ZHAO Yu-long, LIU Zhi-fei, CHENG Xin-rong, JIAN Zhi-min. DOMINANCE FACTORS OF THE TERRIGENOUS SEDIMENT GRANULOMETRIC DISTRIBUTION IN THE LOWER SUNDA SLOPE[J]. Marine Geology & Quaternary Geology, 2006, 26(2): 73-78.
Citation: ZHAO Yu-long, LIU Zhi-fei, CHENG Xin-rong, JIAN Zhi-min. DOMINANCE FACTORS OF THE TERRIGENOUS SEDIMENT GRANULOMETRIC DISTRIBUTION IN THE LOWER SUNDA SLOPE[J]. Marine Geology & Quaternary Geology, 2006, 26(2): 73-78.

DOMINANCE FACTORS OF THE TERRIGENOUS SEDIMENT GRANULOMETRIC DISTRIBUTION IN THE LOWER SUNDA SLOPE

More Information
  • Received Date: February 02, 2006
  • Revised Date: February 28, 2006
  • High resolution grain size analysis was performed on sediments of Core 18268-2, drilled during the "SONNE-115" cruise. Detailed granulometric distribution record of lower Sunda slope sediments for the last 25 ka was obtained. The analysis revealed that sediments in this core were fine grained, predominated by 2~10 μm grains and short of grains larger than 63 μm. Statistical parameters such as mean and median values of the grain size were highly correlative with the relative percentage of the 10~63 μm fraction, implying that short-term change of the sediment grain size distribution was controlled by the paleocurrent speed. All statistical parameters and the relative percentage of the fractions underwent a notable transformation at about 15 ka, attributed to the rapid rising of the sea level during the MWP-1a (Melt Water Pulse 1a, 14.6~14.3 ka). Simultaneous with the rapid flooding of the Sunda shelf, the coastline retreated for several hundred kilometers, which changed the sediment supply of the region dramatically. We can conclude that the relative long-term variation of the siliclastic sediment granulometric distribution was controlled by the sediment supply.
  • [1]
    Zheng G, Geng J, Wong H, et al. A semi-quantitative method for the reconstruction of eustatic sea level history from seismic profiles and its application to the southern South China Sea[J]. Earth and Planetary Science Letters, 2004, 223:443-459.
    [2]
    Sun X, Li X, Luo Y, et al. The vegetation and climate at the last glaciation on the emerged continental shelf of the South China Sea[J]. Palaeogeography, Palaeoclimatology, Palaeoecology, 2000, 160:301-316.
    [3]
    Hutchison C. Marginal basin evolution:the southern South China Sea[J]. Marine and Petroleum Geology, 2004, 21(9):1129-1148.
    [4]
    Kuhnt W, Hess S, Jian Z. Quantitative composition of benthic foraminiferal assemblages as a proxy indicator for organic carbon flux rates in the South China Sea[J]. Marine Geology, 1999, 156:123-157.
    [5]
    Hu J, Peng P, Jia G, et al. Biological markers and their carbon isotopes as an approach to the paleoenvironmental reconstruction of Nansha area, South China Sea, during the last 30 ka[J]. Organic Geochemistry, 2002, 33:1197-1204.
    [6]
    Hanebuth T, Stattegger K, Grootes P. Rapid flooding of the Sunda Shelf-a late glacial sea-level record[J]. Science, 2000, 288:1033-1035.
    [7]
    Stattegger K, Kuhnt W, Wong H, et al. Cruise Report SONNE 115 Sundaflut. Berichte-Reports, Geo.-Paläont. Inst. Univ. Kiel[R]. 1997, 86:100-101.
    [8]
    McCave I, Manighetti B, Robinson S. Sortable silt and fine sediment size/composition slicing:Parameters for palaeocurrent speed and palaeoceanography[J]. Paleoceanography, 1995, 10(3):593-610.
    [9]
    Lee M, Wei K, Chen Y. High resolution oxygen isotope stratigraphy for the last 150000 years in the southern South China Sea:core MD97-2151[J]. Terrestrial, Atomospheric and Oceanic Sciences, 1999, 10:239-254.
    [10]
    汪品先. 十五万年来的南海[M]. 上海:同济大学出版社, 1995:28-30.[WANG Pin-xian. The South China Sea during the last 150000 Years[M]. Shanghai:Tongji University Press, 1995

    :28-30.]
    [11]
    Wang P, Wang L, Bian Y, et al. Late Quaternary paleoceanography of the South China Sea:surface circulation and carbonate cycles[J]. Marine Geology, 1995, 127:145-165.
    [12]
    Bianchi G, Hall I, McCave I, et al. Measurement of the sortable silt current speed proxy using the Sedigraph 5100 and Coulter Multisizer Ⅱe:precision and accuracy[J]. Sedimentology, 1999, 46:1001-1014.
    [13]
    Andy Field. Discovering Statistics Using Spss for Windows[Z]. London:Sage Publications Inc, 2000.
    [14]
    青子琪, 刘连文, 郑洪波. 越南岸外夏季上升流区22万年来东亚季风的沉积与地球化学记录[J]. 海洋地质与第四纪地质, 2005, 25(2):67-72.

    [QING Zi-qi, LIU Lian-wen, ZHENG Hong-bo. Sedimentological and geochemical records of East Asian Monsoon in Summer Upwelling Region off the coast of Vietnam for the past 220000 Years[J]. Marine Geology and Quaternary Geology, 2005, 25(2):67-72.]
    [15]
    Liu J, Milliman J, Gao S, et al. Holocene development of the Yellow River's subaqueous delta, North Yellow Sea[J]. Marine Geology, 2004, 209:45-67.
    [16]
    Fairbanks R. A 17000-year glacio-eustatic sea level record:influence of glacial melting rates on the Younger Dryas event and deep-ocean circulation[J]. Nature, 1989, 342:637-642.
    [17]
    Wong H, Lüdmann T, Haft C, et al. Quaternary sedimentation in the Molengraa paleo-delta, northern Sunda Shelf (southern South China Sea)[C]//Sidi F, Nummedal D, Imbert P, et al. Tropical Deltas of Southeast Asia and Vicinity-Sedimentology, Stratigraphy, and Petroleum Geology. SEPM Spec. Publ. 76. 2003.
    [18]
    Hanebuth T, Stattegger K. Depositional sequences on a late Pleistocene Holocene tropical siliciclastic shelf (Sunda Shelf, southeast Asia)[J]. Journal of Asian Earth Sciences, 2004, 23:113-126.
    [19]
    Steinke S, Kienast M, Hanebuth T. On the significance of sea-level variations and shelf paleo-morphology in governing sedimentation in the southern South China Sea during the last deglaciation[J]. Marine Geology, 2003, 201:179-206.
  • Cited by

    Periodical cited type(5)

    1. 孙鲁一,张广旭,王秀娟,靳佳澎,何敏,朱振宇. 南海神狐海域天然气水合物饱和度的数值模拟分析. 海洋地质与第四纪地质. 2021(02): 210-221 . 本站查看
    2. 康玉柱. 中国南海地块天然气水合物成藏条件探讨. 油气藏评价与开发. 2021(05): 659-668 .
    3. 于兴河,付超,华柑霖,孙乐. 未来接替能源——天然气水合物面临的挑战与前景. 古地理学报. 2019(01): 107-126 .
    4. 付超,樊雪,于兴河,赵晨帆,何玉林,梁金强,苏丕波. 南海北部陆坡神狐海域水合物储层分层建模方法与有利区带预测. 中国海上油气. 2019(02): 83-92 .
    5. 付康伟,张学强,彭炎. BP神经网络算法在陆域天然气水合物成藏预测中的应用. 物探与化探. 2019(03): 486-493 .

    Other cited types(3)

Catalog

    Article views (1558) PDF downloads (11) Cited by(8)

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return