动明显且达到了高值,在全新世S0中呈现最小值。粒度指数(GSI,26~52 μm/<16 μm)和U-ratio值(16~44 μm/5.5~16 μm)在黄土层中较大,而在古土壤层中较小,反映了剖面自顶部到底部风力强度变化较大。U-ratio和GSI在L1L1中出现最大值(分别为2.12和1.23),在S0达到了最小值(分别为1.24和0.71)。

    图  4  阿坝盆地各莫剖面黄土和古土壤样品粒度频率分布曲线对比
    Figure  4.  Grain-size distribution of loess and paleosol samples from the Gemo section in the Aba Basin
    图  5  阿坝盆地各莫黄土剖面地层划分、光释光年代、Bacon年代-深度模型及环境指标随剖面深度的变化
    a:U-ratio值, b:粒度指数(GSI), c:碳酸盐含量, d:低频磁化率(χlf), e:色度比值(a*/b*), f:平均粒径。
    Figure  5.  Stratigraphy, OSL ages, Bacon age-depth model, and environmental proxies for the Gemo loess section in the Aba Basin
    a: U-ratio, b: grain size index (GSI), c: carbonate content (wt%), d: low-frequency magnetic susceptibility (χlf), e: a*/b*, f: mean grain size.

    各莫剖面的低频磁化率(χlf)波动范围为(3.2~96.6)×10−8m3/kg,平均值为36.5×10−8m3/kg;χlf值在古土壤层S0、L1S1、L1S2中明显高于黄土地层,与黄土高原磁化率增强机制一致[49]χlf的结果在深度345和550 cm附近表现出明显的高值,指示了较强的成壤作用,磁性矿物含量较高,降水增加。χlf在黄土层中呈现低值,指示了磁性矿物含量较低,无明显的成壤作用。总体上,磁化率和粒度各参数都表现为基本一致的波动变化特征。磁化率高值对应了平均粒径较细、粒度指数和U-ratio值较小的变化。各莫剖面红度/黄度值(a*/b*)变化波动较大,变化范围为0.34~0.21;整个剖面中碳酸盐含量变化范围为0.2%~11.5%,平均含量为7.2%。色度(a*/b*)和碳酸钙含量随深度的变化基本一致,古土壤层a*/b*值较高,碳酸盐含量较低,而黄土层则相反(图5)。

    建立准确可靠的年代框架是重建古气候古环境演化的重要前提。最新的研究表明光释光测年可以为青藏高原东部地区末次冰期以来的黄土序列提供可靠的年代学制约[29,48,50]。光释光特性分析表明各莫黄土石英样品的光释光信号较亮,以快组分为主,适用于SAR法测量,这与之前的青藏高原东缘黄土石英光释光特征一致[48,51]。各莫剖面OSL年代结果显示黄土沉积时间为43.8~1.47 ka。在0.1、0.5、2和6.5 m处的年代结果沿着地层自上而下增加,具有良好的地层序列(图5)。8.5 m处的年代与其上6.5 m处的结果相近,两者在误差范围内仍然是符合地层序列的,可能与这个阶段的粉尘沉积速率较快有关[50]。石英OSL生长曲线拟合结果显示,样品的天然剂量未达到饱和,所有样品的De值远小于2D0图2),等效剂量和OSL年代均没有达到石英光释光饱和范围[48,51],因此,可以认为我们的OSL年代结果是可靠的,测得的各莫剖面的光释光年代结果与刘向军等[32]所报道的阿坝盆地黄土剖面的光释光年代结果(47.2 ± 3.9)~(1.6 ± 0.2)ka基本一致,进一步证实了我们的光释光年代数据的可靠性。因此,石英OSL测年结果为各莫黄土剖面提供了可靠的绝对年代控制。

    Bacon年龄-深度模型可以有效减少随机年龄误差和异常年代结果的影响[46],已广泛应用于古环境重建研究。我们根据所测的5个石英光释光年龄,通过rbacon软件(v 3.2.0)[46]建立了各莫剖面的年代–深度模型,结果显示各莫黄土剖面底部年龄为约47 ka(图5),表明阿坝地区黄土粉尘活动至少开始于47 ka之前。阿坝盆地和青藏高原东部其他地区末次冰期黄土广泛堆积,指示了青藏高原末次冰期以来经历了强烈的粉尘活动[48,50]

    本研究通过磁化率、色度和碳酸钙指示夏季风降水和有效湿度的变化。黄土磁化率在一定程度上反映了成壤强度,可以有效地指示季风强度变化,是良好的夏季风代用指标[52]。土壤颜色是黄土古气候记录的良好代用指标[53],而a*/b*主要反映了赤铁矿和针铁矿的比值,可以指示环境干湿条件的变化[54-55]。碳酸盐的淋溶和淀积与气候环境变化有密切关系,黄土剖面上碳酸钙含量的变化是反映气候干湿旋回变化的重要指标之一[56]

    各莫黄土剖面的2个弱古土壤层,L1S1形成于32~29 ka,L1S2形成于41~36 ka,指示了MIS3时期相对暖湿的环境。各莫黄土低频磁化率(χlf)在这2个时期都表现为2个明显的峰值区(图5d图6a),与甘孜XS黄土磁化率变化相似(图6b),表明成壤作用较强,降水增加和印度夏季风的增强[57]。碳酸盐含量变化也存在类似趋势,在41~28 ka时期,碳酸盐含量较低,出现2个峰值区(图6c),表明黄土碳酸盐在较强降水的作用下遭受了风化淋溶作用,含量降低,可能反映了区域降水增多,气候较为湿润。色度指标a*/b*比值(图6e)在41~28 ka明显高于MIS2时期,表明相对湿度较高,这一变化与中亚地区的有效湿度(图6d)基本一致[58],指示了印度季风带来的降雨在MIS3相对增加。因此,MIS3时期各莫黄土剖面a*/b*值(图6e)与中亚地区的有效湿度(图6d)同步升高可能是印度季风增强带来丰沛降水的结果。

    图  6  阿坝盆地各莫黄土记录的末次冰期印度夏季风变化与其他环境记录对比
    a:各莫剖面低频磁化率χlf, b:甘孜新市(XS)剖面频率磁化率χfd[34], c:各莫剖面碳酸盐含量, d:中亚地区有效湿度变化历史[58] , e:各莫剖面色度a*/b*记录, f:小白龙洞石笋δ18O记录[59-60]
    Figure  6.  Comparison of the Indian summer monsoon records from the Gemo loess with other environmental records during the last glacial period
    a: Low-frequency magnetic susceptibility (χlf) of Gemo section, b: frequency-dependent magnetic susceptibility (χfd) of Ganzi section[34], c: carbonate content of Gemo section, d: paleo-moisture history of Central Asia[58],e: a*/b* of Gemo section, f: stalagmite δ18O records of the Xiaobailong Cave[59-60].

    各莫剖面黄土记录的MIS3阶段相对暖湿的气候与最近对青藏高原东部黄土环境记录的研究结果一致[29,34]。川西高原甘孜新市(XS)剖面磁化率显示(图6b),MIS3时期降水增加,气候条件较为温暖湿润[34]。位于阿坝盆地南侧的马尔康莫拉寺(MLS)黄土剖面的弱古土壤层主要形成于50~32 ka,磁化率记录指示了MIS3温暖湿润的气候条件[29]。相对暖湿的环境有利于植被的生长,植被覆盖的增加促进了黄土粉尘的捕获[61],导致较高的黄土沉积速率,因而可以记录更详细的环境变化信息。关于MIS3时期的青藏高原相对暖湿的气候条件在其他环境记录中也有报道。若尔盖RM钻孔孢粉记录则表明MIS3阶段是相对温暖湿润的气候,湿润程度接近MIS5阶段[62]。湖泊沉积物记录的MIS3阶段晚期的青藏高原高湖面特征也支持暖湿的气候特征[63]。成都盆地黄土-古土壤序列的研究也表明MIS3阶段晚期的印度季风增强[64]。中国亚热带泥炭沉积底部年代综合结果表明大多数全新世以前的泥炭沉积主要形成于MIS3期间的45~35 ka和 30~25 ka,指示了该时期的湿润环境[65]。在中国西南部小白龙洞石笋δ18O记录(图6f)也揭示了MIS3的中、后期印度夏季风增强、降水增加[59-60]。这些结果都表明,青藏高原东部MIS3中晚期印度季风增强。

    黄土粒度主要反映了一定区域的粉尘传输强度变化和距离源区远近程度,可以提供过去风力强度和粉尘活动历史[52]。粒度U-ratio值反映粗粉砂与细粉砂组分相对含量,可以指示风力强度以及粉尘活动的变化情况[66-67]。各莫黄土-古土壤序列的粒度记录显示了比磁化率、碳酸钙和色度环境指标更频繁的气候波动,表明青藏高原东部地区约47 ka以来的快速气候波动(图7)。

    图  7  阿坝盆地各莫黄土环境记录与其他环境记录对比
    a:LR04底栖有孔虫δ18O记录[68], b:7月北纬30°太阳辐射强度[69], c:合作黄土>40 μm粒度[70], d:古浪(GL)黄土平均粒径[71], e:马尔康MLS黄土粒度U-ratio值[29], f:各莫黄土粒度U-ratio值, g:格陵兰冰芯(NGRIP)δ18O记录[72], h:北大西洋231Pa/230Th比值[73-74]
    Figure  7.  Comparison of the environmental records of the Gemo loess in the Aba Basin with other environmental records
    a: The LR04 benthic δ18O record[68], b: July insolation at 30°N[69], c: > 40 μm (%) of the Hezuo loess[70], d: mean grain size of Gulang (GL) loess[71], e: U-ratio values of Maerkang loess[29], f: U-ratio of Gemo loess, g: ice core δ18O record from Greenland[72], h: 231Pa/230Th record for the north Atlantic Ocean[73-74].

    阿坝盆地各莫黄土重建的约47 ka以来的U-ratio变化历史很好地记录了4次Heinrich事件(H1-H4)、YD事件等快速变冷事件(图7f),这一特征与邻近的马尔康莫拉寺(MLS)黄土U-ratio记录(图7e)的总体变化趋势和快速变冷事件一致[29]。一般来说气候越寒冷干燥越有利于粉尘的产生和运输,使得堆积更多的粉尘[75]。各莫黄土U-ratio高值对应快速气候变冷事件,指示了黄土粒度对气候变化的敏感响应。在MIS2时期各莫剖面的U-ratio值(图7f)增大,合作黄土>40 μm粗颗粒组分含量显著增加(图7c),说明在末次冰盛期,寒冷干燥的气候导致地表风力强盛,粉尘物源区扩展,加强了粗颗粒粉尘物质的供应和传输。高原东北部的合作黄土>40 μm粒径记录也显示了末次冰期的5次(H1-H5)冷事件和YD冷事件(图7c),高原气候变化对冷事件的响应明显强于对暖事件的响应[70],这与各莫黄土U-ratio记录的快速波动和Heinrich冷事件是一致的(图7f)。基于高分辨率光释光年代重建的黄土高原西部古浪(GL)黄土末次冰期粒度记录(图7d),也显示60 ka以来东亚冬季风存在显著的千年尺度的快速变化,并记录了7次变冷事件[71]。熊建国等[76]通过磁学参数研究揭示了青藏高原东北部13.3~11.7 ka为一显著的冷干时期,与各莫黄土U-ratio值记录的13.0~11.5 ka时的YD冷事件一致。最新的青藏高原西北部古里雅冰芯的重建记录也揭示青藏高原西部轨道尺度到千年尺度的气候变化特征[77]。以上结果说明青藏高原末次冰期气候突变与全球气候变化具有同步性。

    我们重建的阿坝黄土粒度记录显示了快速气候波动的特征,为青藏高原末次冰期以来的气候不稳定变化提供了证据[78-79]。各莫黄土粒度(图7f)与北半球7月30°N太阳辐射(图7b[69]、底栖有孔虫δ18O记录(图7a[68]之间的相关性,指示了高原黄土堆积与太阳辐射、全球冰量变化之间的密切联系。太阳辐射导致的北半球冰量变化对北半球气候快速变化产生影响[80-82]。在末次冰期,北半球冰川活动增强,冰量逐渐增加[68],受北半球冰量影响的西风和亚洲冬季风的移动可能是控制亚洲粉尘输送的重要因素。尽管各莫黄土粒度记录与北格陵兰(NGRIP)冰芯氧同位素[72]、大西洋经向翻转流(AMOC)的231Pa/230Th记录[73-74]变化趋势存在差异,但是这些记录都共同揭示了50 ka以来的多次Heinrich和YD变冷事件,H1事件(16.4~15.4 ka)、H2事件(26.3~25.6 ka)和YD事件(12.7~11.6 ka)在变化幅度上的一致性尤为明显(图7f-h),指示了青藏高原气候变化与北极地区气候变化的同步性。这表明北半球高纬度气候变化对青藏高原大气环流和粉尘活动具有重要影响[70,83]

    研究表明千年尺度的气候突变事件与大西洋经向翻转流的快速波动有关[71,84],AMOC强度的波动会引发全球大气和海洋环流的移动,它的减弱会进一步加剧东亚的降温和干旱[71]。当AMOC减弱时,会导致从南大洋到北大西洋热量传递减少,进而引发北半球高纬度降温,西风南支增强进一步将北大西洋降温信号传递到青藏高原[85],从而加剧高原粉尘活动。气候模拟也显示,在Heinrich期间,由AMOC减弱引发的大气环流异常促使欧亚大陆上空的冷空气向东移动,导致了更加寒冷、干燥的气候环境[86]。因此,推测北半球高纬地区的气候变化对青藏高原粉尘活动和气候快速变化有重要影响,大西洋经向翻转流可能是其主要控制因素。

    (1) 末次冰期青藏高原东部黄土粉尘活动强烈,阿坝盆地黄土粉尘至少从约47 ka开始堆积;阿坝黄土磁化率、色度和碳酸盐记录表明深海氧同位素3阶段中晚期印度夏季风加强,青藏高原地区环境相对湿润;粒度记录揭示了4次海因里希事件和新仙女木事件,显示了青藏高原末次冰期气候具有快速波动变化的特征。

    (2) 区域环境记录对比显示北半球高纬地区气候系统对青藏高原地区环境变化有重要影响,大西洋经向翻转流可能是青藏高原地区粉尘活动和气候变化的主要控制因素。

  • 图  1   研究区地理位置、气候特征和研究剖面照片

    a:研究区和剖面位置(GM:阿坝各莫剖面,XS:甘孜新市剖面,MLS:马尔康莫拉寺剖面); b:各莫剖面附近遥感图像(图像来源https://www.google.com/maps); c:阿坝县1981—2010年月平均降水和气温(数据来源:http://data.cma.cn/); d:各莫黄土剖面野外照片。

    Figure  1.   Geographical location of the study area, climatic characteristics, and photograph of the Gemo section

    a: Locations of the Gemo section and other loess sections (GM: Gemo, XS: Xinshi, MLS: Molasi); b: remote sensing image near the Gemo section in the Aba Basin (https://www.google.com/maps); c: average annual precipitation and temperature at Aba station (1981-2010) (http://data.cma.cn/); d: photograph of the Gemo loess section.

    图  2   阿坝盆地各莫黄土剖面的石英光释光衰减曲线与生长曲线

    橙色点:再生剂量;红色点:天然剂量。

    Figure  2.   Decay and dose-response curves of quartz OSL for the Gemo loess

    Orange point: regeneration dose; red point: natural dose.

    图  3   阿坝盆地各莫黄土剖面石英样品等效剂量放射图和核密度图

    Figure  3.   Radial plots and kernel density plots of equivalent dose for quartz samples from the Gemo loess section in the Aba Basin

    图  4   阿坝盆地各莫剖面黄土和古土壤样品粒度频率分布曲线对比

    Figure  4.   Grain-size distribution of loess and paleosol samples from the Gemo section in the Aba Basin

    图  5   阿坝盆地各莫黄土剖面地层划分、光释光年代、Bacon年代-深度模型及环境指标随剖面深度的变化

    a:U-ratio值, b:粒度指数(GSI), c:碳酸盐含量, d:低频磁化率(χlf), e:色度比值(a*/b*), f:平均粒径。

    Figure  5.   Stratigraphy, OSL ages, Bacon age-depth model, and environmental proxies for the Gemo loess section in the Aba Basin

    a: U-ratio, b: grain size index (GSI), c: carbonate content (wt%), d: low-frequency magnetic susceptibility (χlf), e: a*/b*, f: mean grain size.

    图  6   阿坝盆地各莫黄土记录的末次冰期印度夏季风变化与其他环境记录对比

    a:各莫剖面低频磁化率χlf, b:甘孜新市(XS)剖面频率磁化率χfd[34], c:各莫剖面碳酸盐含量, d:中亚地区有效湿度变化历史[58] , e:各莫剖面色度a*/b*记录, f:小白龙洞石笋δ18O记录[59-60]

    Figure  6.   Comparison of the Indian summer monsoon records from the Gemo loess with other environmental records during the last glacial period

    a: Low-frequency magnetic susceptibility (χlf) of Gemo section, b: frequency-dependent magnetic susceptibility (χfd) of Ganzi section[34], c: carbonate content of Gemo section, d: paleo-moisture history of Central Asia[58],e: a*/b* of Gemo section, f: stalagmite δ18O records of the Xiaobailong Cave[59-60].

    图  7   阿坝盆地各莫黄土环境记录与其他环境记录对比

    a:LR04底栖有孔虫δ18O记录[68], b:7月北纬30°太阳辐射强度[69], c:合作黄土>40 μm粒度[70], d:古浪(GL)黄土平均粒径[71], e:马尔康MLS黄土粒度U-ratio值[29], f:各莫黄土粒度U-ratio值, g:格陵兰冰芯(NGRIP)δ18O记录[72], h:北大西洋231Pa/230Th比值[73-74]

    Figure  7.   Comparison of the environmental records of the Gemo loess in the Aba Basin with other environmental records

    a: The LR04 benthic δ18O record[68], b: July insolation at 30°N[69], c: > 40 μm (%) of the Hezuo loess[70], d: mean grain size of Gulang (GL) loess[71], e: U-ratio values of Maerkang loess[29], f: U-ratio of Gemo loess, g: ice core δ18O record from Greenland[72], h: 231Pa/230Th record for the north Atlantic Ocean[73-74].

    表  1   阿坝盆地各莫黄土剖面石英光释光测年结果

    Table  1   Quartz optically stimulated luminescence dating results for the Gemo section in the Aba Basin

    实验编号野外
    编号
    深度/m有效测片/总测片粒径
    /μm
    等效剂量
    /Gy
    离散度
    /%
    U
    /(µg/g)
    Th
    /(µg/g)
    K
    /%
    Rb
    /(µg/g)
    年剂量率
    /(Gy/ka)
    年代
    /ka
    LZU19133GM100.112/1263~904.70±0.4230±72.18±0.312.41±0.71.97±0.04106±53.19±0.131.47±0.15
    LZU19134GM500.523/2463~9026.18±1.0118±32.21±0.312.70±0.72.01±0.04107±53.33±0.147.87±0.45
    LZU19135GM2002.016/1638~63109.43±4.6614±42.27±0.312.32±0.72.07±0.04109±53.44±0.1831.8±2.2
    LZU19119GM19-26.512/1263~90144.19±3.564±32.27±0.312.90±0.72.12±0.04111±53.29±0.1443.8±2.1
    LZU19123GM19-18.512/1263~90153.23±5.4710±32.57±0.415.96±0.82.27±0.04128±53.64±0.1642.1±2.4
    下载: 导出CSV
  • [1]

    Tierney J E, Poulsen C J, Montañez I P, et al. Past climates inform our future[J]. Science, 2020, 370(6517):eaay3701. doi: 10.1126/science.aay3701

    [2] 秦蕴珊, 李铁刚, 苍树溪. 末次间冰期以来地球气候系统的突变[J]. 地球科学进展, 2000, 15(3):243-250

    QIN Yunshan, LI Tiegang, CANG Shuxi. Abrupt changes in Earth's climate system since last interglacial[J]. Advance in Earth Sciences, 2000, 15(3):243-250.]

    [3]

    Heinrich H. Origin and consequences of cyclic ice rafting in the Northeast Atlantic Ocean during the past 130 000 years[J]. Quaternary Research, 1988, 29(2):142-152. doi: 10.1016/0033-5894(88)90057-9

    [4]

    Dansgaard W, Johnsen S J, Clausen H B, et al. Evidence for general instability of past climate from a 250-kyr ice-core record[J]. Nature, 1993, 364(6434):218-220. doi: 10.1038/364218a0

    [5]

    Peteet D. Global younger dryas?[J]. Quaternary International, 1995, 28:93-104. doi: 10.1016/1040-6182(95)00049-O

    [6]

    Cheng H, Edwards R L, Sinha A, et al. The Asian monsoon over the past 640, 000 years and ice age terminations[J]. Nature, 2016, 534(7609):640-646. doi: 10.1038/nature18591

    [7]

    Song Y G, Luo D, Du J H, et al. Radiometric dating of Late Quaternary loess in the northern piedmont of South Tianshan Mountains: implications for reliable dating[J]. Geological Journal, 2018, 53(S2):417-426. doi: 10.1002/gj.3129

    [8]

    Corrick E C, Drysdale R N, Hellstrom J C, et al. Synchronous timing of abrupt climate changes during the last glacial Period[J]. Science, 2020, 369(6506):963-969. doi: 10.1126/science.aay5538

    [9]

    Huang J P, Zhou X J, Wu G X, et al. Global climate impacts of land-surface and atmospheric processes over the Tibetan Plateau[J]. Reviews of Geophysics, 2023, 61(3):e2022RG000771. doi: 10.1029/2022RG000771

    [10]

    Qiu J. China: the third pole[J]. Nature, 2008, 454(7203):393-396. doi: 10.1038/454393a

    [11]

    Yao T D, Thompson L, Yang W, et al. Different glacier status with atmospheric circulations in Tibetan Plateau and surroundings[J]. Nature Climate Change, 2012, 2(9):663-667. doi: 10.1038/nclimate1580

    [12]

    Immerzeel W W, van Beek L P H, Bierkens M F P. Climate change will affect the Asian water towers[J]. Science, 2010, 328(5984):1382-1385. doi: 10.1126/science.1183188

    [13]

    Yao T D, Xue Y K, Chen D L, et al. Recent third pole’s rapid warming accompanies cryospheric melt and water cycle intensification and interactions between monsoon and environment: multidisciplinary approach with observations, modeling, and analysis[J]. Bulletin of the American Meteorological Society, 2019, 100(3):423-444. doi: 10.1175/BAMS-D-17-0057.1

    [14] 施雅风, 贾玉连, 于革, 等. 40-30kaBP青藏高原及邻区高温大降水事件的特征、影响及原因探讨[J]. 湖泊科学, 2002, 14(1):1-11 doi: 10.18307/2002.0101

    SHI Yafeng, JIA Yulian, YU Ge, et al. Features, impacts and causes of the high temperature and large precipitation event in the Tibetan Plateau and its adjacent area during 40-30 kaBP[J]. Journal of Lake Sciences, 2002, 14(1):1-11.] doi: 10.18307/2002.0101

    [15]

    Thompson L G, Severinghaus J P, Yao T D, et al. Use of δ18Oatm in dating a Tibetan ice core record of Holocene/Late Glacial climate[J]. Proceedings of the National Academy of Sciences of the United States of America, 2022, 119(45):e2205545119.

    [16]

    Hou S G, Zhang W B, Pang H X, et al. Apparent discrepancy of Tibetan ice core δ18O records may be attributed to misinterpretation of chronology[J]. The Cryosphere, 2019, 13(6):1743-1752. doi: 10.5194/tc-13-1743-2019

    [17] 李炳元. 青藏高原大湖期[J]. 地理学报, 2000, 55(2):174-182

    LI Bingyuan. The last Greatest Lakes on the Xizang (Tibetan) Plateau[J]. Acta Geographica Sinica, 2000, 55(2):174-182.]

    [18]

    Lai Z P. Was Late Marine Isotope Stage (MIS) 3 warm and humid in nowadays arid northwestern China?[J]. Quaternary International, 2012, 279-280:261.

    [19]

    Zhang S, Zhang J F, Zhao H, et al. Spatiotemporal complexity of the "Greatest Lake Period" in the Tibetan Plateau[J]. Science Bulletin, 2020, 65(16):1317-1319. doi: 10.1016/j.scib.2020.05.004

    [20]

    Wei T, Brahney J, Dong Z W, et al. Hf–Nd–Sr isotopic composition of the Tibetan Plateau dust as a fingerprint for regional to hemispherical transport[J]. Environmental Science & Technology, 2021, 55(14):10121-10132.

    [21] 方小敏, 韩永翔, 马金辉, 等. 青藏高原沙尘特征与高原黄土堆积: 以2003-03-04拉萨沙尘天气过程为例[J]. 科学通报, 2004, 49(11): 1084-1090

    FANG Xiaomin, HAN Yongxiang, MA Jinhui, et al. Dust storms and loess accumulation on the Tibetan Plateau: a case study of dust event on 4 March 2003 in Lhasa[J]. Chinese Science Bulletin, 2004, 49(9): 953-960.]

    [22]

    Huang X M, Miao X D, Chang Q F, et al. Tibetan dust accumulation linked to ecological and landscape response to global climate change[J]. Geophysical Research Letters, 2022, 49(1):e2021GL096615. doi: 10.1029/2021GL096615

    [23] 刘东生. 黄土与环境[M]. 北京: 科学出版社, 1985

    LIU Tungsheng. Loess and the Environment[M]. Beijing: Science Press, 1985.]

    [24] 潘保田, 王建民. 末次间冰期以来青藏高原东部季风演化的黄土沉积记录[J]. 第四纪研究, 1999, 19(4):330-335

    PAN Baotian, WANG Jianmin. Loess record of Qinghai-Xizang Plateau monsoon variations in the eastern part of the Plateau since the Last Interglacial[J]. Quaternary Sciences, 1999, 19(4):330-335.]

    [25] 方小敏, 陈富斌, 施雅风, 等. 甘孜黄土与青藏高原冰冻圈演化[J]. 科学通报, 1996, 41(20):1865-1867 doi: 10.1360/csb1996-41-20-1865

    FANG Xiaomin, CHEN Fubin, SHI Yafeng, et al. Evolution of the Ganzi loess and the Tibetan Plateau cryosphere[J]. Chinese Science Bulletin, 1996, 41(20):1865-1867.] doi: 10.1360/csb1996-41-20-1865

    [26]

    Qiao Y S, Qi L, Liu Z X, et al. Intensification of aridity in the eastern margin of the Tibetan Plateau since 300ka BP inferred from loess-soil sequences, western Sichuan province, southwest China[J]. Palaeogeography, Palaeoclimatology, Palaeoecology, 2014, 414:192-199. doi: 10.1016/j.palaeo.2014.08.025

    [27]

    Chen Z X, Yang S L, Luo Y L, et al. HIRM variation in the Ganzi loess of the eastern Tibetan Plateau since the last interglacial Period and its paleotemperature implications for the source region[J]. Gondwana Research, 2022, 101:233-242. doi: 10.1016/j.gr.2021.08.008

    [28]

    Chen Z X, Li Q, Li P S, et al. High-resolution climate change during the Marine Isotope Stage 3 revealed by Zhouqu loess in the eastern margin of the Tibetan Plateau[J]. Progress in Physical Geography: Earth and Environment, 2024, 48(2):298-319. doi: 10.1177/03091333241236394

    [29]

    Li Q, Li P S, Liu X J, et al. Aeolian process and climatic changes in loess records from the eastern Tibetan Plateau: implications for paleoenvironmental dynamics since MIS 3[J]. CATENA, 2023, 231:107361. doi: 10.1016/j.catena.2023.107361

    [30] 汪阳春, 柴宗新, 刘淑珍, 等. 横断山地区的黄土及意义[J]. 山地学报, 1999, 17(4):300-304

    WANG Yangchun, CHAI Zongxin, LIU Shuzhen, et al. The loess in Hengduan Mountains and its significance[J]. Journal of Mountain Science, 1999, 17(4):300-304.]

    [31] 王建民. 青藏高原东北部近十五万年来黄土沉积与环境演化[D]. 兰州大学博士学位论文, 1995

    WANG Jianmin. Loess deposition and environmental evolution in the northeastern Tibetan Plateau over the past 150 000 years[D]. Doctor Dissertation of Lanzhou University, 1995.]

    [32]

    Liu X J, Miao X D, Nie J S, et al. Distribution and fate of Tibetan Plateau loess[J]. CATENA, 2023, 225:107022. doi: 10.1016/j.catena.2023.107022

    [33] 陈诗越, 方小敏, 王苏民. 川西高原甘孜黄土与印度季风演化关系[J]. 海洋地质与第四纪地质, 2002, 22(3):41-46

    CHEN Shiyue, FANG Xiaomin, WANG Sumin. Relation between the loess stratigraphy on the eastern Tibetan Plateau and Indian monsoon[J]. Marine Geology & Quaternary Geology, 2002, 22(3):41-46.]

    [34]

    Yang S L, Chen Z X, Chen H, et al. Magnetic properties of the Ganzi loess and their implications for precipitation history in the eastern Tibetan Plateau since the Last Interglacial[J]. Paleoceanography and Paleoclimatology, 2022, 37(2):e2021PA004322. doi: 10.1029/2021PA004322

    [35]

    Chen F H, Zhang J F, Liu J B, et al. Climate change, vegetation history, and landscape responses on the Tibetan Plateau during the Holocene: a comprehensive review[J]. Quaternary Science Reviews, 2020, 243:106444. doi: 10.1016/j.quascirev.2020.106444

    [36]

    Aitken M J. An Introduction to Optical Dating: the Dating of Quaternary Sediments by the Use of Photon-Stimulated Luminescence[M]. New York: Oxford University Press, 1998.

    [37]

    Lai Z P, Wintle A G. Locating the boundary between the Pleistocene and the Holocene in Chinese loess using luminescence[J]. The Holocene, 2006, 16(6):893-899. doi: 10.1191/0959683606hol980rr

    [38]

    Lai Z P, Wintle A G, Thomas D S G. Rates of dust deposition between 50 ka and 20 ka revealed by OSL dating at Yuanbao on the Chinese Loess Plateau[J]. Palaeogeography, Palaeoclimatology, Palaeoecology, 2007, 248(3-4):431-439. doi: 10.1016/j.palaeo.2006.12.013

    [39]

    Duller G A T. Distinguishing quartz and feldspar in single grain luminescence measurements[J]. Radiation Measurements, 2003, 37(2):161-165. doi: 10.1016/S1350-4487(02)00170-1

    [40]

    Murray A S, Wintle A G. Luminescence dating of quartz using an improved single-aliquot regenerative-dose protocol[J]. Radiation Measurements, 2000, 32(1):57-73. doi: 10.1016/S1350-4487(99)00253-X

    [41]

    Murray A S, Wintle A G. The single aliquot regenerative dose protocol: potential for improvements in reliability[J]. Radiation Measurements, 2003, 37(4-5):377-381. doi: 10.1016/S1350-4487(03)00053-2

    [42]

    Galbraith R F, Roberts R G, Laslett G M, et al. Optical dating of single and multiple grains of Quartz from Jinmium rock shelter, northern Australia: Part I, experimental design and statistical models[J]. Archaeometry, 1999, 41(2):339-364. doi: 10.1111/j.1475-4754.1999.tb00987.x

    [43]

    Guérin G, Mercier N, Adamiec G. Dose-rate conversion factors: update[J]. Ancient TL, 2011, 29(1):5-8.

    [44]

    Prescott J R, Hutton J T. Cosmic ray contributions to dose rates for luminescence and ESR dating: large depths and long-term time variations[J]. Radiation Measurements, 1994, 23(2-3):497-500. doi: 10.1016/1350-4487(94)90086-8

    [45]

    Liang P, Forman S L. LDAC: an Excel-based program for luminescence equivalent dose and burial age calculations[J]. Ancient TL, 2019, 37(2):21-40.

    [46]

    Blaauw M, Christen J A. Flexible paleoclimate age-depth models using an autoregressive gamma process[J]. Bayesian Analysis, 2011, 6(3):457-474. doi: 10.1214/ba/1339616472

    [47]

    Wintle A G, Murray A S. A review of quartz optically stimulated luminescence characteristics and their relevance in single-aliquot regeneration dating protocols[J]. Radiation Measurements, 2006, 41(4):369-391. doi: 10.1016/j.radmeas.2005.11.001

    [48]

    Liu L, Yang S L, Cheng T, et al. Chronology and dust mass accumulation history of the Wenchuan loess on eastern Tibetan Plateau since the last glacial[J]. Aeolian Research, 2021, 53:100748. doi: 10.1016/j.aeolia.2021.100748

    [49]

    Heller F, Tung-Sheng L. Palaeoclimatic and sedimentary history from magnetic susceptibility of loess in China[J]. Geophysical Research Letters, 1986, 13(11):1169-1172. doi: 10.1029/GL013i011p01169

    [50]

    Yang S L, Liu N N, Li D X, et al. Quartz OSL chronology of the loess deposits in the western Qinling Mountains, China, and their palaeoenvironmental implications since the Last Glacial Period[J]. Boreas, 2021, 50(1):294-307. doi: 10.1111/bor.12473

    [51] 李冬雪, 刘楠楠, 杨胜利, 等. 石英标准生长曲线在青藏高原东缘黄土光释光测年中的应用[J]. 第四纪研究, 2021, 41(1):111-122

    LI Dongxue, LIU Nannan, YANG Shengli, et al. Application of quartz OSL standardized growth curve for De determination in loess on the eastern Tibetan Plateau[J]. Quaternary Sciences, 2021, 41(1):111-122.]

    [52]

    An Z S, Kukla G J, Porter S C, et al. Magnetic susceptibility evidence of monsoon variation on the Loess Plateau of central China during the last 130, 000 years[J]. Quaternary Research, 1991, 36(1):29-36. doi: 10.1016/0033-5894(91)90015-W

    [53] 杨胜利, 方小敏, 李吉均, 等. 表土颜色和气候定性至半定量关系研究[J]. 中国科学(D辑), 2001, 31(S1): 175-181

    YANG Shengli, FANG Xiaomin, LI Jijun, et al. Transformation functions of soil color and climate[J]. Science in China Series D: Earth Sciences, 2001, 44(S1): 218-226.]

    [54]

    Li Y D, Li Y, Song Y G, et al. Effective moisture evolution since the last glacial maximum revealed by a loess record from the Westerlies-dominated Ili Basin, NW China[J]. Atmosphere, 2022, 13(11):1931. doi: 10.3390/atmos13111931

    [55]

    Sun H Y, Song Y G, Chen X L, et al. Holocene dust deposition in the Ili Basin and its implications for climate variations in Westerlies-dominated Central Asia[J]. Palaeogeography, Palaeoclimatology, Palaeoecology, 2020, 550:109731. doi: 10.1016/j.palaeo.2020.109731

    [56]

    Fang X M, Ono Y, Fukusawa H, et al. Asian summer monsoon instability during the past 60, 000 years: magnetic susceptibility and pedogenic evidence from the western Chinese Loess Plateau[J]. Earth and Planetary Science Letters, 1999, 168(3-4):219-232. doi: 10.1016/S0012-821X(99)00053-9

    [57]

    Fang X M, Lü L Q, Mason J A, et al. Pedogenic response to millennial summer monsoon enhancements on the Tibetan Plateau[J]. Quaternary International, 2003, 106-107:79-88. doi: 10.1016/S1040-6182(02)00163-5

    [58]

    Herzschuh U. Palaeo-moisture evolution in monsoonal Central Asia during the last 50, 000 years[J]. Quaternary Science Reviews, 2006, 25(1-2):163-178. doi: 10.1016/j.quascirev.2005.02.006

    [59]

    Cai Y J, An Z S, Cheng H, et al. High-resolution absolute-dated Indian Monsoon record between 53 and 36 ka from Xiaobailong Cave, southwestern China[J]. Geology, 2006, 34(8):621-624. doi: 10.1130/G22567.1

    [60]

    Cai Y J, Fung I Y, Edwards R L, et al. Variability of stalagmite-inferred Indian monsoon precipitation over the past 252, 000 y[J]. Proceedings of the National Academy of Sciences of the United States of America, 2015, 112(10):2954-2959.

    [61]

    Stauch G, Lai Z P, Lehmkuhl F, et al. Environmental changes during the Late Pleistocene and the Holocene in the Gonghe Basin, north-eastern Tibetan Plateau[J]. Palaeogeography, Palaeoclimatology, Palaeoecology, 2018, 509:144-155. doi: 10.1016/j.palaeo.2016.12.032

    [62] 沈才明, 唐领余, 王苏民, 等. 若尔盖盆地RM孔孢粉记录及其年代序列[J]. 科学通报, 2005, 50(3): 246-254

    SHEN Caiming, TANG Lingyu, WANG Sumin, et al. Pollen records and time scale for the RM core of the Zoige Basin, northeastern Qinghai-Tibetan Plateau[J]. Chinese Science Bulletin, 2005, 50(6): 553-562.]

    [63]

    Shi Y F, Yu G, Liu X D, et al. Reconstruction of the 30-40 ka BP enhanced Indian monsoon climate based on geological records from the Tibetan Plateau[J]. Palaeogeography, Palaeoclimatology, Palaeoecology, 2001, 169(1-2):69-83. doi: 10.1016/S0031-0182(01)00216-4

    [64]

    Han W X, Fang X M, Yang S L, et al. Differences between East Asian and Indian monsoon climate records during MIS3 attributed to differences in their driving mechanisms: evidence from the loess record in the Sichuan Basin, southwestern China and other continental and marine climate records[J]. Quaternary International, 2010, 218(1-2):94-103. doi: 10.1016/j.quaint.2010.01.002

    [65]

    Zhao Y, Yu Z C, Tang Y, et al. Peatland initiation and carbon accumulation in China over the last 50, 000 years[J]. Earth-Science Reviews, 2014, 128:139-146. doi: 10.1016/j.earscirev.2013.11.003

    [66]

    Vandenberghe J, Nugteren G. Rapid climatic changes recorded in loess successions[J]. Global and Planetary Change, 2001, 28(1-4):1-9. doi: 10.1016/S0921-8181(00)00060-6

    [67]

    Krauß L, Klasen N, Schulte P, et al. New results concerning the pedo‐ and chronostratigraphy of the loess–palaeosol sequence Attenfeld (Bavaria, Germany) derived from a multi‐methodological approach[J]. Journal of Quaternary Science, 2021, 36(8):1382-1396. doi: 10.1002/jqs.3298

    [68]

    Lisiecki L E, Raymo M E. A Pliocene-Pleistocene stack of 57 globally distributed benthic δ18O records[J]. Paleoceanography, 2005, 20(1):PA1003.

    [69]

    North Greenland Ice Core Project Members. High-resolution record of Northern Hemisphere climate extending into the last interglacial Period[J]. Nature, 2004, 431(7005):147-151. doi: 10.1038/nature02805

    [70] 吕连清, 方小敏, 鹿化煜, 等. 青藏高原东北缘黄土粒度记录的末次冰期千年尺度气候变化[J]. 科学通报, 2004, 49(11):1091-1098 doi: 10.1360/csb2004-49-11-1091

    LV Lianqing, FANG Xiaomin, LU Huayu, et al. Millennial-scale climate change during the last glacial Period recorded in loess grain size on the northeastern margin of the Tibetan Plateau[J]. Chinese Science Bulletin, 2004, 49(11):1091-1098.] doi: 10.1360/csb2004-49-11-1091

    [71]

    Sun Y B, Clemens S C, Morrill C, et al. Influence of Atlantic meridional overturning circulation on the East Asian winter monsoon[J]. Nature Geoscience, 2012, 5(1):46-49. doi: 10.1038/ngeo1326

    [72]

    Rasmussen S O, Bigler M, Blockley S P, et al. A stratigraphic framework for abrupt climatic changes during the Last Glacial Period based on three synchronized Greenland ice-core records: refining and extending the INTIMATE event stratigraphy[J]. Quaternary Science Reviews, 2014, 106:14-28. doi: 10.1016/j.quascirev.2014.09.007

    [73]

    Böhm E, Lippold J, Gutjahr M, et al. Strong and deep Atlantic meridional overturning circulation during the last glacial cycle[J]. Nature, 2015, 517(7532):73-76. doi: 10.1038/nature14059

    [74]

    McManus J F, Francois R, Gherardi J M, et al. Collapse and rapid resumption of Atlantic meridional circulation linked to deglacial climate changes[J]. Nature, 2004, 428(6985):834-837. doi: 10.1038/nature02494

    [75]

    Vandenberghe J. Grain size of fine-grained windblown sediment: a powerful proxy for process identification[J]. Earth-Science Reviews, 2013, 121:18-30. doi: 10.1016/j.earscirev.2013.03.001

    [76]

    Xiong J G, Zhong Y Z, Liu C C, et al. Mineral magnetic variation of the minle loess/palaeosol sequence of the Late glacial to Holocene Period in the northeastern Tibetan Plateau[J]. Geophysical Journal International, 2023, 235(2):1624-1638. doi: 10.1093/gji/ggad305

    [77]

    Thompson L G, Yao T D, Davis M E, et al. Ice core evidence for an orbital-scale climate transition on the Northwest Tibetan Plateau[J]. Quaternary Science Reviews, 2024, 324:108443. doi: 10.1016/j.quascirev.2023.108443

    [78]

    Thompson L G, Yao T D, Davis M E, et al. Tropical climate instability: the last glacial cycle from a Qinghai-Tibetan Ice core[J]. Science, 1997, 276(5320):1821-1825. doi: 10.1126/science.276.5320.1821

    [79]

    Seierstad I K, Abbott P M, Bigler M, et al. Consistently dated records from the Greenland GRIP, GISP2 and NGRIP ice cores for the past 104 ka reveal regional millennial-scale δ18O gradients with possible Heinrich event imprint[J]. Quaternary Science Reviews, 2014, 106:29-46. doi: 10.1016/j.quascirev.2014.10.032

    [80]

    Zhang X, Lohmann G, Knorr G, et al. Abrupt glacial climate shifts controlled by ice sheet changes[J]. Nature, 2014, 512(7514):290-294. doi: 10.1038/nature13592

    [81]

    Ding Z L, Liu T, Rutter N W, et al. Ice-volume forcing of East Asian winter monsoon variations in the past 800, 000 years[J]. Quaternary Research, 1995, 44(2):149-159. doi: 10.1006/qres.1995.1059

    [82]

    Mori M, Watanabe M, Shiogama H, et al. Robust Arctic sea-ice influence on the frequent Eurasian cold winters in past decades[J]. Nature Geoscience, 2014, 7(12):869-873. doi: 10.1038/ngeo2277

    [83] 刘维明, 杨胜利, 方小敏. 川西高原黄土记录的末次冰期气候变化[J]. 吉林大学学报: 地球科学版, 2013, 43(3):974-982

    LIU Weiming, YANG Shengli, FANG Xiaomin. Loess recorded climatic change during the last glaciation on the eastern Tibetan Plateau, western Sichuan[J]. Journal of Jilin University: Earth Science Edition, 2013, 43(3):974-982.]

    [84]

    Zhang X, Knorr G, Lohmann G, et al. Abrupt North Atlantic circulation changes in response to gradual CO2 forcing in a glacial climate state[J]. Nature Geoscience, 2017, 10(7):518-523. doi: 10.1038/ngeo2974

    [85]

    Wang W C, Wang J, Qiu J K, et al. Anti-phase glacier fluctuations on the millennial-scale on the southern Tibetan Plateau and New Zealand during the last glacial Period[J]. Quaternary Science Reviews, 2024, 329:108565. doi: 10.1016/j.quascirev.2024.108565

    [86]

    Held F, Cheng H, Edwards R L, et al. Dansgaard-Oeschger cycles of the penultimate and last glacial Period recorded in stalagmites from Türkiye[J]. Nature Communications, 2024, 15(1):1183. doi: 10.1038/s41467-024-45507-5

图(7)  /  表(1)
计量
  • 文章访问数:  100
  • HTML全文浏览量:  5
  • PDF下载量:  48
  • 被引次数: 0
出版历程
  • 收稿日期:  2024-02-27
  • 修回日期:  2024-05-08
  • 录用日期:  2024-05-08
  • 刊出日期:  2024-08-25

目录

/

返回文章
返回