GAS HYDRATE PRODUCTION TEST: FROM EXPERIMENTAL SIMULATION TO FIELD PRACTICE
-
摘要: 天然气水合物研究的终极目标是对其进行有效的开发利用,即实现长期安全、高效地开采,而水合物试采只是迈出了第一步。数十年的室内水合物开采方法实验及其数值模拟研究取得了显著的成果,为天然气水合物试采奠定了坚实的基础。加拿大、美国等国家先后在陆地冻土区进行了水合物试采工作,试验成果为海域水合物试采提供了宝贵的经验。2013年和2017年,日本、中国先后在不同海域实施了天然气水合物试采,并取得了成功,这是天然气水合物研究的一个里程碑式的进步,标志着天然气水合物开采技术研究从室内实验模拟逐步转到产地实施。本文回顾了各种水合物开采方法的原理及其模拟实验成果,简要介绍了水合物开采数值模拟方法与进展,评述了水合物试采的前期关键技术准备及场地实施效果,讨论了每种技术方法的局限性及面临的挑战,并针对海洋天然气水合物开采面临的科学与技术问题提出了建议。Abstract: The eventual aim of gas hydrate research is to develop and utilize the hydrate resource effectively, that is to achieve long-term exploitation safely and efficiently. Gas hydrate production test is just the first step towards this destination. In the last several decades, great achievements for gas hydrate exploitation method studies have been made by laboratory experiments and numerical simulations, which have laid a solid foundation for gas hydrate production test. In the permafrost areas, the gas hydrate production tests were carried out by the US, Japan and Canada in the Mallik program at the Mackenzie Delta, and the U.S. in the North Slope of Alaska, respectively. The results provide some valuable experiences for gas production from marine gas hydrate. In 2013 and 2015, Japan and China carried out successfully the marine gas hydrate production tests in different sea areas respectively, suggesting landmark achievements in gas hydrate researches. It indicates that the study of gas hydrate exploitation technology has changed gradually from laboratory simulation to field practice. In this paper, we reviewed the principles and the experimental results for various gas hydrate exploitation methods, introduced briefly the numerical simulation methods and their progresses, discussed the key technology preparation required for gas hydrate production tests and the field practice effect. We also discussed the limitation and challenges faced by each method. Some advices were presented on the science and technology issues of gas production of marine gas hydrate resources.
-
俯冲带是地球循环系统的重要组成部分。在俯冲过程中,俯冲板块沉入地幔深处,并因其板块弯曲,在板块上部产生拉伸应力,在板块下部产生挤压应力[1-4]。大量研究表明,俯冲带中由板块弯曲引起的正断层在上地幔蛇纹石化、板内地震、板块中的流体活动以及外缘隆起带断层引起的海啸中发挥着重要作用[5-6]。西太平洋处于4个板块交界之处,北为北美板块,西为欧亚板块,西南为菲律宾海板块,东南为太平洋板块。其中,北美板块和欧亚板块为大陆板块,菲律宾海板块和太平洋板块为大洋板块,两个大洋板块向两个大陆板块俯冲汇聚。西太平洋俯冲带是板块年龄最老、海沟最深和板块挠曲程度最大的俯冲系统。其洋盆发育了众多海山和海底高原,对海沟的几何形态产生了较大影响[7]。板块边界地震、火山活动活跃,西太平洋俯冲板块中的正断层地震通常发生在板块边界附近,因此可能构成巨大的海啸威胁。例如,1933年,日本海沟发生了8.4级地震,这是有记录以来最大的俯冲板块外缘隆起带(Outer rise)正断层地震,在日本三陆沿海地区引发了海啸[8]。2009年9月29日,汤加海沟发生8.1级外缘隆起带正断层地震,并引发了毁灭性的海啸[9]。因此,研究西太平洋俯冲板块正断层的动力学机制具有重要意义。
已观察到正断层在外缘隆起区到海沟轴部之间普遍存在。观测显示,与板块弯曲有关的正断层可能是板块俯冲过程中产生的新断层,或是在大洋中脊形成的重新激活的深海丘陵断层 [10]。前期地球动力学模拟研究表明,正断层开始在距离海沟轴部一定距离处形成,然后向海沟轴部方向生长[11-12]。海沟附近发育了丰富的挠曲正断层,这些断层除了会诱发板内地震之外,也是流体进入板块内部和俯冲带深部的主要通道[13]。西太平洋海沟的观测与模拟研究相对丰富,包括汤加、日本、伊豆-小笠原和马里亚纳海沟等。这些俯冲带的构造特征变化很大,包括海沟深度、俯冲倾角、板块内和板块间地震活动,这使它们成为研究海沟动力学和板块相互作用的理想场所。本文综述了西太平洋俯冲板块弯曲与正断层的观测,并总结分析了正断层模拟研究揭示的正断层形成过程,这对进一步揭示俯冲带动力学机制有着十分重要的意义。
1. 西太平洋俯冲板块正断层特征
汤加、日本、伊豆-小笠原和马里亚纳海沟均位于西太平洋(图1),且都是板块年龄相对较老(均超过100 Ma)的俯冲板块,因而远端的板块厚度可能相对较大,并且在4个海沟之间变化不大,因此可以直接比较各海沟的正断层特征,并揭示它们的共同特征。高分辨率海底多波束测深数据是从NOAA美国环境信息中心的多波束测深数据库(MBBDB)和海洋地球科学数据系统(MGDS)的全球多分辨率地形合成(图1)而成,网格平均分辨率约为100 m[14]。基于此数据,前人分别提取了汤加、日本、伊豆-小笠原和马里亚纳海沟的14、9、15和15个垂直于海沟的剖面,以计算平均断层走向和密度,得到4个海沟的正断层特征(图2)。高分辨率多波束测深数据显示,正断层在4个海沟的俯冲板块上普遍存在。
图 2 汤加海沟、日本海沟、伊豆-小笠原海沟、马里亚纳海沟海底地形图a-d分别为汤加海沟、日本海沟、伊豆-小笠原海沟和马里亚纳海沟,白色线段为选取的断层剖面位置[15]。Figure 2. Seafloor bathymetry of the Tonga, Japan, Izu-Bonin, and Mariana Trenchesa-d: the Tonga Trench, Japan Trench, Izu-Bonin Trench, and Mariana Trench, respectively. White lines depict the deployment of transaction profiling[15].通过对比实际观测与弹塑性变形模型,前人研究了沿着汤加、日本、伊豆-小笠原、马里亚纳海沟的板块挠曲与正断层特征(图2)。观测表明,平均海沟挠曲量在日本海沟最小(3 km),在马里亚纳海沟最大(4.9 km),而平均正断层垂直断距在日本海沟最小(113 m),汤加海沟最大(284 m)。而后模拟了俯冲板块在3种构造加载的作用下发生弯曲变形并产生正断层的过程,3种构造加载分别为:垂向加载(V0)、弯矩(M0)和水平拉张力(F0)。在板块挠曲与正断层特征的双重约束下,反演得到了4个海沟的最佳模型解。
汤加海沟的平均断层垂直断距最大,最大值为420 m,平均值为284 m(图3a)。伊豆-小笠原海沟和马里亚纳海沟的断层垂直断距相似,最大值均为320 m,平均值分别为238 m和148 m。在汤加海沟、日本海沟、伊豆-小笠原海沟和马里亚纳海沟,可识别的断层起始点距离海沟轴线分别为85、80、100 和115 km。
据观测,马里亚纳海沟正断层密度最大,伊豆-小笠原海沟的正断层密度最小(图3b)。在马里亚纳海沟,从距海沟轴线 80 km处开始,断层密度开始明显增加,而其他海沟的断层密度则在距海沟轴部近 50 km处开始增加,表明在马里亚纳海沟,正断层带最宽,断层密度最大。
2. 西太平洋俯冲板块变形机制
观测到的海底地形受到各种组成部分的影响,包括沉积物厚度、板块冷却引起的沉降和艾里均衡补偿地形[16-18],去除这些影响后,可得到非均衡地形,能够最大程度地反映板块弯曲变形的情况。以非均衡地形作为板块变形程度的观测,结合薄板弯曲理论模型,前人反演了4个海沟的最佳构造载荷。图4为西太平洋4个海沟俯冲板块的平滑弯曲形态。对于每个海沟,黑色细虚线表示单个剖面,红色粗曲线表示海沟的平均剖面。每个海沟截取的多条剖面上的最大变形量(W0)平均值用蓝点标记。远场参考海底深度用灰色线标记。红色箭头标记表示弯曲曲率降低到可忽略值(0.1×10−6 m−1)的特征距离(Xc)。
图 4 汤加海沟、日本海沟、伊豆-小笠原海沟和马里亚纳海沟南北部的观测挠曲量及其平均值黑色虚线细曲线显示单个剖面,红色粗曲线显示沟槽的平均剖面,远场参考海底深度用灰色线标记。蓝点所在位置为多个海沟轴部最大变形量W0的平均值,红色箭头所指位置Xc为弯曲曲率可忽略值[19]。Figure 4. Observed flexures and their average values of the Tonga Trench, Japan Trench, Izu-Bonin Trench, and Mariana TrenchThe thin black dashed curves: the individual profiles; the thick red curves: the average profile of the trenches; the grey line: the far-field reference seafloor depth. W0: the average of the maximum deformation in the axial part of several trenches. Xc: the negligible value of the bending curvature[19].前人系统性地研究了西太平洋汤加-克马德克、马尼拉、菲律宾、日本以及马里亚纳海沟的俯冲板块变形研究并进行对比。图5a为海沟附近板块弯曲示意模型,显示预期的拉伸屈服变形区(红色网格纹)和压缩屈服变形区(蓝色网格纹)。图5b中X0是板块的宽度,也是垂直变形W=0的位置。在板块弯曲过程中,正断层发育的最大深度主要是由轴向垂直载荷(V0)控制,而正断层最大深度离海沟的距离是由轴向弯矩(M0)所控制的。西太平洋4个海沟板块变形对比研究表明,最大变形量(W0)和板块宽度(X0)主要由靠近海沟的由于断层作用降低的有效弹性厚度控制,并且几乎不受远端俯冲板块的初始有效弹性厚度的影响。板块有效弹性厚度的降低导致了海沟的显著加深和变窄,而板块的有效弹性厚度的变化与其年龄又存在着密不可分的联系[19]。通过汤加–克马德克海沟与马尼拉、日本、马里亚纳海沟等俯冲板片弯曲的分析对比(图5b),发现对于较年轻或较老板块的情况,无论海沟处加载量如何变化,板块的年龄都可能是控制海沟弯曲形状的主要因素(图5)。
图 5 海沟板块附近弯曲的示意图模型(a)和汤加-克马德克、马尼拉、菲律宾、日本以及马里亚纳海沟俯冲板块年龄与板块弯曲参数的关系(b)X0为板块宽度,W0为最大变形量,V0和M0是弯曲参数[19]。Figure 5. Schematic modelling of buckling near the trench plate (a) and the relationship between subducting plate age and plate buckling parameters in the Tonga-Kermadec, Manila, Philippine, Japan, and Mariana Trench subducting plates (b)X0 is the slab width, W0 is the maximum deformation, and V0 and M0 are the bending parameters [19].3. 西太平洋俯冲带板块正断层模拟与含水量估算
西太平洋的俯冲带板块正断层的模拟研究中,俯冲板块在板块弯曲演变过程中的水平偏差应力能直接反映断层形态。根据最佳拟合模型得到4个海沟的俯冲板块的正断层模式(图6a-d)。根据计算,正断层发育在上塑性屈服破裂带内。
图 6 汤加、日本、伊豆-小笠原、马里亚纳海沟俯冲板块正断层特征以及板块有效弹性厚度变化、计算的水平偏应力和有效弹性板厚度a–d中黑色虚线表示伸展屈服带的最大深度,带误差条的黑圈显示了研究区域内可重新定位的外升正断层地震;e–h中是4个沟槽计算的Te(黑色曲线)和计算的面积SΔTe(白色区域)[15]。Figure 6. Normal faulting characteristics in the subducting plates of the Tonga, Japan, Izu-Bonin, and Mariana Trench and variations in the effective plate elastic thicknessThe black dashed lines in a-d indicate the maximum depth of the stretching yield zone, and the black circles with error bars show the relocatable outgoing uplift normal fault earthquakes in the study area; e-h are the calculated Te (black curves) and calculated area SΔTe (white areas) for the four trenches [15].结果显示,在日本海沟、伊豆-小笠原海沟和马里亚纳海沟中,大多数正断层都是向海沟方向倾斜的。但汤加海沟既有向海沟倾斜的断层,也有向海洋倾斜的断层。经计算,日本海沟和汤加海沟的正断层比伊豆-小笠原海沟和马里亚纳海沟的正断层浅。研究区域内现有的重定位正断层地震均位于计算出的拉伸屈服破裂带内(图6a-d)。黑色虚线曲线表示拉伸屈服带的最大深度。带误差条的黑圈显示了Emry和Wiens研究区域内可重新定位的正断层地震[20-24]。
在构造加载的作用下,俯冲板块在距离海沟100 km左右处的外缘隆起区开始产生正断层,逐步向海沟轴部发育,随着断层横向发育的过程中断层深度也逐渐增大,直至断层形态趋于稳定[16]。模型结果显示,日本海沟的水平张力分别比马里亚纳、汤加和伊豆-小笠原海沟小33%、50%和60%。汤加、日本、伊豆-小笠原、马里亚纳海沟的正断层最深可达海底以下29、23、32和32 km(图6),这与重新定位后的日本与伊豆-小笠原地震深度一致。此外,反演得到的水平张拉力与观测到的平均垂直断距呈一定正相关性,而计算得到的有效弹性厚度减少量与观测到的海沟挠曲量也相关。这些结果表明,水平张拉力在正断层发展过程中起着关键控制作用,板块弱化可导致板块挠曲量的显著增加。
根据计算的水平偏应力,按照前人的方法[25-27],计算了由于板块弯曲和正断层作用而产生的有效弹性板块厚度Te变化(图6e-h)。结果表明,有效板块厚度向海沟轴线逐渐减小,汤加、日本、伊豆-小笠原和马里亚纳海沟的最大Te减少量分别为25、24、22和26 km。然后,通过对跨轴距离上的Te还原进行积分来计算Te还原的面积SΔTe。计算得出SΔTe的变化值中马里亚纳海沟最大,日本海沟最小。同时,计算得出Te还原区的宽度中日本海沟最大,其他3个海沟几乎相同。因此,日本海沟的平均Te减少量最小,马里亚纳海沟的减少量最大。
大多数利用薄板弯曲理论的研究已经认识到垂直载荷和弯矩的重要性,然而很少有研究调查水平张力(F0)的重要性。基于先前的研究表明,F0对于解释板块弯曲和断层垂直断距至关重要,特别是在控制最大断层断距离海沟轴部距离方面[28-30]。计算的F0与观测到的4个海沟的平均断层垂直断距呈正相关。这一结果表明,较大的F0有利于俯冲板块中较大正断层的发育。基于以上结果,可以推断F0在控制正断层模式中起着关键作用。由于研究存在局限性,即只研究了相对古老板块的俯冲带,因此想要证实这个结论还需要进一步的研究。
西太平洋俯冲板块因其年龄老、具有较高的刚度,形成的断裂分布广且断距大,进一步促进了流体进入地幔,并引起地幔蛇纹石化[31-32]。前人通过研究表明进入板块内地幔水化的范围和程度可以被用来估计带入俯冲带的水量[33-35]。汤加、日本、伊豆-小笠原和马里亚纳海沟的累计断层长度(即单个可识别断层的总和)分别为240、260、360和450 km。并且通过对Cascadia海沟的地震反射研究,估算单个断层周围的透水断层带宽度为75~600 km,从而估计透水断层带的体积为18.0~144.0、19.5~156.0、27.0~216.0和34.0~270.0 km3,汤加、日本、伊豆-小笠原和马里亚纳海沟的地幔蛇纹石化百分比分别为0.4%~3.4%、0.4%~3.1%、0.6 %~5.1%和1.4%~10.8%。这一结果表明,马里亚纳海沟的地幔蛇纹石化程度可能明显大于其他3条海沟,相当于汤加和日本海沟的350%,伊豆-小笠原海沟的230%。
4. 结论与展望
(1)观测表明马里亚纳海沟、日本海沟、伊豆-小笠原海沟和汤加海沟都有显著的正断层特征,且汤加海沟的平均断层错距最大,马里亚纳海沟的正断层平均密度最大;(2)板块有效弹性厚度的降低导致了海沟的显著加深和变窄,并且无论海沟处的加载如何变化,板块的年龄都可能是控制海沟弯曲形状的主要因素;(3)屈服带模型揭示马里亚纳海沟的有效弹性厚度变化最多,导致其正断层特征更为明显,这也符合对正断层的观测。这些发现对于理解俯冲带的动力学过程具有重要意义。
当前的研究仍存在一定的局限性,包括:(1)地球动力学模型可能无法完全考虑实际地质过程中的所有复杂因素;(2)当前的俯冲板块弯曲动力学模型基本上都是二维模型,而实际的海沟走向并非直线而全部为曲线形态,因而亟需三维地球动力学模拟方法来解释观测到的板片弯曲和正断层形态;(3)很多海沟仍缺乏实测的高精度海底地形数据,限制了不同区域的对比研究。今后的研究应朝着以上方向去探索,以提高对西太平洋俯冲板块动力机制的更深理解。
-
图 1 天然气水合物开采方法示意图[2]
(ΔP:降压法;ΔT:热激发法;ΔP+ ΔT:降压法+热激法;向左、上蓝色箭头:化学抑制剂注入法;绿色阴影部分:CO2置换法)
Figure 1. Schematic digram of commonly proposed gas recovery methods
表 1 天然气水合物试采和出砂与防砂情况
Table 1 Overview of sand production and sand mamagement status during hydrate exploitation
试采井位 防砂方式 效果 加拿大Mallik 5L-38(2002) 防砂机械筛管防砂 有砂产出 加拿大Mallik 2L-38(2007) 射孔完井,未防砂 出砂造成ESP损坏 加拿大Mallik 2L-38(2008) 机械筛管防砂;泵入口加防砂网 有砂产出 美国阿拉斯加(2012) 机械筛管防砂 有砂产出 日本AT1-P(2013) 裸眼砾石充填防砂 出砂造成ESP损坏,试采终止 日本2017-001* 先期膨胀GeoForm筛管 防砂失败,井筒砂埋 日本2017-002* 井下膨胀GeoForm筛管 效果较好 *日本2017年海域天然气水合物试采两口井的具体站位数据目前暂未见报道,因此, 采用2017-001、2017-002代替。 表 2 历次天然气水合物试采产气量对比
Table 2 Comparison of gas productivity for previous hydrate exploitation tests
年份 所在区域 试采框体 储层类型 试采方法 生产持续时间 累产气量/m3 2002 加拿大麦肯齐三角洲 Mallik site 冻土区砂砾层 注热 5 days 516 2007 降压 12.5 hours 830 2007-2008 降压 139 hours 13 000 2007 阿拉斯加北坡 Mt. Elbert Well 降压 11 hours - 2012 IgnikSikumi CO2置换 6 weeks 24 085 2013 日本南海海槽 第二渥美海丘边缘 海洋中粗砂储层 降压 6 days 120 000 2017(01) 12 days 35 000 2017(02) 24 days 240 000 2017 中国南海北部 神狐海域 海洋黏土质粉砂储层 流体抽取法 60 days 309 000 -
[1] Bonnefoy O, Gruy F, Herri J M, et al. Interactions in systems involving gas hydrates[J]. Fluid Phase Equilibria, 2005, 231(2): 176-187. doi: 10.1016/j.fluid.2005.02.004
[2] Chong Z R, Yang S H B, Babu P, et al. Review of natural gas hydrates as an energy resource: Prospects and challenges[J]. Applied Energy, 2016, 162: 1633-1652. doi: 10.1016/j.apenergy.2014.12.061
[3] Yousif M H, Abass H H, Selim M S, et al. Experimental and theoretical investigation of methane-gas-hydrate dissociation in porous media[J]. SPE Reservoir Engineering, 1991, 6(1): 69-76. doi: 10.2118/18320-PA
[4] Booth J S, Winters W J, and Dillon W P. Apparatus investigates geological aspects of gas hydrates[J]. Oil and Gas Journal, 1999, 8(4): 63-70. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=bc017fb80a21d48dd8e0624f786be8bf
[5] Phelps T J, Peters D J, Marshall S L, et al. A new experimental facility for investigating the formation and properties of gas hydrates under simulated seafloor conditions[J]. Review of Scientific Instruments, 2001, 72(2): 1514-1521. doi: 10.1063/1.1334628
[6] Kono H O, Narasimhan S, Song F, et al. Synthesis of methane gas hydrate in porous sediments and its dissociation by depressurizing[J]. Powder Technology, 2002, 122(2-3): 239-246. doi: 10.1016/S0032-5910(01)00420-X
[7] Charles E T. Large-volume, high-pressure view vell helps fill gaps in understanding of methane hydrate behavior[Z]. Fire in the Ice Newsletter, Summer. USA: The National Energy Technology Laboratory, 2004: 10-12.
[8] Linga P C, Haligva S C, Nam J A, et al. Recovery of methane from hydrate formed in a variable volume bed of silica sand particles[J]. Energy and Fuels, 2009, 23(11): 5508-5516. doi: 10.1021/ef900543v
[9] 孙建业, 业渝光, 刘昌岭, 等.沉积物中天然气水合物减压分解实验[J].现代地质, 2010, 24(3): 614-621. doi: 10.3969/j.issn.1000-8527.2010.03.028 SUN Jianye, YE Yuguang, LIU Changling, et al. Experimental research of gas hydrate dissociation in sediments by depressurization method[J]. Geoscience, 2010, 24(3): 614-621. doi: 10.3969/j.issn.1000-8527.2010.03.028
[10] 唐良广, 肖睿, 李刚, 等.热力法开采天然气水合物的模拟实验研究[J].过程工程学报, 2006, 6(4): 548-553. doi: 10.3321/j.issn:1009-606X.2006.04.007 TANG Liangguang, XIAO Rui, LI Gang, et al. Experimental investigation of production behavior of gas hydrate under thermal stimulation[J]. The Chinese Journal of Process Engineering, 2006, 6(4): 548-553. doi: 10.3321/j.issn:1009-606X.2006.04.007
[11] 李淑霞, 徐新华, 吴锦谨, 等.不同注热水温度下水合物开采实验研究[J].现代地质, 2013, 27(6): 1379-1383. doi: 10.3969/j.issn.1000-8527.2013.06.015 LI Shuxia, XU Xinhua, WU Jinjin, et al. Experimental investigation of gas hydrate dissociation by hot brine injection with different temperatures[J]. Geoscience, 2013, 27(6): 1379-1383. doi: 10.3969/j.issn.1000-8527.2013.06.015
[12] 梁海峰.多孔介质中甲烷水合物降压分解实验与数值模拟[D].大连: 大连理工大学博士学位论文, 2009. LIANG Haifeng. Experimental and numerical study of methane hydrate dissociation by depressurization in porous media[D]. Dalian: Doctoral Dissertation of Dalian University of Technology, 2009.
[13] 刘乐乐, 鲁晓兵, 张旭辉.砂土沉积物中甲烷水合物降压分解渗流阵面实验[J].天然气工业, 2013, 33(11): 130-136. doi: 10.3787/j.issn.1000-0976.2013.11.023 LIU Lele, LU Xiaobing, ZHANG Xuhui. An experimental study of seepage front due to methane hydrate dissociation by depressurization in sandy sediments[J]. Natural Gas Industry, 2013, 33(11): 130-136. doi: 10.3787/j.issn.1000-0976.2013.11.023
[14] Li X S, Yang B, Li G, et al. Experimental study on gas production from methane hydrate in porous media by huff and puff method in Pilot-Scale Hydrate Simulator[J]. Fuel, 2012, 94: 486-494. doi: 10.1016/j.fuel.2011.11.011
[15] 粟科华, 孙长宇, 李楠, 等.天然气水合物三维成藏物模实验系统的构建与检验[J].天然气工业, 2013, 33(12): 173-178. http://d.old.wanfangdata.com.cn/Periodical/trqgy201312027 SU Kehua, SUN Changyu, LI Nan, et al. A large-scale three-dimensional device for simulating natural gas hydrates accumulation and distribution process in sediments[J]. Natural Gas Industry, 2013, 33(12): 173-178. http://d.old.wanfangdata.com.cn/Periodical/trqgy201312027
[16] Nagao J, Konno Y. Development of large scale production system for methane hydrates[C]// Proceedings of the Tenth ISOPE Ocean Mining and Gas Hydrates Symposium. Szczecin, Poland: International Society of Offshore and Polar Engineers, 2013.
[17] Spangenberg E, Priegnitz M, Heeschen K, et al. How close are laboratory formed pore-filling hydrate systems to nature[C]//Proceedings of the 8th International Conference on Gas Hydrates. Beijing, China, 2014.
[18] Yousif M H, Sloan E D. Experimental investigation of hydrate formation and dissociation in consolidated porous media[J]. SPE Reservoir Engineering, 1991, 6(4): 452-458. doi: 10.2118/20172-PA
[19] Li X S, Xu C G, Zhang Y, et al. Investigation into gas production from natural gas hydrate: A review[J]. Applied Energy, 2016, 172: 286-322. doi: 10.1016/j.apenergy.2016.03.101
[20] Zhou Y, Castaldi M J, Yegulalp T M. Experimental investigation of methane gas production from methane hydrate[J]. Industrial & Engineering Chemistry Research, 2009, 48(6): 3142-3149. doi: 10.1021/ie801004z
[21] Tang L G, Li X S, Feng Z P, et al. Control mechanisms for gas hydrate production by depressurization in different scale hydrate reservoirs[J]. Energy Fuels 2007, 21(1): 227-233. doi: 10.1021/ef0601869
[22] 孙建业.海洋沉积物中天然气水合物开采实验研究[D].青岛: 中国海洋大学博士学位论文, 2011. SUN Jianye. Experimental research of gas hydrates exploitation in marine sediments[D]. Qingdao: Doctoral Dissertation of Ocean University of China, 2011.
[23] Taewoong A, Lee J, Lee J Y, et al. Depresurization-induced production behavior of methane hydrate in a meter-scale alternate layer of sand and mud[C]//Proceedings of the 9th International Conference on Gas Hydrates. Denver, Colorado, USA, 2017.
[24] Sakamoto Y, Komai T, Kawabe Y, et al. Gas hydrate extraction from marine sediments by heat stimulation method[C]//The Fourteenth International Offshore and Polar Engineering Conference. Toulon: International Society of Offshore and Polar Engineers, 2004: 52-55.
[25] Castaldi M J, Zhou Y, Yegulalp T M. Down-hole combustion method for gas production from methane hydrates[J]. Journal of Petroleum Science and Engineering, 2007, 56(1-3): 176-185. doi: 10.1016/j.petrol.2006.03.031
[26] 李栋梁, 樊栓狮.微波作用下天然气水合物分解的研究及应用[J].化工进展, 2003, 22(3): 280-282. doi: 10.3321/j.issn:1000-6613.2003.03.013 LI Dongliang, FAN Shuanshi. Research on natural gas hydrate with microwave and its application[J]. Chemical Industry and Engineering Progress, 2003, 22(3): 280-282. doi: 10.3321/j.issn:1000-6613.2003.03.013
[27] Handa Y P, Stupin D. Thermodynamic properties and dissociation characteristics of methane and propane hydrates in 70~?~radius silica gel pore[J]. The Journal of Physical Chemistry, 1992, 96(21): 8599-8603. doi: 10.1021/j100200a071
[28] Li S X, Wang Z Q, Xu X H, et al. Experimental study on dissociation of hydrate reservoirs with different saturations by hot brine injection[J]. Journal of Natural Gas Science and Engineering, 2017, doi: 10.1016/j.jngse.2017.07.032.
[29] 孙建业, 业渝光, 刘昌岭, 等.沉积物中天然气水合物合成及开采模拟实验研究[J].中国海洋大学学报:自然科学版, 2009, 39(6): 1289-1294. doi: 10.3969/j.issn.1672-5174.2009.06.017 SUN Jianye, YE Yuguang, LIU Changling, et al. Simulation experiment of gas hydrates formation and exploitation in sediments[J]. Periodical of Ocean University of China, 2009, 39(6): 1289-1294. doi: 10.3969/j.issn.1672-5174.2009.06.017
[30] Fan S S, Zhang Y Z, Tian G L, et al. Natural gas hydrate dissociation by presence of ethylene glycol[J]. Energy and Fuels 2005, 20(1): 324-326. doi: 10.1021/ef0502204
[31] Ruppel C, Dickens G R, Castellini, D G, et al. Heat and salt inhibition of gas hydrate formation in the northern Gulf of Mexico[J]. Geophysical Research Letters, 2005, 32(4): L04605. doi: 10.1029/2004gl021909
[32] Dong F H, Zang X Y, Li D L, et al. Experimental investigation on propane hydrate dissociation by high concentration methanol and ethylene glycol solution injection[J]. Energy and Fuels, 2009, 23(3): 1563-1567. doi: 10.1021/ef800660m
[33] Sira J H, Patil S L, Kamath V A. Study of hydrate dissociation by methanol and glycol injection[C]//SPE Annual Technical Conference and Exhibition. New Orleans, Louisiana: Society of Petroleum Engineers, 1990: 977-984.
[34] Lee J. Experimental study on the dissociation behavior and productivity of gas hydrate by brine injection scheme in porous rock[J]. Energy and Fuels, 2009, 24(1): 456-463.
[35] Bhattacharjee G, Barmecha V, Pandey N K, et al. A study of natural gas hydrate dissociation in the presence of novel benign additives[C]//Proceedings of the 9th International Conference on Gas Hydrates. Denver, Colorado, USA, 2017.
[36] Ota M, Abe Y, Watanabe M, et al. Methane recovery from methane hydrate using pressurized CO2[J]. Fluid Phase Equilibria, 2005, 228-229: 553-559. doi: 10.1016/j.fluid.2004.10.002
[37] McGrail B P, Zhu T, Hunter R B, et al. A new method for enhanced production of gas hydrates with CO2[C]//AAPG Hedberg Conference: "Gas Hydrates: Energy Resource Potential and Associated Geologic Hazards". Vancouver, BC: AAPG, 2004.
[38] Schicks J M. From lab to field, from micro to macro-test of technologies for the production of hydrate bonded CH4 via CO2 sequestration in hydrates[C]//Proceedings of the 9th International Conference on Gas Hydrates. Denver, Colorado, USA, 2017.
[39] Lee Y, Seo Y. Experimental verification of CH4-CO2 or CH4-flue gas replacementthat occurs in various gas hydrate structures[C]//Proceedings of the 9th International Conference on Gas Hydrates. Denver, Colorado, USA, 2017.
[40] Ota M. Replacement of CH4 in the hydrate by use of liquid CO2[J]. Energy Conversion and Management, 2005, 46(11-12): 1680-1691. doi: 10.1016/j.enconman.2004.10.002
[41] He Y, Rudolph E S J, Zitha P L J, et al. Recovery of methane hydrates by CO2 injection: experimental investigation[C]//Proceedings of the 7th International Conference on Gas Hydrates. United Kingdom, 2011.
[42] Masuda Y, Maruta H, Naganawa S, et al. Methane recovery from hydrate-bearing sediments by N2-CO2 gas mixture injection: experimental investigation on CO2-CH4 exchange ratio[C]//Proceedings of the 7th International Conference on Gas Hydrates. United Kingdom, 2011.
[43] 孙建业, 刘乐乐, 王小文, 等.沉积物中甲烷水合物的CO2置换实验[J].天然气工业, 2015, 35(8): 56-62. doi: 10.3787/j.issn.1000-0976.2015.08.008 SUN Jianye, LIU Lele, WANG Xiaowen, et al. Experimental study on the replacement of methane hydrate in sediments with CO2[J]. Natural Gas Industry, 2015, 35(8): 56-62. doi: 10.3787/j.issn.1000-0976.2015.08.008
[44] 沈志远, 冯自平, 唐良广, 等.海洋渗漏型天然气水合物气力提升特性模型分析[J].能源工程, 2007(2): 17-20. doi: 10.3969/j.issn.1004-3950.2007.02.004 SHEN Zhiyuan, FENG Ziping, TANG Liangguang, et al. Modeling studies on the production process of offshore seepage gas hydrate by airlifting[J]. Energy Engineering, 2007(2): 17-20. doi: 10.3969/j.issn.1004-3950.2007.02.004
[45] 张旭辉, 鲁晓兵, 刘乐乐.天然气水合物开采方法研究进展[J].地球物理学进展, 2014, 29(2): 858-869. doi: 10.6038/pg20140252 ZHANG Xuhui, LU Xiaobing, LIU Lele. Advances in natural gas hydrate recovery methods[J]. Process in Geophysics, 2014, 29(2): 858-869. doi: 10.6038/pg20140252
[46] Dong H, Wu K S, Wu B, et al. Modular production system with decomposing natural gas hydrate and separating the sediments from NGH slurry on seabed[C]//Proceedings of the 9th International Conference on Gas Hydrates. Denver, Colorado, USA, 2017.
[47] Dallimore S R, Collett T S. Scientific Results from the Mallik 2002 Gas Hydrate Production Research Well Program, Mackenzie Delta, Northwest Territories, Canada[M]. Geological Survey of Canada, 2005.
[48] Anderson B I, Collett T S, Lewis R E, et al. Using open hole and cased-hole resistivity logs to monitor gas hydrate dissociation during a thermal test in the Mallik 5L-38 research well, Mackenzie Delta, Canada[J]. Petrophysics, 2008, 49(3): 285-294. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=cadca00a017911bc2196dc18e1cde5f8
[49] Kurihara M, Funatsu K, Ouchi H, et al. Analysis of the JOGMEC/NRCan/Aurora Mallik gas hydrate production test through numerical simulation[C]//Proceedings of the 6th International Conference on Gas Hydrates. Vancouver, British Columbia, Canada, 2008.
[50] Cyranoski D. Japanese test coaxes fire from ice[J]. Nature, 2013, 496(7446): 409. doi: 10.1038/496409a
[51] Takahashi H, Yonezawa T, Fercho E. Operation overview of the 2002 Mallik gas hydrate production research well program at the Mackenzie Delta in the Canadian Arctic[C]//Proceedings of the Offshore Technology Conference. Houston, Texas, USA: Offshore Technology Conference, 2003.
[52] Collett T S, Lewis R E, Winters W F, et al. Downhole well log and core montages from the Mount Elbert gas hydrate stratigraphic test well, Alaska North Slope[J]. Journal of Marine and Petroleum Geology, 2011, 28(2): 561-577. doi: 10.1016/j.marpetgeo.2010.03.016
[53] Kvamme B. Feasibility of simultaneous CO2 storage and CH4 production from natural gas hydrate using mixtures of CO2 and N2[J]. Canadian Journal of Chemistry, 2015, 93(8): 897-905. doi: 10.1139/cjc-2014-0501
[54] Song Y C, Cheng C X, Zhao J F, et al. Evaluation of gas production from methane hydrates using depressurization, thermal stimulation and combined methods[J]. Applied Energy, 2015, 145: 265-277. doi: 10.1016/j.apenergy.2015.02.040
[55] Falser S, Uchida S, Palmer A C, et al. Increased gas production from hydrates by combining depressurization with heating of the wellbore[J]. Energy and Fuels, 2012, 26(10): 6259-6267. doi: 10.1021/ef3010652
[56] Kurihara M, Sato A, Ouchi H, et al. Prediction of gas productivity from eastern Nankai Trough methane-hydrate reservoirs[C]//Offshore Technology Conference 2008. Houston, Texas, USA: Offshore Technology Conference, 2008.
[57] Moridis G J. Numerical studies of gas production from methane hydrates[J]. SPE Journal, 2003, 8(4): 359-370. doi: 10.2118/87330-PA
[58] Moridis G J, Collett T S, Dallimore S R, et al. Numerical studies of gas production from several CH4 hydrate zones at the Mallik site, Mackenzie Delta, Canada[J]. Journal of Petroleum Science and Engineering, 2004, 43(3-4): 219-238. doi: 10.1016/j.petrol.2004.02.015
[59] Myshakin E M, Ajayi T, Anderson B J, et al. Anderson Numerical simulations of depressurization-induced gas production from gas hydrates using 3-D heterogeneous models of L-Pad, Prudhoe Bay Unit, North Slope Alaska[J]. Journal of Natural Gas Science and Engineering, 2016, 35: 1336-1352. doi: 10.1016/j.jngse.2016.09.070
[60] 苏正, 吴能友, 张可霓.南海北部陆坡神狐天然气水合物开发潜力[J].海洋地质前沿, 2011(6): 16-23. http://d.old.wanfangdata.com.cn/Conference/8138063 SU Zheng, WU Nengyou, ZHANG Keni. Assessment of gas production potential of hydrate deposits at Shenhu area on northern continental slope of South China Sea[J]. Marine Geology Letters, 2011(6): 16-23. http://d.old.wanfangdata.com.cn/Conference/8138063
[61] 苏正, 何勇, 吴能友.南海北部神狐海域天然气水合物热激发开采潜力的数值模拟分析[J].热带海洋学报, 2012, 31(5): 74-82. doi: 10.3969/j.issn.1009-5470.2012.05.011 SU Zheng, HE Yong, WU Nengyou. Numerical simulation on production potential of hydrate deposits by thermal stimulation[J]. Journal of Tropical Oceanography, 2012, 31(5): 74-82. doi: 10.3969/j.issn.1009-5470.2012.05.011
[62] Jin G R, Xu T F, Xin X, et al. Numerical evaluation of the methane production from unconfined gashydrate-bearing sediment by thermal stimulation and depressurization in Shenhu area, South China Sea[J]. Journal of Natural Gas Science and Engineering, 2016, 33: 497-508. doi: 10.1016/j.jngse.2016.05.047
[63] Sun J X, Ning F L, Li S, et al. Numerical simulation of gas production from hydrate- bearing sediments[J]. Journal of Unconventional Oil and Gas Resources, 2015, 12: 23-33. doi: 10.1016/j.juogr.2015.08.003
[64] [65] Collett T S, Boswell R M. Gas Hydrate Research Site Selection and Operational Research Plans[M]. Washington, DC: American Geophysical Union, 2009.
[66] Fujii T, Noguchi S, Takayama T, et al. Site selection and formation evaluation at the 1st offshore methane hydrate production test site in the eastern Nankai Trough, Japan[C]//75th EAGE Conference and Exhibition., London, UK: EAGE, 2013.
[67] Heeschen K U, Abendroth S, Priegnitz M, et al. Gas production from methane hydrate: a laboratory simulation of the multistage depressurization test in mallik, Northwest Territories, Canada[J]. Energy and Fuels, 2016, 30(8): 6210-6219. doi: 10.1021/acs.energyfuels.6b00297
[68] Terao Y, Lay K, Yamamoto K. Design of the surface flow test system for 1st offshore production test of methane hydrate[C]//Offshore Technology Conference-Asia 2014. Kuala Lumpur, Malaysia: Offshore Technology Conference, 2014.
[69] Uchida S, Klar A, Yamamoto K. Sand production model in gas hydrate-bearing sediments[J]. International Journal of Rock Mechanics and Mining Sciences, 2016, 86: 303-316. doi: 10.1016/j.ijrmms.2016.04.009
[70] Terao Y, Lay K, Yamamoto K. Design of the surface flow test system for 1st offshore production test of methane hydrate[C]//Offshore Technology Conference-Asia 2014. Kuala Lumpur, Malaysia: Offshore Technology Conference, 2014.
[71] 李彦龙, 刘乐乐, 刘昌岭, 等.天然气水合物开采过程中的出砂与防砂问题[J].海洋地质前沿, 2016, 32(7): 36-43. doi: 10.16028/j.1009-2722.2016.07005 LI Yanlong, LIU Lele, LIU Changling, et al. Sanding prediction and sand-control technology in hydrate exploitation: a review and discussion[J]. Marine Geology Frontiers, 2016, 32(7): 36-43. doi: 10.16028/j.1009-2722.2016.07005
[72] Uchida S, Klar A, Charas Z, et al. Thermo-hydro-mechanical sand production model in hydrate-bearing sediments[C]//EAGE International Workshop on Geomechanics and Energy-The Ground as Energy Source and Storage. Lausanne, Switzerland: EAGE, 2013.
[73] Sun J X, Zhang L, Ning F L, et al. Production potential and stability of hydrate-bearing sediments at the site GMGS3-W19 in the South China Sea: A preliminary feasibility study[J]. Marine and Petroleum Geology, 2017, 86: 447-473. doi: 10.1016/j.marpetgeo.2017.05.037
[74] Lee J, Ahn T, Lee J Y, et al. Laboratory test to evaluate the performance of sand control screens during hydrate dissociation process by depressurization[C]//Proceedings of the Tenth ISOPE Ocean Mining and Gas Hydrates Symposium. Szczecin, Poland: International Society of Offshore and Polar Engineers, 2013.
[75] Yamamoto K, Terao Y, Fujii T, et al. Operational overview of the first offshore production test of methane hydrates in the eastern Nankai Trough[C]//Offshore Technology Conference 2014. Houston, Texas: Offshore Technology Conference, 2014.
[76] Yoneda J, Kakumoto M, Miyazaki K, et al. Evaluation of frictional properties for methane-hydrate-well completion and production[J]. SPE Drilling and Completion, 2014, 29(1): 115-124. doi: 10.2118/169897-PA
[77] 祝道平, 宁正福.利用高能气体压裂技术开采天然气水合物可行性分析[J].重庆科技学院学报:自然科学版, 2009, 11(3): 37-39. doi: 10.3969/j.issn.1673-1980.2009.03.011 ZHU Daoping, NING Fuzheng. High-energy gas fracturing technique to exploit natural gas hydrate reservoir[J]. Journal of Chongqing University of Science and Technology: Natural Sciences Edition, 2009, 11(3): 37-39. doi: 10.3969/j.issn.1673-1980.2009.03.011
[78] 孙小辉, 孙宝江, 王志远.超临界CO2压裂裂缝温度场模型[J].石油学报, 2015, 36(12): 1586-1592. doi: 10.7623/syxb201512014 SUN Xiaohui, SUN Baojiang, WANG Zhiyuan. Fissure temperature field model of supercritical CO2 fracturing[J]. Acta Pretrolei Sinica, 2015, 36(12): 1586-1592. doi: 10.7623/syxb201512014
[79] Seol Y, Myshakin E. Experimental and numerical observations of hydrate reformation during depressurization in a core-scale reactor[J]. Energy and Fuels, 2011, 25(3): 1099-1110. doi: 10.1021/ef1014567
[80] Liu Z J, Zerpa L E. Preliminary study of liquid loading problems for gas hydrate wells and selection of artificial lift methods[C]//SPE Western Regional Meeting. Anchorage, Alaska, USA: Society of Petroleum Engineers, 2016.
[81] 隋秀香, 郭旗, 李相方.油气井测试出砂监测技术[J].天然气工业, 2004, 24(5): 110-112. doi: 10.3321/j.issn:1000-0976.2004.05.036 SUI Xiuxiang, GUO Qi, LI Xiangfang. Sand production monitoring techniques of oil and gas wells[J]. Natural Gas Industry, 2004, 24(5): 110-112. doi: 10.3321/j.issn:1000-0976.2004.05.036
[82] Wilson A. System monitors sandface for deepwater offshore gas-hydrate production[J]. Journal of Petroleum Technology, 2014, 66(9): 102-105. doi: 10.2118/0914-0102-JPT
[83] Kurihara M, Sato A, Funatsu K, et al. Analysis of production data for 2007/2008 mallik gas hydrate production tests in Canada[C]//International Oil & Gas Conference & Exhibition in China. Beijing: Society of Petroleum Engineers, 2010.
[84] Dubreuil-Boisclair C, Gloaguen E, Bellefleur G, et al. Non-Gaussian gas hydrate grade simulation at the Mallik site, Mackenzie Delta, Canada[J]. Marine and Petroleum Geology, 2012, 35(1): 20-27. doi: 10.1016/j.marpetgeo.2012.02.020
[85] Schoderbek D, Farrell H, Hester K, et al. Conoco- Phillips gas hydrate production test final technical report[R]. United States Department of Energy, 2013.
[86] Nagao J, Jin Y, Konno Y, et al. Characterization of sediment cores containing methane hydrate recovered from the Eastern Nankai Trough[C]//AGU Fall Meeting Abstracts. Washington, DC: AGU, 2013.
[87] Boswell R, Collett T S. Current perspectives on gas hydrate resources[J]. Energy and Environmental Science, 2011, 4(4): 1206-1215. doi: 10.1039/C0EE00203H
[88] Haberer R M, Kai M, Wilkes H, et al. Occurrence and palaeoenvironmental significance of aromatic hydrocarbon biomarkers in Oligocene sediments from the Mallik 5L-38 Gas Hydrate Production Research Well (Canada)[J]. Organic Geochemistry, 2006, 37(5): 519-538. doi: 10.1016/j.orggeochem.2006.01.004
[89] Hancock S H, Collett T S, Dallimore S R, et al. Overview of thermal-stimulation production-test results for the JAPEX/JNOC/GSC et al. Mallik 5L-38 Gas Hydrate Production Research Well[M]. Dallimore S R, Collett T S. Scientific Results from the Mallik 2002 Gas Hydrate Production Research Well Program, Mackenzie Delta, Northwest Territories, Canada. Geological Survey of Canada, 2005.
[90] Hunter R B, Collett T S, Boswell R, et al. Mount Elbert gas hydrate stratigraphic test well, Alaska north slope: overview of scientific and technical program[J]. Marine and Petroleum Geology, 2011, 28(2): 295-310. doi: 10.1016/j.marpetgeo.2010.02.015
[91] Collett T, Bahk J J, Frye M, et al. Historical methane hydrate project review[R]. 2013.
[92] http://www.meti.go.jp/press/2017/06/20170629004/20170629004.html.
[93]