QIAO Pei-jun, SHAO Lei, YANG Shou-ye. THE PALEOENVIRONMENTAL SIGNIFICANCE OF THE CHARACTER OF THE ELEMENT GEOCHEMISTRY IN THE SOUTHWESTERN SOUTH CHINA SEA SINCE LATE PLEISTOCENE[J]. Marine Geology & Quaternary Geology, 2006, 26(4): 59-65.
Citation: QIAO Pei-jun, SHAO Lei, YANG Shou-ye. THE PALEOENVIRONMENTAL SIGNIFICANCE OF THE CHARACTER OF THE ELEMENT GEOCHEMISTRY IN THE SOUTHWESTERN SOUTH CHINA SEA SINCE LATE PLEISTOCENE[J]. Marine Geology & Quaternary Geology, 2006, 26(4): 59-65.

THE PALEOENVIRONMENTAL SIGNIFICANCE OF THE CHARACTER OF THE ELEMENT GEOCHEMISTRY IN THE SOUTHWESTERN SOUTH CHINA SEA SINCE LATE PLEISTOCENE

More Information
  • Received Date: July 09, 2006
  • Revised Date: July 19, 2006
  • Analysis of the geochemistry and granularity has been performed on samples from core MD01-2392 at middle slope near the Mekong delta, southern South China Sea (SCS). The result indicates that the Mekong River was the main source of the MD01-2392 sediment and the source area did not change much in the past 400 ka. Variations in Ti and CaO concentrations were used to track the change of terrestrial and the biogenic carbonate contents respectively. It indicated that the content of CaCO3 follows the "Atlantic cyclicities" of low values during glacials and high values during interglacials. In contrast, the content of terrigenous sediment shows an opposite glacial-interglacial variation pattern. The results indicate that the CaCO3 cycle at this SCS locality was strongly influenced by terrigenous dilution. Ti-normalized ratios and the behavior of the elements during chemical weathering reflect stronger chemical weathering in interglacials than in glacials. This indicates that warm and wet climate occurs in the source area. The Ti-normalized ratios of the REE are influence by the percentage of the terrestrial materials.
  • [1]
    LIU Zhi-fei, Christophe Colin, et al. Erosional history of the eastern Tibetan Plateau since 190kyr ago:clay mineralogical and geochemical investigations from the southwestern South China Sea[J]. Marine Geology, 2004, 209:1-18.
    [2]
    LIU Zhi-fei, Christophe Colin, et al. Late Quaternary climatic control on erosion and weathering in the eastern Tibetan Plateau and the Mekong Basin[J]. Quaternary Research, 2005, 63:316-328.
    [3]
    郑范, 李前裕, 陈木宏, 等. 南海西南部晚更新世500 ka以来的古海洋学特征[J]. 地球科学——中国地质大学学报, 2005, 30(5):534-542.

    [ZHENG Fan, LI Qian-yu, CHEN Mu-hong, et al. Late Pleistocene Paleoceanographic Characteristics of the Southwestern South China Sea since 500ka[J]. Earth Science——Journal of China University of Geosciences, 2005, 30(5):534-542.]
    [4]
    韦刚健,刘颖,李献华,等. 南海沉积物中过剩铝问题的探讨[J]. 矿物岩石地球化学通报, 2003, 22(1):23-25.

    [WEI Gang-jian, LIU Ying, LI Xian-hua, et al. Excess Al in the sediments from South China Sea[J]. Bulletin of Mineralogy, Petrology and Geochemistry, 2003, 22(1):23-25.]
    [5]
    Murray R W, Leinen N. Scavenged excess aluminum and its relationship to bulk titanium in biogenic sediment from the central equatorial Pacific Ocean[J]. Geochim. Cosmochim. Acta, 1996, 60(20):3869-3878.
    [6]
    Wei G J, Liu Y, Li X H. High-resolution elemental records from the South China Sea and their paleoproductivity implications[J]. Paleoceanography, 2003b, 18(2):1054-1065.
    [7]
    Murray R W, Knowlton C, Leinen M, et al. Export production and terrigenous matter in the Central Equatorial Pacific Ocean during interglacial oxygen isotope stage 11[J]. Glob. Planet. Change, 2000, 24:59-78.
    [8]
    Nesbitt H W, Markovics G. Weathering of granodioritic crust, long-term storage of elements in weathering profiles, and petrogenesis of siliciclastic sediments[J]. Geochim. Cosmochim. Acta, 1997, 61(8):1653-1670.
    [9]
    Weaver C E. Potassium, illite and the ocean[J]. Geochim. Cosmochim. Acta, 1967, 31:2181-2196.
    [10]
    Nesbitt H W, Markovics G, Price R C. Chemical processes affecting alkalis and alkaline earths during continental weathering[J]. Geochim. Cosmochim. Acta, 1980, 44:1959-1966.
    [11]
    Panahi A, Young G M, Rainbird R H. Behavior of major and trace elements (including REE) during Paleoproterozoic pedogenesis and diagenetic alteration of an Archean granite near Ville Marie, Qu bec, Canada[J]. Geochim. Cosmochim. Acta, 1999, 64(13):2199-2220.
    [12]
    Nesbitt H W, Young G M. Early Proterozoic climate and plate motions inferred from major element chemistry of lutites[J]. Nature, 1982, 299:715-717.
    [13]
    Peuraniemi V, Pulkkinen P. Preglacial weathering crust in Ostrobothnia, western Finland, with special reference to the Raudaskyla occurrence[J]. Chem. Geol., 1993, 107:313-316.
    [14]
    Kronberg B I, Nesbitt H W, Lam W W. Upper Pleistocene Amazon deep-sea fan muds reflect intence chemical weathing of their ountainous source lands[J]. Chem. Geol., 1986, 54:283-294.
    [15]
    Windom H L. Lithogenous materials in marine sediments[M]//Riley J P, Chester R,eds.Chemical Oceanography,2nd edition,vol.5.Academic Press, 1976:103-135.
    [16]
    张虎才. 元素表生地球化学特征及理论基础[M]. 兰州大学出版社, 1997:6-8,43-46

    , 131-136.[ZHANG Hu-cai. Geochemical characteristics of surface process and its ground theory[M]. Press of Lanzhou University, 1997:6-8, 43-46, 131-136.
    [17]
    Fleet A J. Aqueous and sedimentary geochemistry of the rare earth elements[C]//Henderson P,ed. Rare Earth Element Geochemistry. Amsterdam:Elsevier Publishers, 1984:343-373.
    [18]
    Nesbitt H W. Mobility and fractionation of rare earth element during weathering of a granodiorite[J]. Nature, 1979, 279:206-210.
  • Cited by

    Periodical cited type(7)

    1. 慕倩,李高仁,张文静,迟瑞强. 基于核磁共振测井的致密砂岩储集层有效性评价. 新疆石油地质. 2025(01): 121-126 .
    2. 陈汉钊,吴正彬,李轩,舒坤,蒋恕,陈掌星. 基于分子动力学模拟的致密储层CO_2/N_2换油机理研究. 地质科技通报. 2025(01): 36-47 .
    3. 牟蜚声,尹相东,胡琮,张海峰,陈世加,代林锋,陆奕帆. 鄂尔多斯盆地陕北地区三叠系长7段致密油分布特征及控制因素. 岩性油气藏. 2024(04): 71-84 .
    4. 高攀明,陈峰,谢颖,宗亭良,雷晓银,安鑫胜,吴若宁. 吴起油田长7页岩油层钻井液优化研究. 非常规油气. 2024(04): 144-151 .
    5. 孙嘉鑫,赵靖舟,汤延帅,刘星,李政胤. 鄂尔多斯盆地致密砂岩储层成岩作用及孔隙演化——以七里村油田延长组7段为例. 断块油气田. 2024(04): 611-619 .
    6. 王良军,岳欣欣,李连生,王延鹏. 鄂尔多斯盆地旬宜地区三叠系延长组7段致密油储层孔隙发育特征及其主控因素. 石油实验地质. 2024(06): 1135-1144 .
    7. 代林锋,陈世加,王攀,张海峰,何鑫,牟蜚声,陆奕帆. 鄂尔多斯盆地延长组长7段致密砂岩储层物性差异对含油性的影响. 世界石油工业. 2023(03): 42-52 .

    Other cited types(4)

Catalog

    Article views (1773) PDF downloads (14) Cited by(11)

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return