Citation: | ZHANG Zhen-guo, FNG Nian-qiao, GAO Lian-feng, GUI Bao-ling, Cui Mu-hua. CRETACEOUS BLACK SHALE AND OCEANIC RED BEDS: PROCESS AND MECHANISM OF OCEANIC ANOXIC EVENTS AND OXIC ENVIRONMENT[J]. Marine Geology & Quaternary Geology, 2007, 27(3): 69-75. |
[1] |
Schlanger S O, Jenkyns H C. Cretaceous oceanic anoxic events:Cause and consequence[J]. Geol., 1976, 55:179-184.
|
[2] |
Arthur M A. North Atlantic Cretaceous black shales:The record at site 398 and a brief comparison with other occurrences[C]//Initial reports of the Deep Sea Drilling Project, 1979, 47:719-753.
|
[3] |
WAN Xiao-qiao,Massimo Sarti. Cretaceous oceanic red beds and land ocean interaction[J]. Cretaceous Research, 2005, 26(1):1-2.
|
[4] |
Andrew C K, John J M. Oceanic plateaus:Problematic plumes, potential paradigms[J]. Chemical Geology,2007.
|
[5] |
Schubert C,Sandwell D. Crustal volumes of the continents of oceanic and continental submarine plateaus[J]. Earth Planet. Sci. Lett., 1989,92:234-246.
|
[6] |
Jun Korenaga. Why did not the Ontong Java Plateau form subaerially[J].Earth and Planetary Science Letters, 2005,234:385-399.
|
[7] |
Richard E E, Kenneth L B, Ian H Campbell. Frontiers in large igneous province research[J]. Lithos., 2005,79:271-297.
|
[8] |
Coffin M F, Eldholm O.Large igneous provinces:Crustal structure, dimensions, and external consequences[J]. Rev.Geophys., 1994,32:1-36.
|
[9] |
Sinton C W, Duncan R A. An oceanic flood basalt province within the Caribbean plate[J]. Earth and Planetary Science Letters, 1998,155:221-235.
|
[10] |
Kevin B, Trond H T. Derivation of large igneous provinces of the past 200 million years from long-term heterogeneities in the deep mantle[J]. Earth and Planetary Science Letters, 2004, 227:531-538.
|
[11] |
Philip E J, Paterno R C.Geochemistry of the oldest Atlantic oceanic crust suggests Mantle plume involvement in the early history of the central Atlantic Ocean[J]. Earth and Planetary Science Letters, 2001,192:291-302.
|
[12] |
Berner R A. Atmospheric CO2 over Phanerozoic time[C]. Water-Rock Interaction. Balkema, Rotterdam, 1992:35-37.
|
[13] |
Wignall P B. Large igneous provinces and mass extinctions[J]. Earth-Science Reviews, 2001,53:1-33.
|
[14] |
Donnadieu Y, Pierrehumbert R, Jacob R, et al.Modelling the primary control of paleogeography on Cretaceous climate[J]. Earth and Planetary Science Letters,2006, 248:426-437.
|
[15] |
Ulrich H, Peter A, Hochuli J O, et al. Absence of major vegetation and palaeoatmospheric pCO2 changes associated with oceanic anoxic event 1a (Early Aptian, SE France)[J]. Earth and Planetary Science Letters, 2004,223:303-318.
|
[16] |
Wallmann K. Controls on the Cretaceous and Cenozoic evolution of seawater composition, atmospheric CO2 and climate[J].Geochimica et Cosmochimica Acta, 2001,65(18):3005-3025.
|
[17] |
Dana L R, Robert A B, David J B. Phanerozoic atmospheric CO2 change:evaluating geochemical and paleobiological approaches[J].Earth-Science Reviews,2001, 54(4):349-392.
|
[18] |
洪汉净,于泳,郑秀珍,等, 全球火山分布特征[J].地学前缘,2003,10:11-16.[HONG Han-jing,YU Yong, ZHENG Xiu-zhen, et al. Global volcano distribution:pattern and variation[J]. Earth Science Frontiers, 2003
,10:11-16.]
|
[19] |
Larson R L. Geological consequences of superplumes[J]. Geology, 1991,19:963-966.
|
[20] |
Tarduno J A, Sliter W V, Kroenke L, et al. Rapid formation of Ontong Java Plateau by Aptian Mantle Plume Volcanism[J]. Science,1991,254:399-403.
|
[21] |
Jones C E, Jenkyns H C. Seawater strontium isotopes, oceanic anoxic events, and seafloor hydrothermal activity in the Jurassic and Cretaceous[J]. American Journal Sciences, 2001, 301:112-149.
|
[22] |
伍光和, 张如一, 张超.自然地理学[M]. 北京:高等教育出版社,2004:59-128.[WU Guang-he, ZHANG Ru-yi, ZHANG Chao. Physical Geography[M]. Beijing:Higher Education Press,2004:59
-128.]
|
[23] |
周淑珍, 田连恕, 胡双熙, 等. 气象学与气候学[M]. 北京:高等教育出版社,2005:21-56.[ZHOU Shu-zhen, TIAN Lian-shu, HU Shuang-xi,et al. Meteorology and Climatology[M].Beijing:Higher Education Press,2005:21
-56.]
|
[24] |
Barron.A warm equable Cretaceoue:the nature of the problem[J]. Earth Sci. Rev., 1983,19:305-338.
|
[25] |
Bralower T J, Premoli S I, Malone M J,et al. Mid-Cretaceous Oceanic Anoxic Events[C]//ODP(Ocean Drilling Program) Initial Reports. 2002, 198:4-16.
|
[26] |
Pieter P T, Joseph A B, Ralph F K. Oceanic 13C/12C Observation:A new window on ocean CO2 uptake[J]. Global Biogeochemical Cycles, 1993,7:353-368.
|
[27] |
Martin J H, Fitzwater S E. Iron deficiency limits phytoplankton growth in the northeast Pacific subarctic[J]. Nature, 1988,331:177-196.
|
[28] |
Martin J H. Glacical-interglacial CO2 change:The iron hypothesis[J]. Paleoceanography, 1990,5:1-13.
|
[29] |
Geider R J, LaRoche J. The role of iron in phytoplankton photosynthesis and the potential for iron-limitation of primary productivity in the sea[J]. Photosynthesis Research, 1994, 39:275-301.
|
[30] |
Wells M L, Price N M, Bruland K W. Iron chemistry in seawater and its relationship to phytoplankton[J]. Marine Chemistry, 1995, 48:157-182.
|
[31] |
Hutchins D A, Wang W X, Fisher N S. Copepod grazing and the biogeochemical fate of diatom iron[J]. Limnology and Oceanography, 1995, 40:989-994.
|
[32] |
Price M L, Morel F M. Biological cycling of iron in the ocean[J]. Metal Ions in Biological System, 1998, 35:1-36.
|
[33] |
Martin J H, Gordon R M. Northeast Pacific iron distributions in relation to phytoplankton productivity[J]. Deep-Sea Res., 1988, 35:177-196.
|
[34] |
Martin J H, Gordon R M, Fitzwater S E,et al. VERTEX:Phytoplankton/iron studies in the Gulf of Alaska[J].Deep-Sea Research, 1989,36:649-680.
|
[35] |
Coale K H, Fitzwater S E, Gordon R M, et al. Control of community growth and export production by upwelled iron in the equatorial Pacific Ocean[J]. Nature, 1996, 379:621-624.
|
[36] |
de Baar H, de Jong M. Distributions, sources and sinks of iron in seawater[C]//Biogeochemistry of Fe in Seawater. SCOR/IUPAC Chichester, 2001:123-253.
|
[37] |
de Baar H, de Jong M, Bakker D E, et al. Importance of iron for plankton blooms and carbon-dioxide drawdown in the Southern Ocean[J]. Nature,1995, 373:412-415.
|
[38] |
Hutchins D A, DiTullio G R, Zhang Y,et al. An iron limitation mosaic in the California upwelling regime[J]. Limnology and Oceanography,1998, 43:1037-1054.
|
[39] |
Boyd P W. A mesoscale phytoplankton bloom in the polar Southern Ocean stimulated by iron fertilization[J]. Nature, 2000, 407:695-702.
|
[40] |
Hutchins D A, Sedwick P N, DiTullio G R, et al. Phytoplankton Fe limitation in the Humboldt Current and Peru Upwelling[J]. Limnology and Oceanography,2002, 47:997-1011.
|
[41] |
Schmidt M A, Hutchins D A. Size-fractionated biological iron and carbon uptake along a coastal to offshore transect in the NE Pacific[J].Deep Sea Research Part Ⅱ:Topical Studies in Oceanography, 1999,46:2487-2503.
|
[42] |
Murataa A, Kumamotoa Y, Saitoa C, et al.Impact of a spring phytoplankton bloom on the CO2 system in the mixed layer of the northwestern North Pacific[J]. Deep-Sea Research Ⅱ, 2002, 49:5531-5555.
|
[43] |
Shigenobu T, Atsushi T. An in situ iron-enrichment experiment in the western subarctic Pacific (SEEDS):Introduction and summary[J]. Progress in Oceanography, 2005,64:95-109.
|
[44] |
Florence N, Peter J S, Matt M. Processes influencing dissolved iron distributions below the surface at the Atlantic Ocean Celtic Sea shelf edge[J]. Marine Chemistry,2007, 104(21):156-170.
|
[45] |
Jickells T. The inputs of dust derived elements to the Sargasso Sea:a synthesis[J]. Marine Chemistry, 1999, 68:5-14.
|
[46] |
Jickells T, Spokes L J. Atmospheric iron inputs to the oceans[C]//The biogeochemistry of iron in seawater. SCOR-IUPAC Baltimore, 2001:85-121.
|
[47] |
Johnson K S,Gordon R M,Coale K H. What controls dissolved iron concentrations in the world ocean?[J]. Marine Chemistry, 1997,57:137-161.
|
[48] |
Géraldine S, Alex R B, Jurjen K, et al. Influence of atmospheric inputs on the iron distribution in the subtropical North-East Atlantic Ocean[J].Marine Chemistry,2007,104(21):186-202.
|
[49] |
Boye M, Constant M G, Jeroen T M,et al.Organic complexation of iron in the Southern Ocean[J]. Deep-Sea Res. I, 200,148:1477-1497.
|
[50] |
Boyd P W, Watson A J, Law C S, et al. A mesoscale phytoplankton bloom in the polar Southern Ocean stimulated by iron fertilization[J]. Nature,2000, 407:695-702.
|
[51] |
Wu J B, Sunda E W, Wen L S. Soluble and colloidal iron in the oligotrophic North Atlantic and North Pacific[J]. Science, 2001, 293:847-849.
|
[52] |
Takata H. Spatial variability of iron in the surface ocean water of the northwestern North Pacific Ocean[J]. Marine Chemistry, 2004, 86:139-157.
|
[53] |
Martin J H, Coale K H, Johnson K S, et al. Testing the iron hypothesis in ecosystems of the equatorial Pacific Ocean[J]. Nature,1994, 371:123-129.
|
[54] |
Duce R A,Tindale N W. Atmospheric transport of iron and its deposition in the ocean[J]. Limnology and Oceanography, 1991,36:1715-1726.
|
[55] |
刘玉山, 张桂兰. 250-500℃、100MPa下海水-玄武岩反应的实验研究[J].地球化学, 1996,25:53-62.[LIU Yu-shan, ZHANG Gui-lan.An experimental study on seawater-basalt interaction at 250
-500℃ and 100MPa[J]. Geochemistry, 1996,25:53-62.]
|
[56] |
Lui H C,Jeffrey C A, Damon A H. Lithium and lithium isotope through the upper oceanic crust:a study of seawater-basalt exchange at ODP Sites 504B and 896A[J]. Earth and Planetary Science Letters, 2002, 201:187-201.
|
[57] |
Mackey D J, O'Sullivan J E, Watson R J. Iron in the western Pacific:a riverine or hydrothermal source for iron in the Equatorial Undercurrent?[J].Deep-Sea Research I, 2002, 49:877-893.
|
[58] |
Gordon R M, Coale K H, Johnson K S. Iron distributions in the equatorial Pacific:implications for new production[J]. Limnology and Oceanography, 1997, 141:419-431.
|
[59] |
Wells M L,Vallis G K, Silver E A. Tectonic processes in Papua New Guinea and past productivity in the eastern equatorial Pacific Ocean[J]. Nature, 1999, 398:601-604.
|
[60] |
Asimow P D, Hirschmann M M, Stolper E M. Calculation of peridotite partial melting from thermodynamic models of minerals, melts:IV. Adiabatic decompression, the composition,mean properties of mid-ocean ridge basalts[J]. Petrol., 2001, 42:963-998.
|
[61] |
Blank J G, Delaney J R, Des Marsais D. The concentration isotopic composition of carbon in basaltic glasses from the Juan de Fuca Ridge[J]. Geochim. Cosmochim. Acta, 1993,7:875-888.
|
[62] |
Pineau F,Javoy M. Strong degassing at ridge crests:the behavior of dissolved carbon, water in basalt glasses at Mid-Atlantic ridge[J]. Earth Planet. Sci. Lett., 1994,123:179-198.
|
[63] |
Fisk M R,Giovannoni S J,Thorseth I H. The extent of microbial life in the volcanic crust of the ocean basins[J].Science, 1998,281:978-980.
|
[64] |
Torsvik T, Furnes H, Muehlenbachs K,et al. Evidence for microbial activity at the glass-alteration interface in oceanic basalts[J]. Earth Planet. Sci. Lett., 1998, 162:165-176.
|
[65] |
Furnes H, Taudigel H. Biological mediation of basalt glass alteration in the ocean crust:how deep is the deep biosphere?[J].Earth Planet. Sci. Lett., 1999,166:97-103.
|
[66] |
Jeffrey C A, Pilar M. On the role of microbes in the alteration of submarine basaltic glass:a TEM study[J]. Earth and Planetary Science Letters, 2000, 181:301-313.
|
[67] |
Thorseth I H, Pedersen R B, Christie D M. Microbial alteration of 0~30-Ma seafloor and sub-seafloor basaltic glasses from the Australian Antarctic Discordance[J]. Earth and Planetary Science Letters, 2003, 215:237-247.
|
[68] |
Wolfgang B, Karina J E. Iron and sulfide oxidation within the basaltic ocean crust:Implications for chemolithoautotrophic microbial biomass production[J]. Geochimica et Cosmochimica Acta, 2003,67:3871-3887.
|
[69] |
Rolf S A, Michael G, Fred T M. The control of Phanerozoic atmosphere and seawater composition by basalt seawater exchange reactions[J]. Journal of Geochemical Exploration, 2006,88:412-415.
|
[70] |
Hu X M, Luba J, Massimo S.Mid-Cretaceous oceanic red beds in the Umbria Marche Basin,central Italy:Constraints on paleoceanography and paleoclimate[J]. Palaeogeography, Palaeoclimatology, Palaeoecology, 2005,233:163-186.
|
[1] | YANG Shixiong, YE Siyuan, HE Lei, YUAN Hongming, ZHAO Guangming, DING Xigui, PEI Shaofeng, LU Jingfang. Geochemical and clay mineral characteristics of the Holocene sediments on the west coast of Bohai Bay and their implications for environmental and climatic changes[J]. Marine Geology & Quaternary Geology, 2021, 41(2): 75-87. DOI: 10.16562/j.cnki.0256-1492.2020092901 |
[2] | TANG Shikai, YU Jianfeng, LI Jinpeng, WANG Wei, ZHAO Hui, LI Hengjian, QIANG Menglin, YUAN Shuaishuai, GU Xiaoyuan, SHI Meng. Grain size characteristics and dynamic environment of surface sediments on the near shore seabed of Dingzi Bay[J]. Marine Geology & Quaternary Geology, 2019, 39(2): 70-78. DOI: 10.16562/j.cnki.0256-1492.2018022703 |
[3] | LIU Haojia, LI Yanlong, LIU Changling, DONG Chanying, WU Nengyou, SUN Jianye. CALCULATION MODEL FOR CRITICAL VELOCITY OF SAND MOVEMENT IN DECOMPOSED HYDRATE CEMENTED SEDIMENT[J]. Marine Geology & Quaternary Geology, 2017, 37(5): 166-173. DOI: 10.16562/j.cnki.0256-1492.2017.05.017 |
[4] | CHEN Bin, YIN Ping, XU Gang, LIU Jian. SUSPENDED SEDIMENT TRANSPORT PATTERNS IN THE ZHEJIANG INNER CONTINENTAL SHELF IN SUMMER[J]. Marine Geology & Quaternary Geology, 2016, 36(6): 95-100. DOI: 10.16562/j.cnki.0256-1492.2016.06.012 |
[5] | SONG Hongying, LIU Jinqing, MA Xiaohong, ZHANG Yong, ZHAO Guangtao. SENSITIVE GRAIN SIZE OF THE MUD DEPOSITS OFFSHORE QINGDAO AND ITS IMPLICATIONS FOR SEDIMENTARY ENVIRONMENTS[J]. Marine Geology & Quaternary Geology, 2016, 36(6): 51-61. DOI: 10.16562/j.cnki.0256-1492.2016.06.007 |
[6] | LIU Jinqing, ZHANG Yong, YIN Ping, SONG Hongying, BI Shipu, LIU Shanshan. DISTRIBUTION AND PROVENANCE OF HEAVY MINERALS IN SURFACE SEDIMENTS OF THE QINGDAO OFFSHORE AREA[J]. Marine Geology & Quaternary Geology, 2016, 36(1): 69-78. DOI: 10.16562/j.cnki.0256-1492.2016.01.006 |
[7] | HUANG Long, ZHANG Zhixun, GENG Wei, WANG Zhongbo, LU Kai, LI Yang. GRAIN SIZE OF SURFACE SEDIMENTS IN THE EASTERN MIN-ZHE COAST: AN INDICATOR OF SEDIMENTARY ENVIRONMENTS[J]. Marine Geology & Quaternary Geology, 2014, 34(6): 161-169. DOI: 10.3724/SP.J.1140.2014.06161 |
[8] | XU Guohui, WANG Xin, LIU Huixin, YANG Junjie, LIU Hongjun. ENGINEERING GEOLOGY ANALYSIS ON FORMATION OF MICRO-TOPOGRAPHY AND PROBLEMS OF SEDIMENT MOVEMENT AT SILTY COAST AREAS[J]. Marine Geology & Quaternary Geology, 2010, 30(2): 43-50. DOI: 10.3724/SP.J.1140.2010.02043 |
[9] | ZHOU Yongdong, CHEN Shenliang, GU Guochuan. DISTRIBUTION CHARACTERISTICS AND TRANSPORT TENDENCY OF SEAFLOOR SURFICIAL SEDIMENTS IN THE DONGYING HARBOR AREA[J]. Marine Geology & Quaternary Geology, 2009, 29(3): 31-38. DOI: 10.3724/SP.J.1140.2009.03031 |
[10] | YIN Yan-hong, SUN Jia-shi, LIU Chang-ling, LIU Xin-bo, MA Xin-guo. THE DISCOVERY OF QINGDAO IRON METEORITE AND ITS CHEMIEAL COMPOSITION AND MINERALOGY[J]. Marine Geology & Quaternary Geology, 2006, 26(3): 121-124. |
1. |
刘志峰,李林致,李峰,廖计华,祁鹏. 西湖凹陷西部斜坡带油气成藏主控因素与勘探新领域. 海相油气地质. 2025(01): 71-81 .
![]() | |
2. |
张海山. 西湖凹陷上部杂色泥岩井壁失稳研究和钻井液优化. 钻井液与完井液. 2024(02): 205-214 .
![]() | |
3. |
李宁,唐贤君,钟荣全,陈春峰,陈永军,何新建. 东海陆架盆地中部隆起带北西向大断层识别及成因机制. 中国海上油气. 2024(05): 22-33 .
![]() | |
4. |
张伯成,刘江,焦社宝,王军,陈春峰,唐贤君. 西湖凹陷天台构造走滑-转换体系特征及控藏作用. 中国海上油气. 2024(05): 44-56 .
![]() | |
5. |
唐贤君,李宁,黄晓松,何新建,陈永军,徐振中,钟荣全. 东海盆地西湖凹陷中下始新统宝石组再认识. 地层学杂志. 2024(04): 404-418 .
![]() | |
6. |
王辉,秦兰芝,李帅,徐东浩,肖晓光. 东海盆地西湖凹陷天台斜坡带平湖组层序格架下沉积差异充填及有利勘探方向. 地层学杂志. 2024(04): 419-429 .
![]() | |
7. |
祁鹏,郭刚,崔敏,王欣,李峰,李林致. 西湖凹陷天台斜坡新生代构造差异特征及其形成机制. 现代地质. 2023(02): 307-315 .
![]() | |
8. |
余浪,余一欣,蒋一鸣,邹玮,陈石,唐贤君,梁鑫鑫,何新建,陈冬霞. 东海陆架盆地西湖凹陷天台斜坡构造变换带发育特征及形成机理. 石油与天然气地质. 2023(03): 753-763 .
![]() | |
9. |
朱茂林,刘震,张枝焕,刘畅,杨鹏程,李佳阳,崔凤珍. 西湖凹陷平北地区平湖组下段烃源岩分布地震预测. 海洋地质与第四纪地质. 2022(01): 170-183 .
![]() | |
10. |
吴峰,任培罡,谈明轩,张福榕,马皓然. 东海西湖凹陷孔雀亭地区平湖组沉积相演变及其主控因素分析. 海洋地质与第四纪地质. 2022(02): 119-130 .
![]() | |
11. |
王磊,李春峰,李珂迪,姚泽伟,陶天生. 东海陆架盆地中生代残留地层特征及其构造启示. 海洋学研究. 2022(04): 11-24 .
![]() | |
12. |
李珂迪,李春峰,姚泽伟,陶天生. 东海中段钓鱼岛隆起的内部结构与演化. 海洋学研究. 2020(04): 1-15 .
![]() |