Huai-ming, ZHAI Shi-kui, YU Zeng-hui. APPLICATION OF TRANSITION METAL ISOTOPES TO THE STUDY OF SEAFLOOR HYDROTHERMAL ACTIVITY[J]. Marine Geology & Quaternary Geology, 2007, 27(4): 55-60.
Citation: Huai-ming, ZHAI Shi-kui, YU Zeng-hui. APPLICATION OF TRANSITION METAL ISOTOPES TO THE STUDY OF SEAFLOOR HYDROTHERMAL ACTIVITY[J]. Marine Geology & Quaternary Geology, 2007, 27(4): 55-60.

APPLICATION OF TRANSITION METAL ISOTOPES TO THE STUDY OF SEAFLOOR HYDROTHERMAL ACTIVITY

More Information
  • Received Date: April 08, 2007
  • Revised Date: May 29, 2007
  • The study of the transition metal isotopic geochemistry is one of the latest developing directions in recent years, which has been used in many fields such as sedimentary geochemistry, cosmochemistry, ore-forming process, magmatism and biology. The implications and the results of the transition metal isotopes in the study of seafloor hydrothermal activity have been introduced. The authors pointed out that the use of transition metal isotopes in hydrothermal activity is very important in future study. Finally, the authors discussed the developing directions in this field, including:(1) maintaining the ample data of the transition metal isotopes, (2) strengthening the study of experimental simulation, (3) further studying the effect of the seafloor hydrothermal activity on the circle and equilibrium of the transition metal isotopes in the ocean.
  • [1]
    Valley G E, Anderson H H. A comparison of the abundance ratios of the isotopes of terrestrial and of meteoritic iron[J]. American Chemical Society, 1947, 69:1871-1875.
    [2]
    Walker E C, Cuttitta F, Senftle F E. Some nature variations in the relative abundance of copper isotopes[J]. Geochimica et Cosmochimica Acta, 1958, 15:183-194.
    [3]
    Larson P B. Mather K, Ramos F C, et al. Copper isotope ratios in magmatic and hydrothermal ore-forming environments[J]. Chemical Geology, 2003, 201:337-350.
    [4]
    Johnson C L, Beard B L. Fe isotopes:An emerging technique for understanding modern and ancient biogeochemical cycles[J]. GSA Today, 2006, 16:11.
    [5]
    宋柳霆,刘丛强,王中良,等. 铁同位素方法在环境地球化学研究中的应用与进展[J].地球与环境,2006,34:1-80.[SONG Liu-ting, LIU Cong-qiang, WANG Zhong-liang, et al.Application of Fe isotopic method to environmental geochemistry and development[J].Earth and Environment,2006

    ,34:1-80.]
    [6]
    蒋少涌,陆建军,顾连兴,等.多接收耦合等离子体质谱(MC-ICPMS)测量铜、锌、铁的同位素组成及其地质意义[J].矿物岩石地球化学通报,2001,20:431-433.[JIANG Shao-yong,LU Jian-jun,GU Lian-xing,et al.Determination of Cu,Zn,Fe isotopic compositions by MC-ICPMS and their geological application[J].Bulletin of Mineralogy,Petrology and Geocheistry,2001

    ,20:431-433.]
    [7]
    Maréchal C N, Télouk P, Albaréde F. Precise analysis of copper and zinc isotopic compositions by plasma-source mass spectrometry[J]. Chemical Geology, 1999,56:251-273.
    [8]
    Weyer S, Schwieters J B. High precision Fe isotope measurements with high mass resolution MC-ICPMS[J]. International Journal of Mass Spectrometry, 2003, 226:355-368.
    [9]
    Yang K, Scott S D. Possible contribution of a metal-rich magmatic fluid to a sea-floor hydrothermal system[J]. Nature, 1996, 383:420-423.
    [10]
    Lowenstern J B, Mathood G A, Rivers M L, et al. Evidence for extreme partitioning of copper into a magmatic vapor phase[J]. Science, 1991, 252:1405-1409.
    [11]
    Kamenetsky V S, Binns R A, Gemmell J B,et al. Parental basaltic melts and fluids in eastern Manus backarc basin:implications for hydrothermal mineralization[J]. Earth and Planetary Science Letters, 2001, 184:685-702.
    [12]
    Kamenetsky V S, Dacidson P, Mernagh T P, et al. Fluid bubbles in melt inclusions and pillow-rim glasses:high-temperature precursors to hydrothermal fluids?[J]. Chemical Geology, 2002, 183:349-364.
    [13]
    Marechal C N, Nicolas E, Douchet C, et al. Abundance of zinc isotopes as a marine biogeochemical tracer[J]. Geochimica et Cosmochimica Acta, 2000, 1:Paper No 1999GC000029.
    [14]
    蒋少涌. 过渡族金属元素同位素分析方法及其地质应用[J].地学前缘,2003,10:269-278.[JIANG Shao-yong.Transition metal isotpopes:analytical methods and geological applications[J].Earth Science Frontiers,2003

    ,10(2):269-278.]
    [15]
    Zhu X K, Guo Y, Williams R J, et al. Mass fractionation processes of transition metal isotopes[J]. Earth and Planetary Science Letters, 2002, 200:47-62.
    [16]
    Beard B L, Johnson C M. Inter-mineral Fe isotope variations in mantle-derived rocks and implications for the Fe geochemical cycle[J]. Geochimica et Cosmochimica Acta, 2004,58:4727-4743.
    [17]
    Roskosz M, Luais B, Watson H C, et al. Experimental quantification of the fractionation of Fe isotopes during metal segregation from a silicate melt[J]. Earth and Planetary Science Letters, 2006, 248:851-867.
    [18]
    Sharma M, Polizzotto M, Anbar A D. Iron isotopes in hot springs along the Juan de Fuca Ridge[J]. Earth and Planetary Science Letters, 2001, 194:39-51.
    [19]
    Rouxel O, Dobbek N, Ludden J, et al. Iron isotope fractionation during oceanic crust alternation[J]. Chemical Geology, 2003, 202:155-182.
    [20]
    Severmann S, Johnson C M, Beard B L, et al. The effect of plume processes on the Fe isotope composition of hydrothermal derived Fe in the deep ocean as inferred from the Rainbow vent site, Mid-Atlantic Ridge, 36°14'N[J]. Earth and Planetary Science Letters, 2004,225:63-76.
    [21]
    Welch S A, Beard B L, Johnson C M, et al. Kinetic and equilibrium Fe isotope fractionation between aqueous Fe(Ⅱ) and Fe(Ⅲ)[J]. Geochimica et Cosmochimica Acta, 2003, 22:4231-4250.
    [22]
    Erlich S, Buttler I B, Halicz L, et al. Experimental study of the copper isotope fractionation between aqueous Cu(Ⅱ) and covellite, CuS[J]. Chemical Geology, 2004, 209:259-269.
    [23]
    Bulter I B, Archer C, Vance D, et al. Fe isotope fractionation on FeS formation in ambient aqueous solution[J]. Earth and Planetary Science Letters, 2005, 236:430-442.
    [24]
    Markl G, Blanckenburg F V, Wagner T. Iron isotope fractionation during hydrothermal ore alternation and alternation[J]. Geochimica et Cosmochimica Acta, 2006, 70:3011-3030.
    [25]
    Zhu X K, O'Nions R K, Guo Y, et al. Determination of natural Cu-isotope variation by plasma-source mass spectrometry:implications for use as geochemical tracers[J]. Chemical Geology, 2000, 16:139-149.
    [26]
    Mason T F, Weiss D J, Chapman J B, et al. Zn and Cu isotopic variability in the Alexandrinka volcanic-hosted massive sulphide (VHMS) ore deposit, Urals, Russia[J]. Chemical Geology, 2005, 221:170-187.
    [27]
    Chu N C, Johnson C M, Berad B L, et al. Evidence for hydrothermal venting in Fe isotope compositions of the deep Pacific Ocean through time[J]. Earth and Planetary Science Letters, 2006, 245:202-217.
    [28]
    Zhu X K, O'Nions R K, Guo Y,et al. Secular variation of iron isotopes in North Atlantic Deep Water[J]. Science, 2000, 287:2000-2002.
    [29]
    Levasseur S, Frank M, Hein J R, et al. The global variation in the iron isotope composition of marine hydrogenetic ferromanganese deposits:implications for seawater chemistry?[J]. Earth and Planetary Science Letters, 2004, 224:91-105.

Catalog

    Article views PDF downloads Cited by()

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return