Gas hydrate reservoir types, characteristics and development methods
-
摘要: 天然气水合物作为潜能巨大、资源量丰富、燃烧值高的未来新能源,但由于其特殊的物理力学性质和赋存状态,经济开采技术仍面临诸多难题。本文以全球勘探发现存在天然气水合物的地区为基础,介绍了全球主要水合物的海陆资源分布及开采难易程度;以主要影响天然气水合物开采方式选择因素为基础,分析了天然气水合物在地层中的赋存类型、成藏模式和储层分类方法;以全球已开展的天然气水合物试采项目为基础,对比分析了现有多种天然气水合物开采方法的优缺点和适用条件;在现有开采方法条件下,为不同赋存状态、成藏模式和储层分类的天然气水合物选择出适合的开采方法,为建立完整的天然气水合物开采技术体系和未来实现商业化开采提供参考。Abstract: Natural gas hydrate is a new type of energy with huge resource potential and high combustion value. Due to its special occurrence and physical-mechanical properties, economic development of the resources still faces many problems and challenges. The distribution patterns of gas hydrate resources in the sea and on the land as well as the difficulties ever encountered in the exploitation of some major hydrate deposits in the world are studied in this paper as cases. Based on the mining methods selected, the occurrence, accumulation models and reservoir classification of gas hydrate underground are analyzed and discussed. Taking some pilot hydrate production projects as examples, various existing natural gas hydrate mining methods are compared and analyzed for their advantages, disadvantages and application feasibilities. Based upon the above discussion, suitable mining methods are selected and recommended. The paper may provide a reference for establishing a complete natural gas hydrate mining technology system for realization of commercial exploitation in the future.
-
Keywords:
- natural gas hydrate /
- occurrence type /
- accumulation mode /
- reservoir classification /
- mining method
-
天然气水合物是一种笼状结构的类冰状结晶化合物,主要是由甲烷和水分子结合而成,因其在冻土地区和海洋大陆边缘广泛分布、与海底稳定性相关,以及可能对全球气候具有潜在影响而广受关注[1-2]。新西兰Hikurangi大陆边缘每两年左右发生一次慢滑移事件[3],有关证据显示,多期次水合物形成分解可能是造成该区产生蠕变的重要原因之一[4]。
2017年11月—2018年1月执行了“蠕变中的天然气水合物滑动和Hikurangi随钻测井”为主旨的IODP372航次。该航次的主要目的之一是调查天然气水合物和海底滑坡的关系,因此,在新西兰Hikurangi边缘Tuaheni滑坡复合体(Tuaheni Landslide Complex,TLC)的U1517站位进行了随钻测井工作(图1)。该站位钻井的主要任务是通过在滑坡体和天然气水合物稳定区进行测井和采样,研究水合物与蠕变的关系。
20世纪末,研究人员在新西兰Hikurangi边缘发现地震高振幅异常和似海底反射(BSR)标志[4-7]。该区域反射地震[8-11]、电磁[12-14]、甲烷渗漏、海水甲烷浓度、与渗漏相关的沉积坍塌和冷泉等证据均指示有天然气水合物存在[15-19]。通过反射地震发现,Hikurangi大陆边缘的Tuaheni滑坡复合体显示了活动蠕变变形的特征,且蠕变中的近陆边缘与海底天然气水合物稳定带底部的尖灭相一致[4],因此,科学家认为水合物分解—形成过程可能与新西兰Hikurangi边缘的多期次慢滑移密切相关[4, 20-21]。TLC地区水合物分布和含量估算是研究蠕变与水合物关系的必要环节。Mountjoy提出3种机制解释浅层天然气水合物是如何导致慢滑移,主要认为是由于水合物的分解导致沉积物液化失稳、水合物分解对地层孔隙压力的影响和水合物含量对地层提供的不同支撑模式的影响[4]。不同饱和度的水合物对沉积物的支撑模式不同[22],因此,准确估算慢滑移区域水合物的饱和度可以进一步分析天然气水合物导致TLC慢滑移的原因,IODP372航次测井和取心为水合物饱和度估算提供了可靠资料。
由于声速和电阻率对水合物储层最为敏感,常用声学、电学模型来估算天然气水合物饱和度[23-24]。基于电阻率的模型有阿尔奇方程[25]和连通性方程[26];基于声速的模型有权重方程(Weighted equation,WE)[27]、等效介质理论(Effective Media Theory,EMT)模型[28]、改进的Biot-Gassmann理论(Biot-Gassmann Theory by Lee,BGTL)模型[29-30]和简化三相介质方程(Simplified Three-Phase Equation,STPE)[31]等,其中,常用于测井应用的模型主要是STPE和等效介质理论[32]两种。由于STPE模型参数较易获取,所以多次被实际应用于估算天然气水合物饱和度,均得到理想的预测效果[33-34];Hu等采用超声探测技术和时域反射技术实时探测了沉积物的纵横波速度和水合物饱和度的变化情况,检验了多种理论模型,发现BGTL理论预测的纵、横波速度更接近实测值[35],但BGTL模型中与岩石固结程度相关参数难以通过实际地层数据计算,从而导致较少被应用于测井数据估算水合物饱和度。本文主要通过STPE与BGTL模型对U1517站位水合物饱和度进行研究,在BGTL模型使用新的参数选取方法,使参数获取更为简易,计算过程中,根据岩性划分不同层段对应的矿物成分含量,用于纵波速度模型计算,以精确模型判断水合物储层深度分布和天然气水合物饱和度计算。
1. 测井数据分析
IODP372航次U1517站位测井位于38°S、178°E(图1),井深约205 mbsf。该航次通过随钻测井采集了井径、声波速度、伽马密度、孔隙度、自然伽马和电阻率等数据,其中纵波数据在160~168 mbsf层段内未获取。通过对LDEO(Lamont Doherty Earth Observatory)数据库提供的U1517站位原始测井数据进行解释分析,并拟合背景趋势线,结果如图2所示,实测纵波声速与背景拟合声速相比,速度增加出现在94~160 mbsf层段,氯离子浓度异常出现在104~160 mbsf层段;在94~104 mbsf层段纵波速度和孔隙度等明显增加,而电阻率与密度减小,氯离子浓度并无异常,该层段的异常与21~28 mbsf层段相似,可能为井孔和局部岩性变化造成(图中黄色区域)。天然气水合物稳定区大概位于104~160 mbsf,并且在130~145 mbsf层段(图中绿色区域),纵波速度、电阻率和井径明显增加,密度减小。该航次从U1517站位获得多个柱状样品,使用红外热像仪进行扫描,温度异常表明天然气水合物的存在,并发现在岩心的上层沉积物或其岩心采集器中有甲烷释放[37]。图3所示为地层因子与纵波速度交会图,由于含天然气水合物的沉积物具有较高的纵波速度和地层因子,所以含天然气水合物的沉积地层的交会图显示高于饱和水沉积地层[34],在130~145 mbsf层段显示较高的地层因子和纵波速度。
2. 储层水合物饱和度估算
依据国际大洋发现计划出版物(International Ocean Discovery Program Publications)[36]获取矿物类型及含量数据,基于该数据,根据岩性划分不同层段对应的矿物成分含量,结果如图4所示,用于纵波速度模型计算,以精确天然气水合物饱和度计算值。岩石骨架的不同矿物类型的物性参数如表1所示。
2.1 简化三相介质模型(STPE)
含天然气水合物储层具有相对较高的纵横波速度。本次研究中使用STPE模拟U1517站位井的纵波速度,其中用于纵波速度(Vp)建模的STPE[31, 33]使用等式(1)对水合物储层的纵波速度建模:
$${V_{\rm{p}}} = \sqrt {\frac{{k + {\rm{4}}\mu /{\rm{3}}}}{\rho }} , \; {V_{\rm{s}}} = \sqrt {\frac{\mu }{\rho }} $$ (1) 式中ρ是含天然气水合物沉积模型的体积密度,k是体积模量,μ是剪切模量。建模参数ε是解释在加强主体沉积物骨架方面天然气水合物形成相对于压实的影响减小,Lee和Waite推荐使用ε=0.12为建模数值[30]。在Vp和Vs建模中使用的参数α使用等式(2)计算:
$${\alpha _{\rm{i}}} = {\alpha _0}{({p_0}/{p_i})^{\rm{n}}} \approx {\alpha _0}{({d_0}/{d_{\rm{i}}})^{\rm{n}}}$$ (2) 式中α0是有效压力p0和深度d0的固结参数,αi是有效压力pi和深度di的固结参数,固结参数可以使用饱和水沉积物的速度来估算[40]。固结参数取决于固结程度和该区域的有效压力,Mindlin认为体积模和剪切模量为有效压力的1/3幂[41],因此不同位置,根据研究区域的主要岩性,α的值随深度而变化[40]。通过建模速度基线和实测纵波速度之间的最佳拟合选定α的值[40],本次研究用于U1517站位井的固结参数αi=42(60/di)1/3。使用上述参数,获得了井下剖面背景纵波速度和天然气水合物饱和度,饱和水沉积地层VP符合程度较高(图5,图6),黑色实线为航次实测纵波速度,红色实线为本文利用STPE模型计算结果,如图5所示,104~160 mbsf层段内测井实测VP大于理论基线速度,可能属于天然气水合物储层区,利用航次实测数据和模型结果计算出水合物饱和度(图6)。结果显示,在104~160 mbsf的深度区间内平均饱和度约为5.2%,最高饱和度达到22.7%,其中130~145 mbsf层段内水合物饱和度较高,平均饱和度为7.9%。
2.2 改进的Biot-Gassmann模型(BGTL)
BGTL理论建立在经典的BGT理论(Biot-Gassmann Theory)上,在预测速度时不仅考虑了分压的影响,而且还考虑了岩石的孔隙度、固结度等因素的影响[35]。在BGTL模型计算中,将天然气水合物作为基质中的一种矿物成分。本研究用于VP建模的BGTL模型使用等式(1)进行。
公式(1)中沉积介质的剪切模量μ可由下式计算:
$$ \mu=\frac{\mu_{\rm{ma}}{ G}^2\left(1-\varPhi\right)^{2{ n}}{ k}}{{{k_{\rm{ma}}}}+4\mu_{\rm{ma}}\left[1-{ G}^2\left(1-\varPhi\right)^{2{ n}}\right]/3} $$ (3) 式中,kma为岩石骨架的体积模量;μma为岩石骨架的剪切模量;Φ为孔隙度;常数G主要用来校正由基质中的黏土引起的差异。Han等通过实验室数据表明G = 1对清洁砂岩有利[42],随着黏土体积增加,G将按下式(4)计算减少:
$${{G}} = 0.955\;2 + 0.044\;8{{\rm{e}}^{ - {C_{\rm{v}}}{\rm{/}}0.067\;14}}$$ (4) 式中,泥质含量Cv可使用来自U1517A井的伽马射线测井数据通过公式(5)[34]估算:
$${C_{\rm{v}}} = 0.083({2^{{\rm{GCUR}} \times {{\rm{I}}_{{\rm{GR}}}}}} - 1)$$ (5) 式中,GCUR是与地层有关的经验系数,新地层(古新近系地层)GCUR=3.7[43],IGR为通过伽马测井数据计算的伽马射线指数,可由公式(6)计算:
$${{\rm{I}}_{{\rm{GR}}}} = \frac{{{\rm{G}}{{\rm{R}}_{{\rm{log}}}} - {\rm{G}}{{\rm{R}}_{{\rm{min}}}}}}{{{\rm{G}}{{\rm{R}}_{{\rm{max}}}} - {\rm{G}}{{\rm{R}}_{{\rm{min}}}}}}$$ (6) 式中,GRlog为测井伽马值,GRmin为砂岩层伽马值,GRmax为泥岩层伽马值。
公式(3)中参数n取决于分压大小及岩石的固结程度,可由公式(7)得到:
$${{n}} = [{\rm{1}}{{\rm{0}}^{({\rm{0}}.{\rm{426}} - {\rm{0}}.{\rm{235Log10}}p)}}]{{/m}}$$ (7) 测量数据表明m≈5适合于固结沉积物,m≈1.5适用于疏松沉积物[29];如图7所示利用BGTL预测饱和水沉积地层段(0~90 mbsf)速度和实测纵波速度对比,其中使用P=8.0 MPa和CV=58%,改变m值预测速度,在高孔隙度低纵波速度时m=2.5预测速度拟合程度高,而在低孔隙度高声速时,m值应小于2.5,大于1。在可能含天然气水合物地层(104~160 mbsf)的中子孔隙度主要为45%~65%,因此,本次研究建模使用m=2.5。
使用上述参数,获得了井下剖面背景纵波速度和天然气水合物饱和度(图8,图9),如图所示,黑色实线为航次实测纵波速度,红色实线为本文使用BGTL模型计算结果,绿色区域为利用航次实测与模型速度计算的水合物饱和度,104~160 mbsf层段内测井实测VP大于理论饱和水背景VP,可能属于水合物储层区,因此导出水合物饱和度。结果显示,在104~160 mbsf的深度区间内平均饱和度约为6.0%,最高饱和度达到21.6%,其中130~145 mbsf层段内平均水合物饱和度为8.5%。
3. 讨论
图10为U1517站位井在104~160 mbsf层段的测井曲线,通过测井数据和背景基线看出存在3层纵波速度和电阻率明显异常的含水合物层段,同时,井径、密度和伽马测井数据均有不同程度的异常。在112~114 mbsf层段,环电阻率和声波速度明显增加,最高峰值分别为9.25 Ω·m和1.79 km/s,可能为含天然气水合物的薄层;在130~145 mbsf层段,环电阻率和声波速度最高峰值分别为2.88 Ω·m和1.90 km/s,属于较厚层的含水合物区域;在150~160 mbsf层段,密度与自然伽马降低较为明显,环电阻率和声波速度最高峰值分别为1.97 Ω·m和1.83 km/s。
图 10 U1517站位井井径、纵波速度、电阻率、密度和伽马测井曲线Vp为实测声波速度,Vpw为背景速度值;Rt-Ring为环电阻率;Rt-P40L为低频随钻相移电阻;R0为背景电阻率值。Figure 10. The well logs from site U1517A showing the caliper, P-wave velocity, resistivity, density and gamma rayVp is measured velocity, Vpw is calculated velocity baseline, Rt-Ring is ring resistivity, Rt-P40L is 400 kHz phasor resistivity, R0 is calculated resistivity baseline.如图11所示,由纵波速度数据通过STPE和BGTL模型估算了U1517站位井104~160 mbsf层段的天然气水合物饱和度,并与IODP372航次科学家利用阿尔奇公式和氯离子浓度两种方法计算结果相比较。STPE、BGTL和航次科学家利用阿尔奇公式3种模型在104~160 mbsf层段计算的平均饱和度分别为5.2%、6.0%和6.5%,130~145 mbsf层段的平均饱和度分别为7.9%、8.5%和9.6%;130~145 mbsf层段符合航次科学家使用氯离子浓度含量估算的高饱和度层段。112~114 mbsf和130~145 mbsf层段,阿尔奇公式估算的最高饱和度分别为56%和49%,大于BGTL和STPE计算结果,但是电阻率识别高饱和度薄层水合物约为2~5 cm,而声波测井分辨率约为15 cm,该薄层饱和度异常可能由于声波测井无法探测到而引起的,同时井径也发生变化,可能影响随钻测井速度与电阻率。氯离子异常在局部地层出现异常高值,从岩心分析看,异常高值与薄砂层相对应。因此,在104~160 mbsf层段3种方法估算的饱和度随深度变化相似,表明不同测井数据之间差异不大,且天然气水合物平均饱和度最高的层段为130~145 mbsf。使用STPE和BGTL模型计算的饱和水地层(0~90 mbsf)的纵波速度与实测纵波速度比较见图12所示,对于U1517井BGTL模型比STPE模型更适用于该站位水合物饱和度估算。
4. 结论
(1)通过U1517站位随钻测井和岩心数据综合分析,证实了该站位黏土质粉砂岩性不同层位存在天然气水合物,水合物呈层状分布。天然气水合物储层区域在104~160 mbsf层段,其中存在3层纵波速度和电阻率明显异常的含水合物层段(112~114、130~145和150~160 mbsf),112~114 mbsf层段可能为薄的天然气水合物层,而130~145 mbsf层段相较于其他层段水合物饱和度相对较高。其中112~114 mbsf层段天然气水合物饱和度最高,130~145 mbsf层段为主要天然气水合物赋存区域。
(2)依据LWD和取心数据,在计算过程中,根据岩性划分不同井段对应的矿物成分含量,用于纵波速度模型计算,并使用饱和水地层孔隙度与纵波速度拟合得到BGTL模型参数的方法,使BGTL模型更便于应用到测井资料估算水合物饱和度,通过STPE和BGTL模型计算出了U1517站位的水合物饱和度,并比较分析两种模型在饱和水地层的预测与实测纵波速度表明BGTL拟合度高于STPE;计算结果与航次科学家估算的饱和度相比,平均饱和度相近,3种方法计算的水合物饱和度值随深度变化相似,表明计算结果的合理性。
致谢:本研究所用样品和数据由IODP372航次提供,中国IODP办公室提供了胡高伟参加航次的旅费资助,在此一并致谢!
-
图 3 不同天然气水合物系统的组成原理[55]
a. 水合物充填脉状网,b. 大的水合物透镜体,c. 在海洋砂中颗粒充填水合物,d. 大的海底丘,e. 在海洋黏土中孔隙充填水合物,f. 在陆地北极地区砂岩或砾岩中孔隙充填水合物。
Figure 3. Occurrence of different gas hydrate systems[55]
a. networks of hydrate-filled veins, b. massive hydrate lenses, c. grain-filling methane hydrate in marine sands, d. massive sea-floor mounds, e. grain-filling methane hydrate in marine clays, f. grain-filling methane hydrate in onshore Arctic sands/conglomerates.
表 1 全世界主要的陆地冻土和海域水合物分布带[31]
Table 1 Major marine and land gas hydrate distribution zones in the world[31]
类型 地理位置 埋藏深度及分布范围 勘探及试采地点 陆地冻土
水合物麦索雅哈河流域至西伯利亚北部区域 水合物埋藏深度为300~1 000 m,分布面积为1 700×106 km2。 麦索雅哈气田 普拉德霍湾至阿拉斯加北坡区域 水合物埋藏深度为210~950 m,阿拉斯加北坡砂质储层的平均资源量为 2.4万亿m3 [32] 普拉德霍湾气田Ignik Sikumi项目;Mount Elbert地质探井 麦肯齐三角洲盆地及北极区域 水合物埋藏深度为200 m以下,水合物储量约为0.01~1万亿m3,潜在的甲烷储量大约为1~100万亿m3[29] 麦肯齐三角洲理查德岛的Mallik区块 青藏高原永久冻土区域 水合物埋藏在永久冻土层之下133~396 m,冻土面积达215×104 km2[33] 祁连山永久冻土区钻井 海域水合物 北冰洋的水合物生成带 水合物分布在北极大陆架90 m水深至海底的永久冻土带 加拿大北极岛 大西洋的水合物生成带 布莱克海脊(水合物矿床厚度约20 m,原地资源量超28万亿m3[34])、墨西哥湾(水合物埋深泥线以下500~1 000 m区域)、加勒比海、斯匹次卑尔根岛边缘、几内亚湾(水合物水深超过1 200 m,总覆盖面积达到
35 000 km2的区域[35])东海岸布莱克海台大洋钻探、墨西哥湾近海勘探、西非喀麦隆近海勘查 太平洋的水合物生成带 中国南海(水合物资源量估算值为6.3×1013 m3,其中南海北部陆坡资源量为4.0×1013 m3[36])、日本南海海槽(水合物面积为7 000 km2,原地气资源量平均估算值约1.1万亿m3[37])、韩国东海郁陵盆地(存在大量水合物“气烟囱”构造,水合物矿床可能藏有1.2亿t的碳[14])、新西兰希库朗伊海槽(水合物中估计含有5~11万亿m3甲烷[38])、白令海、鄂霍茨克海、中美洲海槽、北加利福尼亚俄勒冈近海、秘鲁海槽 神狐海域、Nankai海槽、Ulleung盆地、鄂霍茨克海千岛盆地 印度洋的水合物生成带 印度半岛近海(水合物的存在区域约1.5 km2[39])、孟加拉湾、阿拉伯海(水合物沉积面积约80000 km2)、阿曼湾(水合物层稳定存在于350~700 m的沉积物层) Krishna Godavari盆地、Makran Margin 陆地内海的水合物生成带 黑海(水合物层厚度为160~500 m,分布面积约为3.0×104 km2,总量约为42×1012 m3)、里海(水合物层位于海床下390~480 m,厚度约为134~152 m[40-41])、亚速海盆地、贝加尔湖(水合物资源量估算相当于(0.88~9)×1012 m3的天然气[42]) Crimea、Caucasus、贝加尔湖 表 2 全世界主要的水合物勘探区水合物藏的特征和主要开采方法
Table 2 Characteristics and main mining methods of hydrate reservoirs in major hydrate exploration areas around the world
类型 勘探区域 储层岩性 赋存类型 成藏模式 主要开采方法 陆地冻土水合物 俄罗斯麦索雅哈气田 砂岩 孔隙充填型 成岩型 降压法 美国阿拉斯加北坡冻土带 砂岩 孔隙充填型 成岩型 降压法 加拿大麦肯齐三角洲盆地 砂岩、砾岩 孔隙充填型 成岩型 降压法 中国祁连山永久冻土带 泥岩、粉砂岩 孔隙充填型,块状、层状 成岩型 降压法结合置换法 海域水合物 中国南海神狐海域 粉沙质黏土、含粉沙黏土 孔隙充填型,脉状、结节状 构造型 置换法结合降压法 美国布莱克海脊 黏土质粉砂、粉砂质黏土 孔隙充填型,极少数块状、结节状、层状、脉状 构造型 置换法结合降压法 美国墨西哥湾 火山碎屑砂岩、砂岩夹泥等细粒沉积物 孔隙充填型,部分裂隙充填型 构造型 置换法结合降压法 日本南海海槽 粉沙质沙、黏土质粉沙 孔隙充填型 构造型 置换法结合降压法 韩国郁陵盆地 黏土质粉砂岩、砂质粉砂岩、粉砂质砂岩 裂隙充填型,部分孔隙充填型,少数块状 构造型 置换法结合降压法 印度近海 粉砂质黏土 裂隙充填型 复合型 降压法结合置换法 -
[1] Andreassen K, Hart P E, MacKay M. Amplitude versus offset modeling of the bottom simulating reflection associated with submarine gas hydrates [J]. Marine Geology, 1997, 137(1-2): 25-40. doi: 10.1016/S0025-3227(96)00076-X
[2] Archer D. Methane hydrate stability and anthropogenic climate change [J]. Biogeosciences, 2007, 4: 521-544. doi: 10.5194/bg-4-521-2007
[3] Byk S S, Formina V I. Gas hydrates [J]. Russian Chemical Reviews, 1968, 37(6): 469-491. doi: 10.1070/RC1968v037n06ABEH001654
[4] Kvenvolden K A. Methane hydrate-A major reservoir of carbon in the shallow geosphere? [J]. Chemical Geology, 1988, 71(1-3): 41-51. doi: 10.1016/0009-2541(88)90104-0
[5] Kvenvolden K A. Potential effects of gas hydrate on human welfare [J]. Proceedings of the National Academy of Sciences of the United States of America, 1999, 96(7): 3420-3426. doi: 10.1073/pnas.96.7.3420
[6] Archer D, Buffett B, Brovkin V. Ocean methane hydrates as a slow tipping point in the global carbon cycle [J]. Proceedings of the National Academy of Sciences of the United States of America, 2009, 106(49): 20596-20601. doi: 10.1073/pnas.0800885105
[7] Boswell R, Collett T S. Current perspectives on gas hydrate resources [J]. Energy and Environmental Science, 2011, 4(4): 1206-1215. doi: 10.1039/C0EE00203H
[8] Chong Z R, Yang S H B, Babu P, et al. Review of natural gas hydrates as an energy resource: Prospects and challenges [J]. Applied Energy, 2016, 162: 1633-1652. doi: 10.1016/j.apenergy.2014.12.061
[9] Sloan E D Jr. Fundamental principles and applications of natural gas hydrates [J]. Nature, 2003, 426(6964): 353-359. doi: 10.1038/nature02135
[10] Collett T S. Energy resource potential of natural gas hydrates [J]. AAPG Bulletin, 2002, 86(11): 1971-1992.
[11] Kerr R A. Gas hydrate resource: smaller but sooner [J]. Science, 2004, 303(5660): 946-947. doi: 10.1126/science.303.5660.946
[12] Ye J L, Qin X W, Xie W W, et al. The second natural gas hydrate production test in the South China Sea [J]. China Geology, 2020, 3(2): 197-209.
[13] Lee J Y, Ryu B J, Yun T S, et al. Review on the gas hydrate development and production as a new energy resource [J]. KSCE Journal of Civil Engineering, 2011, 15(4): 689-696. doi: 10.1007/s12205-011-0009-3
[14] Seol J, Lee H. Natural gas hydrate as a potential energy resource: From occurrence to production [J]. Korean Journal of Chemical Engineering, 2013, 30(4): 771-786. doi: 10.1007/s11814-013-0033-8
[15] Liu L P, Sun Z L, Zhang L, et al. Progress in global gas hydrate development and production as a new energy resource [J]. Acta Geologica Sinica, 2019, 93(3): 731-755. doi: 10.1111/1755-6724.13876
[16] Durham W B, Kirby S H, Stern L A, et al. The strength and rheology of methane clathrate hydrate [J]. Journal of Geophysical Research: Solid Earth, 2003, 108(B4): 2182.
[17] Dickens G R. A methane trigger for rapid warming? [J]. Science, 2003, 299(5609): 1017. doi: 10.1126/science.1080789
[18] Gu G S, Dickens G R, Bhatnagar G, et al. Abundant Early Palaeogene marine gas hydrates despite warm deep-ocean temperatures [J]. Nature Geoscience, 2011, 4(12): 848-851. doi: 10.1038/ngeo1301
[19] Sultan N, Cochonat P, Foucher J P, et al. Effect of gas hydrates melting on seafloor slope instability [J]. Marine Geology, 2004, 213(1-4): 379-401. doi: 10.1016/j.margeo.2004.10.015
[20] Archer D, Buffett B. Time-dependent response of the global ocean clathrate reservoir to climatic and anthropogenic forcing [J]. Geochemistry, Geophysics, Geosystems, 2005, 6(3): Q03002.
[21] Brown H E, Holbrook W S, Hornbach M J, et al. Slide structure and role of gas hydrate at the northern boundary of the Storegga Slide, offshore Norway [J]. Marine Geology, 2006, 229(3-4): 179-186. doi: 10.1016/j.margeo.2006.03.011
[22] Collett T S, Johnson A H, Knapp C C, et al. Natural gas hydrates: a review [J]. Browse Collections, 2009, 89: 146-219.
[23] Li J F, Ye J L, Qin X W, et al. The first offshore natural gas hydrate production test in South China Sea [J]. China Geology, 2018, 1(1): 5-16. doi: 10.31035/cg2018003
[24] Yu T, Guan G Q, Abudula A. Production performance and numerical investigation of the 2017 offshore methane hydrate production test in the Nankai Trough of Japan [J]. Applied Energy, 2019, 251: 113338. doi: 10.1016/j.apenergy.2019.113338
[25] 陈强, 胡高伟, 李彦龙, 等. 海域天然气水合物资源开采新技术展望[J]. 海洋地质前沿, 2020, 36(9):44-55 CHEN Qiang, HU Gaowei, LI Yanlong, et al. A prospect review of new technology for development of marine gas hydrate resources [J]. Marine Geology Frontiers, 2020, 36(9): 44-55.
[26] 李守定, 孙一鸣, 陈卫昌, 等. 天然气水合物开采方法及海域试采分析[J]. 工程地质学报, 2019, 27(1):55-68 LI Shouding, SUN Yiming, CHEN Weichang, et al. Analyses of gas production methods and offshore production tests of natural gas hydrates [J]. Journal of Engineering Geology, 2019, 27(1): 55-68.
[27] Makogon Y F. Natural gas hydrates-A promising source of energy [J]. Journal of Natural Gas Science and Engineering, 2010, 2(1): 49-59. doi: 10.1016/j.jngse.2009.12.004
[28] Moridis G J, Collett T S, Pooladi-Darvish M, et al. Challenges, uncertainties and issues facing gas production from gas hydrate deposits [J]. SPE Reservoir Evaluation and Engineering, 2011, 14(1): 76-112. doi: 10.2118/131792-PA
[29] Lu S M. A global survey of gas hydrate development and reserves: Specifically in the marine field [J]. Renewable and Sustainable Energy Reviews, 2015, 41: 884-900. doi: 10.1016/j.rser.2014.08.063
[30] Waite W F, Ruppel C D, Boze L G, et al. Preliminary global database of known and inferred gas hydrate locations: U. S. Geological Survey Data Release, https://doi.org/10.5066/P9llFVJM, 2020.
[31] Liu B, Yuan Q, Su K H, et al. Experimental simulation of the exploitation of natural gas hydrate [J]. Energies, 2012, 5(2): 466-493. doi: 10.3390/en5020466
[32] Collett T S, Lewis R E, Winters W J, et al. Downhole well log and core montages from the Mount Elbert Gas Hydrate Stratigraphic Test Well, Alaska North Slope [J]. Marine and Petroleum Geology, 2011, 28(2): 561-577. doi: 10.1016/j.marpetgeo.2010.03.016
[33] 周幼吾, 郭东信, 邱国庆, 等. 中国冻土[M]. 北京: 科学出版社, 2000: 10-11. ZHOU Youwu, GUO Dongxin, QIU Guoqing, et al. China's Permafrost[M]. Beijing: Science Press, 2000: 10-11.
[34] Moridis G J, Sloan E D. Gas production potential of disperse low-saturation hydrate accumulations in oceanic sediments [J]. Energy Conversion and Management, 2007, 48(6): 1834-1849. doi: 10.1016/j.enconman.2007.01.023
[35] Le A N, Huuse M, Redfern J, et al. Seismic characterization of a Bottom Simulating Reflection (BSR) and plumbing system of the Cameroon margin, offshore West Africa [J]. Marine and Petroleum Geology, 2015, 68: 629-647. doi: 10.1016/j.marpetgeo.2014.12.006
[36] 卢振权, 吴必豪, 金春爽. 天然气水合物资源量的一种估算方法: 以南海北部陆坡为例[J]. 石油实验地质, 2007, 29(3):319-323, 328 doi: 10.3969/j.issn.1001-6112.2007.03.019 LU Zhenquan, WU Bihao, JIN Chunshuang. A method for gas hydrate resource estimation: An example of preliminary estimation of gas hydrates in the northern continental slope, South China Sea [J]. Petroleum Geology and Experiment, 2007, 29(3): 319-323, 328. doi: 10.3969/j.issn.1001-6112.2007.03.019
[37] Collett T, Johnson A, Knapp C, et al. Natural Gas Hydrates-Energy Resource Potential and Associated Geologic Hazards[M]. Oklahoma, Tulsa: American Association of Petroleum Geologists, 2011: 50-51.
[38] Kroeger K F, Plaza-Faverola A, Barnes P M, et al. Thermal evolution of the New Zealand Hikurangi subduction margin: Impact on natural gas generation and methane hydrate formation – A model study [J]. Marine and Petroleum Geology, 2015, 63: 97-114. doi: 10.1016/j.marpetgeo.2015.01.020
[39] Riedel M, Collett T S, Shankar U. Documenting channel features associated with gas hydrates in the Krishna-Godavari Basin, offshore India [J]. Marine Geology, 2011, 279(1-4): 1-11. doi: 10.1016/j.margeo.2010.10.008
[40] Kida M, Khlystov O, Zemskaya T, et al. Coexistence of structure I and II gas hydrates in Lake Baikal suggesting gas sources from microbial and thermogenic origin [J]. Geophysical Research Letters, 2006, 33(24): L24603. doi: 10.1029/2006GL028296
[41] Kide M, Hachikubo A, Sakagami H, et al. Natural gas hydrates with locally different cage occupancies and hydration numbers in Lake Baikal [J]. Geochemistry, Geophysics, Geosystems, 2009, 10(5): Q05003.
[42] 肖莹莹, 左力艳, 张诚. 天然气水合物研究与开发试验概述[J]. 内蒙古石油化工, 2018, 44(10):18-22 doi: 10.3969/j.issn.1006-7981.2018.10.004 XIAO Yingying, ZUO Liyan, ZHANG Cheng. An overview of the international gas hydrate research and trial production [J]. Inner Mongolia Petrochemical Industry, 2018, 44(10): 18-22. doi: 10.3969/j.issn.1006-7981.2018.10.004
[43] Musakaev N G, Khasanov M K, Borodin S L. The mathematical model of the gas hydrate deposit development in permafrost [J]. International Journal of Heat and Mass Transfer, 2018, 118: 455-461. doi: 10.1016/j.ijheatmasstransfer.2017.10.127
[44] 关进安, 樊栓狮, 梁德青, 等. 自然界天然气水合物勘探开发概述[J]. 新能源进展, 2019, 7(6):522-531 GUAN Jin’an, FAN Shuanshi, LIANG Deqing, et al. An overview on gas hydrate exploration and exploitation in natural fields [J]. Advances in New and Renewable Energy, 2019, 7(6): 522-531.
[45] Bhatnagar G, Chapman W G, Dickens G R, et al. Generalization of gas hydrate distribution and Saturation in marine sediments by scaling of thermodynamic and transport processes [J]. American Journal of Science, 2007, 307(6): 861-900. doi: 10.2475/06.2007.01
[46] 宣之强, 李钟模, 吴必豪, 等. 天然气水合物新能源简介-对全球试采、开发和研究天然气水合物现状的综述[J]. 化工矿产地质, 2018, 40(1):48-52 doi: 10.3969/j.issn.1006-5296.2018.01.009 XUAN Zhiqiang, LI Zhongmo, WU Bihao, et al. Introduction to new energy gas hydrate - A review on globle pilot production, development and reserch status of gas hydrate [J]. Geology of Chemical Minerals, 2018, 40(1): 48-52. doi: 10.3969/j.issn.1006-5296.2018.01.009
[47] Boswell R. Is gas hydrate energy within reach? [J]. Science, 2009, 325(5943): 957-958. doi: 10.1126/science.1175074
[48] Max M D, Johnson A H. Hydrate petroleum system approach to natural gas hydrate exploration [J]. Petroleum Geoscience, 2014, 20(2): 187-199. doi: 10.1144/petgeo2012-049
[49] 吴西顺, 黄文斌, 刘文超, 等. 全球天然气水合物资源潜力评价及勘查试采进展[J]. 海洋地质前沿, 2017, 33(7):63-78 WU Xishun, HUANG Wenbin, LIU Wenchao, et al. World-wide progress of resource potential assessment, exploration and production test of natural gas hydrate [J]. Marine Geology Frontiers, 2017, 33(7): 63-78.
[50] 程聪, 姜涛, 匡增桂, 等. 天然气水合物系统特征及其对我国水合物勘查的启示[J]. 地质科技情报, 2019, 38(4):30-40 CHENG Cong, JIANG Tao, KUANG Zenggui, et al. Characteristics of gas hydrate system and its enlightenment to gas hydrate exploration in China [J]. Geological Science and Technology Information, 2019, 38(4): 30-40.
[51] 樊栓狮, 关进安, 梁德青, 等. 天然气水合物动态成藏理论[J]. 天然气地球科学, 2007, 18(6):819-826 doi: 10.3969/j.issn.1672-1926.2007.06.009 FAN Shuanshi, GUAN Jin’an, LIANG Deqing, et al. A dynamic theory on natural gas hydrate reservoir formation [J]. Natural Gas Geoscience, 2007, 18(6): 819-826. doi: 10.3969/j.issn.1672-1926.2007.06.009
[52] Malone R D. Overview gas hydrate geology and geography [J]. Annals of the New York Academy of Sciences, 1994, 715(1): 225-231.
[53] Uchida T, Dallimore S, Mikami J. Occurrences of natural gas hydrates beneath the permafrost zone in Mackenzie delta: visual and X-ray CT imagery [J]. Annals of the New York Academy of Sciences, 2000, 912(1): 1021-1033.
[54] Collett T, Bahk J J, Baker R, et al. Methane hydrates in nature - current knowledge and challenges [J]. Journal of Chemical and Engineering Date, 2015, 60(2): 319-329. doi: 10.1021/je500604h
[55] 卜庆涛, 胡高伟, 业渝光, 等. 天然气水合物成藏体系研究进展[J]. 新能源进展, 2015, 3(6):435-443 doi: 10.3969/j.issn.2095-560X.2015.06.005 BU Qingtao, HU Gaowei, YE Yuguang, et al. Research progress in natural gas hydrate accumulation system [J]. Advances in New and Renewable Energy, 2015, 3(6): 435-443. doi: 10.3969/j.issn.2095-560X.2015.06.005
[56] Ye J L, Wei J G, Liang J Q, et al. Complex gas hydrate system in a gas chimney, South China Sea [J]. Marine and Petroleum Geology, 2019, 104: 29-39. doi: 10.1016/j.marpetgeo.2019.03.023
[57] Cheng B, Xu J B, Lu Z Q, et al. Hydrocarbon source for oil and gas indication associated with gas hydrate and its significance in the Qilian Mountain permafrost, Qinghai, Northwest China [J]. Marine and Petroleum Geology, 2018, 89: 202-215. doi: 10.1016/j.marpetgeo.2017.02.019
[58] Dai J C, Xu H B, Snyder F, et al. Detection and estimation of gas hydrates using rock physics and seismic inversion: examples from the northern deepwater Gulf of Mexico [J]. The Leading Edge, 2004, 23(1): 60-66. doi: 10.1190/1.1645456
[59] Holland G P, Jenkins J E, Creager M S, et al. Solid-state NMR investigation of major and minor ampullate spider silk in the native and hydrated states [J]. Biomacromolecules, 2008, 9(2): 651-657. doi: 10.1021/bm700950u
[60] 刘杰, 孙美静, 杨睿, 等. 马更些三角洲冻土区天然气水合物成藏的地质控制因素[J]. 新能源进展, 2018, 6(1):47-54 doi: 10.3969/j.issn.2095-560X.2018.01.008 LIU Jie, SUN Meijing, YANG Rui, et al. Geologic controls on permafrost-associated gas hydrate occurrence in the Mackenzie delta [J]. Advances in New and Renewable Energy, 2018, 6(1): 47-54. doi: 10.3969/j.issn.2095-560X.2018.01.008
[61] 何梅兴, 方慧, 祝有海, 等. 祁连山哈拉湖坳陷地质构造特征及天然气水合物成藏地质条件研究[J]. 中国地质, 2020, 47(1):173-187 doi: 10.12029/gc20200114 HE Meixing, FANG Hui, ZHU Youhai, et al. A study of geological structural features of Hala Lake Depression in Qilian Mountain and reservoir-forming conditions of natural gas hydrate [J]. Geology in China, 2020, 47(1): 173-187. doi: 10.12029/gc20200114
[62] 杨承志, 罗坤文, 梁金强, 等. 南海北部神狐海域浅层深水沉积体对天然气水合物成藏的控制[J]. 天然气工业, 2020, 40(8):68-76 doi: 10.3787/j.issn.1000-0976.2020.08.005 YANG Chengzhi, LUO Kunwen, LIANG Jinqiang, et al. Control effect of shallow-burial deepwater deposits on natural gas hydrate accumulation in the Shenhu sea area of the northern South China Sea [J]. Natural Gas Industry, 2020, 40(8): 68-76. doi: 10.3787/j.issn.1000-0976.2020.08.005
[63] 樊栓狮, 刘锋, 陈多福. 海洋天然气水合物的形成机理探讨[J]. 天然气地球科学, 2004, 15(5):524-530 doi: 10.3969/j.issn.1672-1926.2004.05.017 FAN Shuanshi, LIU Feng, CHEN Duofu. The research of the origin mechanism of marine gas hydrate [J]. Natural Gas Geoscience, 2004, 15(5): 524-530. doi: 10.3969/j.issn.1672-1926.2004.05.017
[64] Lee M W, Collett T S. Pore- and fracture-filling gas hydrate reservoirs in the Gulf of Mexico Gas Hydrate Joint Industry Project Leg II Green Canyon 955H well [J]. Marine and Petroleum Geology, 2012, 34(1): 62-71. doi: 10.1016/j.marpetgeo.2011.08.002
[65] Tsuji Y, Ishida H, Nakamizu M. Overview of the MITI Nankai Trough Wells: a milestone in the evaluation of methane hydrate resources [J]. Resource Geology, 2004, 54(1): 3-10. doi: 10.1111/j.1751-3928.2004.tb00182.x
[66] Riedel M, Collett T S, Malone M J, et al. Stages of gas-hydrate evolution on the northern Cascadia margin [J]. Scientific Drilling, 2006, 3: 18-24. doi: 10.5194/sd-3-18-2006
[67] Sassen R, Sweet S T, DeFreitas D A, et al. Gas hydrate and crude oil from the Mississippi Fan Foldbelt, downdip Gulf of Mexico Salt Basin: significance to petroleum system [J]. Organic Geochemistry, 2001, 32(8): 999-1008. doi: 10.1016/S0146-6380(01)00064-X
[68] Kim G Y, Narantsetseg B, Ryu B J, et al. Fracture orientation and induced anisotropy of gas hydrate-bearing sediments in seismic chimney-like-structures of the Ulleung Basin, East Sea [J]. Marine and Petroleum Geology, 2013, 47: 182-194. doi: 10.1016/j.marpetgeo.2013.06.001
[69] Lee M W, Collett T S. Gas hydrate saturations estimated from fractured reservoir at site NGHP-01-10, Krishna-Godavari Basin, India [J]. Journal of Geophysical Research, 2009, 114(B7): B07102.
[70] 吴能友, 梁金强, 王宏斌, 等. 海洋天然气水合物成藏系统研究进展[J]. 现代地质, 2008, 22(3):356-362 doi: 10.3969/j.issn.1000-8527.2008.03.003 WU Nengyou, LIANG Jinqiang, WANG Hongbin, et al. Marine gas hydrate system: state of the art [J]. Geoscience, 2008, 22(3): 356-362. doi: 10.3969/j.issn.1000-8527.2008.03.003
[71] Qin X W, Lu J A, Lu H L, et al. Coexistence of natural gas hydrate, free gas and water in the gas hydrate system in the Shenhu Area, South China Sea [J]. China Geology, 2020, 3(2): 210-220.
[72] 吴时国, 姚伯初. 天然气水合物赋存的地质构造分析与资源评价[M]. 北京: 科学出版社, 2008: 165-166. WU Shiguo, YAO Bochu. Geological Structure Analysis and Resource Evaluation of Natural Gas Hydrate[M]. Beijing: Science Press, 2008: 165-166.
[73] 苏明, 沙志彬, 匡增桂, 等. 海底峡谷侵蚀-沉积作用与天然气水合物成藏[J]. 现代地质, 2015, 29(1):155-162 doi: 10.3969/j.issn.1000-8527.2015.01.019 SU Ming, SHA Zhibin, KUANG Zenggui, et al. Erosion and sedimentation of the submarine canyons and the relationship with gas hydrate accumulation [J]. Geoscience, 2015, 29(1): 155-162. doi: 10.3969/j.issn.1000-8527.2015.01.019
[74] 文怀军, 卢振权, 李永红, 等. 青海木里三露天井田天然气水合物调查研究新进展[J]. 现代地质, 2015, 29(5):983-994 doi: 10.3969/j.issn.1000-8527.2015.05.001 WEN Huaijun, LU Zhenquan, LI Yonghong, et al. New Advance on Gas Hydrate Survey and Research in Sanlutian of Muli, Qinghai [J]. Geoscience, 2015, 29(5): 983-994. doi: 10.3969/j.issn.1000-8527.2015.05.001
[75] Lu Z Q, Zhu Y H, Liu H, et al. Gas source for gas hydrate and its significance in the Qilian Mountain permafrost, Qinghai [J]. Marine and Petroleum Geology, 2013, 43: 341-348. doi: 10.1016/j.marpetgeo.2013.01.003
[76] 吴传芝, 赵克斌, 孙长青, 等. 天然气水合物开采研究现状[J]. 地质科技情报, 2008, 27(1):47-52 doi: 10.3969/j.issn.1000-7849.2008.01.008 WU Chuanzhi, ZHAO Kebin, SUN Changqing, et al. Current research in natural gas hydrate production [J]. Geological Science and Technology Information, 2008, 27(1): 47-52. doi: 10.3969/j.issn.1000-7849.2008.01.008
[77] Collett T S. Natural gas hydrates of the Prudhoe Bay and Kuparuk River area, North Slope, Alaska [J]. American Association of Petroleum Geologists Bulletin, 1993, 77(5): 793-812.
[78] Lane L S, Dietrich J R. Tertiary structural evolution of the Beaufort Sea-Mackenzie Delta region, Arctic Canada [J]. Bulletin of Canadian Petroleum Geology, 1995, 43(3): 293-314.
[79] Majorowicz J, Osadetz K, Safanda J. Gas hydrate formation and dissipation histories in the northern margin of Canada: Beaufort-Mackenzie and the Sverdrup Basins [J]. Journal of Geological Research, 2012, 2012: 879393.
[80] 何家雄, 颜文, 祝有海, 等. 南海北部边缘盆地生物气/亚生物气资源与天然气水合物成矿成藏[J]. 天然气工业, 2013, 33(6):121-134 doi: 10.3787/j.issn.1000-0976.2013.06.023 HE Jiaxiong, YAN Wen, ZHU Youhai, et al. Bio-genetic and sub-biogenetic gas resource potential and genetic types of natural gas hydrates in the northern marginal basins of South China Sea [J]. Natural Gas Industry, 2013, 33(6): 121-134. doi: 10.3787/j.issn.1000-0976.2013.06.023
[81] Wei J G, Fang Y X, Lu H L, et al. Distribution and characteristics of natural gas hydrates in the Shenhu Sea Area, South China Sea [J]. Marine and Petroleum Geology, 2018, 98: 622-628. doi: 10.1016/j.marpetgeo.2018.07.028
[82] Milkov A V. Worldwide distribution of submarine mud volcanoes and associated gas hydrates [J]. Marine Geology, 2000, 167(1-2): 29-42. doi: 10.1016/S0025-3227(00)00022-0
[83] Jia J H, Tsuji T, Matsuoka T. Gas hydrate saturation and distribution in the Kumano Forearc Basin of the Nankai Trough [J]. Exploration Geophysics, 2017, 48(2): 137-150. doi: 10.1071/EG15127
[84] Dong G Y, Kang N K, Yi B Y, et al. Occurrence and seismic characteristics of gas hydrate in the Ulleung Basin, East Sea [J]. Marine and Petroleum Geology, 2013, 47: 236-247. doi: 10.1016/j.marpetgeo.2013.07.001
[85] Ramana M V, Ramprasad T, Paropkari A L, et al. Multidisciplinary investigations exploring indicators of gas hydrate occurrence in the Krishna-Godavari Basin offshore, east coast of India [J]. Geo-Marine Letters, 2009, 29(1): 25-38. doi: 10.1007/s00367-008-0121-7
[86] Riedel M, Collett T S, Kumar P, et al. Seismic imaging of a fractured gas hydrate system in the Krishna-Godavari Basin offshore India [J]. Marine and Petroleum Geology, 2010, 27(7): 1476-1493. doi: 10.1016/j.marpetgeo.2010.06.002
[87] 杨木壮, 潘安定, 沙志彬. 陆缘地区天然气水合物成藏地质模式[J]. 海洋地质与第四纪地质, 2010, 30(6):85-90 YANG Muzhuang, PANG Anding, SHA Zhibin. Geological models of gas hydrates deposits along the continental margin [J]. Marine Geology and Quaternary Geology, 2010, 30(6): 85-90.
[88] 梁金强, 王宏斌, 苏新. 南海北部陆坡天然气水合物成藏条件及其控制因素[J]. 天然气工业, 2014, 34(7):128-135 LIANG Jinqiang, WANG Hongbin, SU Xin, et al. Natural gas hydrate formation conditions and the associated controlling factors in the northern slope of the South China Sea [J]. Natural Gas Industry, 2014, 34(7): 128-135.
[89] 胡高伟, 卜庆涛, 吕万军, 等. 主动、被动大陆边缘天然气水合物成藏模式对比[J]. 天然气工业, 2020, 40(8):45-58 doi: 10.3787/j.issn.1000-0976.2020.08.003 HU Gaowei, BU Qingtao, LU Wanjun, et al. A comparative study on natural gas hydrate accumulation models at active and passive continental margins [J]. Natural Gas Industry, 2020, 40(8): 45-58. doi: 10.3787/j.issn.1000-0976.2020.08.003
[90] 龚建明, 张敏, 陈建文, 等. 天然气水合物发现区和潜在区气源成因[J]. 现代地质, 2008, 22(3):415-419 doi: 10.3969/j.issn.1000-8527.2008.03.011 GONG Jianming, ZHANG Min, CHEN Jianwen, et al. Gas sources genesis in the gas hydrate discoveries and potential areas [J]. Geoscience, 2008, 22(3): 415-419. doi: 10.3969/j.issn.1000-8527.2008.03.011
[91] 何家雄, 颜文, 祝有海, 等. 全球天然气水合物成矿气体成因类型及气源构成与主控因素[J]. 海洋地质与第四纪地质, 2013, 33(2):121-128 HE Jiaxiong, YAN Wen, ZHU Youhai, et al. Genetic types of gas hydrate in the world and their main controlling factors [J]. Marine Geology and Quaternary Geology, 2013, 33(2): 121-128.
[92] Moridis G J. Numerical studies of gas production from methane hydrates [J]. SPE Journal, 2003, 8(4): 359-370. doi: 10.2118/87330-PA
[93] Makogon Y F, Holditch S A, Makogon T Y. Russian field illustrates gas-hydrate production [J]. Oil and Gas Journal, 2005, 103(5): 43-47.
[94] Dallimore S, Collet T S, Taylor A E, et al. Scientific results from the Mallik 2002 gas hydrate production research well program, Mackenzie Delta, Northwest Territories, Canada: Preface [J]. Bulletin of the Geological Survey of Canada, 2005, 585: 3-5.
[95] Liu C L, Ye Y G, Meng Q G, et al. The characteristics of gas hydrates recovered from Shenhu Area in the South China Sea [J]. Marine Geology, 2012, 307-310: 22-27. doi: 10.1016/j.margeo.2012.03.004
[96] Qian J, Wang X J, Collett T S, et al. Downhole log evidence for the coexistence of structure II gas hydrate and free gas below the bottom simulating reflector in the South China Sea [J]. Marine and Petroleum Geology, 2018, 98: 662-674. doi: 10.1016/j.marpetgeo.2018.09.024
[97] Lu H L, Seo Y T, Lee J W, et al. Complex gas hydrate from the Cascadia margin [J]. Nature, 2007, 445(7125): 303-306. doi: 10.1038/nature05463
[98] Klapp S A, Murshed M M, Pape T, et al. Mixed gas hydrate structures at the Chapopote Knoll, southern Gulf of Mexico [J]. Earth and Planetary Science Letters, 2010, 299(1-2): 207-217. doi: 10.1016/j.jpgl.2010.09.001
[99] Kide M, Suzuki K, Kawamura T, et al. Characteristics of natural gas hydrates occurring in pore-spaces of marine sediments collected from the eastern Nankai Trough, off Japan [J]. Energy and Fuels, 2009, 23(11): 5580-5586. doi: 10.1021/ef900612f
[100] Lu Z Q, Zhu Y H, Zhang Y Q, et al. Gas hydrate occurrences in the Qilian Mountain permafrost, Qinghai province, China [J]. Cold Regions Science and Technology, 2011, 66(2-3): 93-104. doi: 10.1016/j.coldregions.2011.01.008
[101] Lu Z Q, Zhai G Y, Zhu Y H, et al. New discovery of the permafrost gas hydrate accumulation in Qilian Mountain, China [J]. China Geology, 2018, 1(2): 306-307. doi: 10.31035/cg2018034
[102] Ryu B J, Riedel M. Gas hydrates in the Ulleung Basin, East Sea of Korea [J]. Terrestrial Atmospheric and Oceanic Sciences, 2017, 28(6): 943-963. doi: 10.3319/TAO.2017.10.21.01
[103] Kide M, Jin Y, Yoneda J, et al. Crystallographic and geochemical properties of natural gas hydrates accumulated in the National Gas Hydrate Program Expedition 02 drilling sites in the Krishna-Godavari Basin off India [J]. Marine and Petroleum Geology, 2019, 108: 471-481. doi: 10.1016/j.marpetgeo.2018.10.012
[104] 刘俊杰, 马贵阳, 潘振, 等. 天然气水合物开采理论及开采方法分析[J]. 当代化工, 2014, 43(11):2293-2296 doi: 10.3969/j.issn.1671-0460.2014.11.027 LIU Junjie, MA Guiyang, PAN Zhen, et al. Analysis on the mining theory and methods of natural gas hydrate [J]. Contemporary Chemical Industry, 2014, 43(11): 2293-2296. doi: 10.3969/j.issn.1671-0460.2014.11.027
[105] 张洋, 李广雪, 刘芳. 天然气水合物开采技术现状[J]. 海洋地质前沿, 2016, 32(4):63-68 ZHANG Yang, LI Guangxue, LIU Fang. Current status of mining technology for natural gas hydrate [J]. Marine Geology Frontiers, 2016, 32(4): 63-68.
[106] Ji C, Ahmadi G, Smith D H. Natural gas production from hydrate decomposition by depressurization [J]. Chemical Engineering Science, 2001, 56(20): 5801-5814. doi: 10.1016/S0009-2509(01)00265-2
[107] Li X S, Zhang Y, Li G, et al. Experimental investigation into the production behavior of methane hydrate in porous sediment by depressurization with a novel three-dimensional cubic hydrate simulator [J]. Energy & Fuels, 2011, 25(10): 4497-4505.
[108] Sung W M, Huh D G, Ryu B J, et al. Development and application of gas hydrate reservoir simulator based on depressurizing mechanism [J]. Korean Journal of Chemical Engineering, 2000, 17(3): 344-350. doi: 10.1007/BF02699051
[109] Hong H, Pooladi-Darvish M, Bishnoi P R. Analytical modelling of gas production from hydrates in porous media [J]. The Journal of Canadian Petroleum Technology, 2003, 42(11): 45-56. doi: 10.2118/03-11-05
[110] Konno Y, Yoneda J, Egawa K, et al. Permeability of Sediment Cores from Methane Hydrate Deposit in the Eastern Nankai Trough [J]. Marine and Petroleum Geology, 2015, 66: 487-495. doi: 10.1016/j.marpetgeo.2015.02.020
[111] 赵治宇, 向丹波, 诸林. 天然气水合物开采的方法及对环境的影响[J]. 中外能源, 2009, 14(4):33-36 ZHAO Zhiyu, XIANG Danbo, ZHU Lin. Gas hydrate recovering methods and their environmental impacts [J]. Sino-Global Energy, 2009, 14(4): 33-36.
[112] Grover T, Moridis G, Holditch S A. Analysis of reservoir performance of Messoyakha gas hydrate field [J]. Proceedings of the International Offshore and Polar Engineering Conference, 2009, 18: 49-56.
[113] 邵明娟, 张炜, 吴西顺, 等. 麦索亚哈气田天然气水合物的开发[J]. 国土资源情报, 2016(12):17-19, 31 doi: 10.3969/j.issn.1674-3709.2016.12.003 SHAO Mingjuan, ZHANG Wei, WU Xishun, et al. Natural gas hydrate exploitation at Messoyakha gas field [J]. Land and Resources Information, 2016(12): 17-19, 31. doi: 10.3969/j.issn.1674-3709.2016.12.003
[114] 张炜, 白凤龙, 邵明娟, 等. 日本海域天然气水合物试采进展及其对我国的启示[J]. 海洋地质与第四纪地质, 2017, 37(5):27-33 ZHANG Wei, BAI Fenglong, SHAO Mingjuan, et al. Progress of offshore natural gas hydrate production tests in Japan and implications [J]. Marine Geology and Quaternary Geology, 2017, 37(5): 27-33.
[115] 张炜, 邵明娟, 田黔宁. 日本海域天然气水合物开发技术进展[J]. 石油钻探技术, 2017, 45(5):98-102 ZHANG Wei, SHAO Mingjuan, TIAN Qianning. Technical progress of a pilot project to produce natural gas hydrate in Japanese waters [J]. Petroleum Drilling Techniques, 2017, 45(5): 98-102.
[116] 吴能友, 黄丽, 胡高伟, 等. 海域天然气水合物开采的地质控制因素和科学挑战[J]. 海洋地质与第四纪地质, 2017, 37(5):1-11 WU Nengyou, HUANG Li, HU Gaowei, et al. Geological controlling factors and scientific challenges for offshore gas hydrate exploitation [J]. Marine Geology and Quaternary Geology, 2017, 37(5): 1-11.
[117] Ye J L, Qin X W, Qiu H J, et al. Preliminary results of environmental monitoring of the natural gas hydrate production test in the South China Sea [J]. China Geology, 2018, 1(2): 202-209. doi: 10.31035/cg2018029
[118] Lu C, Xia Y X, Sun X X, et al. Permeability evolution at various pressure gradients in natural gas hydrate reservoir at the Shenhu Area in the South China Sea [J]. Energies, 2019, 12(19): 3688. doi: 10.3390/en12193688
[119] Qin X W, Liang Q Y, Ye J L, et al. The response of temperature and pressure of hydrate reservoirs in the first gas hydrate production test in South China Sea [J]. Applied Energy, 2020, 278: 115649. doi: 10.1016/j.apenergy.2020.115649
[120] 叶建良, 秦绪文, 谢文卫, 等. 中国南海天然气水合物第二次试采主要进展[J]. 中国地质, 2020, 47(3):557-568 doi: 10.12029/gc20200301 YE Jianliang, QIN Xuwen, XIE Wenwei, et al. Main progress of the second gas hydrate trial production in the South China Sea [J]. Geology in China, 2020, 47(3): 557-568. doi: 10.12029/gc20200301
[121] Sakamoto Y, Komai T, Kawamura T, et al. Laboratory-scale experiment of methane hydrate dissociation by hot-water injection and numerical analysis for permeability estimation in reservoir: Part 1-Numerical study for estimation of permeability in methane hydrate reservoir [J]. International Journal of Offshore and Polar Engineering, 2007, 17(1): 47-56.
[122] 李淑霞, 王炜, 陈月明, 等. 多孔介质中天然气水合物注热开采影响因素实验研究[J]. 海洋地质前沿, 2011, 27(6):49-54 LI Shuxia, WANG Wei, CHEN Yueming, et al. Experimental study on influence factors of hot-brine stimulation for dissociation of NGH in porous medium [J]. Marine Geology Frontiers, 2011, 27(6): 49-54.
[123] Li F G, Qing Y, Li T G, et al. A review: enhanced recovery of natural gas hydrate reservoirs [J]. Chinese Journal of Chemical Engineering, 2019, 27(9): 2062-2073. doi: 10.1016/j.cjche.2018.11.007
[124] Sun Y F, Wang Y F, Zhong J R, et al. Gas hydrate exploitation using CO2/H2 mixture gas by semi-continuous injection-production mode [J]. Applied Energy, 2019, 240: 215-225. doi: 10.1016/j.apenergy.2019.01.209
[125] Islam M R. A new recovery technique for gas production from Alaskan gas hydrates [J]. Journal of Petroleum Science and Engineering, 1994, 11(4): 267-281. doi: 10.1016/0920-4105(94)90046-9
[126] Zhao J F, Fan Z, Wang B, et al. Simulation of microwave stimulation for the production of gas from methane hydrate sediment [J]. Applied Energy, 2016, 168: 25-37. doi: 10.1016/j.apenergy.2016.01.091
[127] Li B, Liu S D, Liang Y P, et al. The use of electrical heating for the enhancement of gas recovery from methane hydrate in porous media [J]. Applied Energy, 2018, 227: 694-702. doi: 10.1016/j.apenergy.2017.08.066
[128] Minagawa H, Ito T, Kimura S, et al. Depressurization and electrical heating of methane hydrate sediment for gas production: laboratory-scale experiments [J]. Journal of Natural Gas Science and Engineering, 2018, 50: 147-156. doi: 10.1016/j.jngse.2017.10.024
[129] Liang Y P, Tan Y T, Luo Y J, et al. Progress and challenges on gas production from natural gas hydrate-bearing sediment [J]. Journal of Cleaner Production, 2020, 261: 121061. doi: 10.1016/j.jclepro.2020.121061
[130] Liu S, Zhang Y Y, Luo Y J, et al. Analysis of hydrate exploitation by a new in-situ heat generation method with chemical reagents based on heat utilization [J]. Journal of Cleaner Production, 2020, 249: 119399. doi: 10.1016/j.jclepro.2019.119399
[131] 李守定, 李晓, 王思敬, 等. 天然气水合物原位补热降压充填开采方法[J]. 工程地质学报, 2020, 28(2):282-293 LI Shouding, LI Xiao, WANG Sijing, et al. A novel method for natural gas hydrate production: depressurization and backfilling with in-situ supplemental heat [J]. Journal of Engineering Geology, 2020, 28(2): 282-293.
[132] 孙致学, 朱旭晨, 刘垒, 等. 联合深层地热甲烷水合物开采方法及可行性评价[J]. 海洋地质与第四纪地质, 2019, 39(2):146-156 SUN Zhixue, ZHU Xuchen, LIU Lei, et al. Feasibility study on joint exploitation of methane hydrate with deep geothermal energy [J]. Marine Geology and Quaternary Geology, 2019, 39(2): 146-156.
[133] 成海燕. 2006-2008 Mallik天然气水合物开发试验进展[J]. 海洋地质动态, 2009, 25(1):20-21 doi: 10.3969/j.issn.1009-2722.2009.01.005 CHENG Haiyan. Development of Mallik gas hydrate experiment during 2006-2008 [J]. Marine Geology Letters, 2009, 25(1): 20-21. doi: 10.3969/j.issn.1009-2722.2009.01.005
[134] Fan S S, Zhang Y Z, Tian G L, et al. Natural gas hydrate dissociation by presence of ethylene glycol [J]. Energy and Fuels, 2006, 20(1): 324-326. doi: 10.1021/ef0502204
[135] Kamath V A, Godbole S P. Evaluation of hot-brine stimulation technique for gas production from natural gas hydrates [J]. Journal of Petroleum Technology, 1987, 39(11): 1379-1388. doi: 10.2118/13596-PA
[136] Sung W, Lee H, Lee H, et al. Numerical study for production performances of a methane hydrate reservoir stimulated by inhibitor injection [J]. Energy Sources, 2002, 24(6): 499-512. doi: 10.1080/00908310290086527
[137] Ebinuma T. Method for dumping and disposing of carbon dioxide gas and apparatus therefor: US, 5261490[P]. 1992-03-03.
[138] Ohgaki K, Takano K, Sangawa H, et al. Methane exploitation by carbon dioxide from gas hydrates-Phase equilibria for CO2-CH4 mixed hydrate system [J]. Journal of Chemical Engineering of Japan, 1996, 29(3): 478-483. doi: 10.1252/jcej.29.478
[139] Ota M, Saito T, Aida T, et al. Macro and microscopic CH4-CO2 replacement in CH4 hydrate under pressurized CO2 [J]. AIChE Journal, 2007, 53(10): 2715-2721. doi: 10.1002/aic.11294
[140] 周薇, 樊栓狮, 梁德青, 等. 二氧化碳压力对甲烷水合物置换速率的影响[J]. 武汉理工大学学报: 交通科学与工程版, 2008, 32(3):547-550 ZHOU Wei, FAN Shuanshi, LIANG Deqing, et al. Influence of pressure to replacement of CH4 in the hydrate by use of CO2 [J]. Journal of Wuhan University of Technology: Transportation Science & Engineering, 2008, 32(3): 547-550.
[141] Yuan Q, Sun C Y, Yang X, et al. Recovery of methane from hydrate reservoir with gaseous carbon dioxide using a three-dimensional middle-size reactor [J]. Energy, 2012, 40(1): 47-58. doi: 10.1016/j.energy.2012.02.043
[142] Komatsu H, Ota M, Smith R L Jr, et al. Review of CO2-CH4 clathrate hydrate replacement reaction laboratory studies - Properties and kinetics [J]. Journal of the Taiwan Institute of Chemical Engineers, 2013, 44(4): 517-537. doi: 10.1016/j.jtice.2013.03.010
[143] 李遵照, 郭绪强, 陈光进, 等. CO2置换CH4水合物中CH4的实验和动力学[J]. 化工学报, 2007, 58(5):1197-1203 doi: 10.3321/j.issn:0438-1157.2007.05.022 LI Zunzhao, GUO Xuqiang, CHEN Guangjin, et al. Experimental and kinetic studies on methane replacement from methane hydrate formed in SDS system by using pressurized CO2 [J]. Journal of Chemical Industry and Engineering (China), 2007, 58(5): 1197-1203. doi: 10.3321/j.issn:0438-1157.2007.05.022
[144] Bai D S, Zhang X R, Chen G J, et al. Replacement mechanism of methane hydrate with carbon dioxide from microsecond molecular dynamics simulations [J]. Energy and Environmental Science, 2012, 5(5): 7033-7041. doi: 10.1039/c2ee21189k
[145] Wang X H, Sun Y F, Wang Y F, et al. Gas production from hydrates by CH4-CO2/H2 replacement [J]. Applied Energy, 2017, 188: 305-314. doi: 10.1016/j.apenergy.2016.12.021
[146] Merey S, Al-Raoush R I, Jung J, et al. Comprehensive literature review on CH4-CO2 replacement in microscale porous media [J]. Journal of Petroleum Science and Engineering, 2018, 171: 48-62. doi: 10.1016/j.petrol.2018.07.032
[147] 刘昌岭, 李彦龙, 孙建业, 等. 天然气水合物试采: 从实验模拟到场地实施[J]. 海洋地质与第四纪地质, 2017, 37(5):12-26 LIU Changling, LI Yanlong, SUN Jianye, et al. Gas hydrate production test: from experimental simulation to field practice [J]. Marine Geology and Quaternary Geology, 2017, 37(5): 12-26.
[148] Collett T S, Boswell R, Lee M W, et al. Evaluation of long-term gas-hydrate-production testing locations on the Alaska north slope [J]. SPE Reservoir Evaluation and Engineering, 2012, 15(2): 243-264. doi: 10.2118/155504-PA
[149] Rose K, Boswell R, Collett T. Mount elbert gas hydrate stratigraphic test well, Alaska North Slope: Coring operations, core sedimentology, and lithostratigraphy [J]. Marine and Petroleum Geology, 2011, 28(2): 311-331. doi: 10.1016/j.marpetgeo.2010.02.001
[150] 李进, 王淑红, 颜文. 海底泥火山及其与油气和天然气水合物的关系[J]. 海洋地质与第四纪地质, 2017, 37(6):204-214 LI Jin, WANG Shuhong, YAN Wen. Seabed mud volcano and its bearing on oil-gas and gas hydrate [J]. Marine Geology and Quaternary Geology, 2017, 37(6): 204-214.
[151] 周守为, 陈伟, 李清平. 深水浅层天然气水合物固态流化绿色开采技术[J]. 中国海上油气, 2014, 26(5):1-7 ZHOU Shouwei, CHEN Wei, LI Qingping. The green solid fluidization development principle of natural gas hydrate stored in shallow layers of deep water [J]. China Offshore Oil and Gas, 2014, 26(5): 1-7.
[152] 周守为, 赵金洲, 李清平, 等. 全球首次海洋天然气水合物固态流化试采工程参数优化设计[J]. 天然气工业, 2017, 37(9):1-14 doi: 10.3787/j.issn.1000-0976.2017.09.001 ZHOU Shouwei, ZHAO Jinzhou, LI Qingping, et al. Optimal design of the engineering parameters for the first global trial production of marine natural gas hydrates through solid fluidization [J]. Natural Gas Industry, 2017, 37(9): 1-14. doi: 10.3787/j.issn.1000-0976.2017.09.001
[153] 赵金洲, 周守为, 张烈辉, 等. 世界首个海洋天然气水合物固态流化开采大型物理模拟实验系统[J]. 天然气工业, 2017, 37(9):15-22 doi: 10.3787/j.issn.1000-0976.2017.09.002 ZHAO Jinzhou, ZHOU Shouwei, ZHANG Liehui, et al. The first global physical simulation experimental systems for the exploitation of marine natural gas hydrates through solid fluidization [J]. Natural Gas Industry, 2017, 37(9): 15-22. doi: 10.3787/j.issn.1000-0976.2017.09.002
[154] 伍开松, 王燕楠, 赵金洲, 等. 海洋非成岩天然气水合物藏固态流化采空区安全性评价[J]. 天然气工业, 2017, 37(12):81-86 doi: 10.3787/j.issn.1000-0976.2017.12.012 WU Kaisong, WANG Yannan, ZHAO Jinzhou, et al. Safety evaluation on the solid fluidized goaf zone in marine non-diagenetic hydrate reservoirs [J]. Natural Gas Industry, 2017, 37(12): 81-86. doi: 10.3787/j.issn.1000-0976.2017.12.012
[155] 周守为, 陈伟, 李清平, 等. 深水浅层非成岩天然气水合物固态流化试采技术研究及进展[J]. 中国海上油气, 2017, 29(4):1-8 ZHOU Shouwei, CHEN Wei, LI Qingping, et al. Research on the solid fluidization well testing and production for shallow non-diagenetic natural gas hydrate in deep water area [J]. China Offshore Oil and Gas, 2017, 29(4): 1-8.
[156] 张旭辉, 鲁晓兵, 刘乐乐. 天然气水合物开采方法研究进展[J]. 地球物理学进展, 2014, 29(2):858-869 doi: 10.6038/pg20140252 ZHANG Xuhui, LU Xiaobing, LIU Lele. Advances in natural gas hydrate recovery methods [J]. Progress in Geophysics, 2014, 29(2): 858-869. doi: 10.6038/pg20140252
[157] 张旭辉, 鲁晓兵, 李鹏. 天然气水合物开采方法的研究综述[J]. 中国科学, 2019, 49(3):034604 ZHANG Xuhui, LU Xiaobing, LI Peng. A comprehensive review in natural gas hydrate recovery method [J]. Scientia Sinica Physica, Mechanica & Astronomica, 2019, 49(3): 034604.
[158] 张旭辉, 鲁晓兵. 一种新的海洋浅层水合物开采法: 机械-热联合法[J]. 力学学报, 2016, 48(5):1238-1246 doi: 10.6052/0459-1879-15-112 ZHANG Xuhui, LU Xiaobing. A new exploitation method for gas hydrate in shallow stratum: Mechanical-thermal method [J]. Chinese Journal of Theoretical and Applied Mechanics, 2016, 48(5): 1238-1246. doi: 10.6052/0459-1879-15-112
-
期刊类型引用(10)
1. 李江涛,胡高伟,王任一,项燚伟,纪云开,李润彤,张永年,冯大强. 海域天然气水合物开采对疏松砂岩气藏开发技术的借鉴与创新. 天然气工业. 2025(04): 193-202 . 百度学术
2. 刘涛,包雪阳,朱翔宇,李安昱. 含天然气水合物储层衰减岩石物理研究进展. 地球与行星物理论评(中英文). 2024(03): 369-380 . 百度学术
3. 黄佳佳,蒋明镜,王华宁. 中国南海神狐海域水合物储层井壁稳定可靠度分析. 岩土力学. 2024(05): 1505-1516 . 百度学术
4. 胡高伟,卜庆涛,赵亚鹏,赵文高,王自豪,邱晓倩,刘童. 不同类型水合物成藏特征研究进展. 地质学报. 2024(09): 2557-2578 . 百度学术
5. 张懿帆,徐顺义,陆祎晨,蒋海岩,袁士宝,任梓寒,王哲. 储层物性变化对天然气水合物分解的影响研究. 石油工业技术监督. 2024(12): 40-46 . 百度学术
6. 蒋海岩,王浚九,王哲,袁士宝,吕涛. 天然气水合物储层出砂预测方法讨论. 石油工业技术监督. 2023(01): 1-5 . 百度学术
7. 马宝金,车家琪,王剑,任京文,邓君宇,房东辉. 海域天然气水合物开采方案设计及气液分离特性分析. 石油工程建设. 2023(01): 1-7 . 百度学术
8. 王磊. 井液侵入水合物储层井壁力学稳定性分析. 西南石油大学学报(自然科学版). 2023(02): 87-96 . 百度学术
9. 王志刚,巩建雨,吴纪修,尹浩,施山山,闫家,李小洋. 海域天然气水合物钻完井关键技术研究进展. 科技导报. 2023(20): 71-78 . 百度学术
10. 靳继凯,温欣,张艺博,赵春晖. 基于机器学习的深海能源土降压开采沉降预测. 工业技术与职业教育. 2023(06): 16-19 . 百度学术
其他类型引用(11)