ZHOU Xiaoli,YANG Chunyu. Core-top calibration of element ratios in modern benthic foraminifera Uvigerina spp. for paleotemperature reconstruction[J]. Marine Geology & Quaternary Geology,2025,45(4):1-13. DOI: 10.16562/j.cnki.0256-1492.2025040703
Citation: ZHOU Xiaoli,YANG Chunyu. Core-top calibration of element ratios in modern benthic foraminifera Uvigerina spp. for paleotemperature reconstruction[J]. Marine Geology & Quaternary Geology,2025,45(4):1-13. DOI: 10.16562/j.cnki.0256-1492.2025040703

Core-top calibration of element ratios in modern benthic foraminifera Uvigerina spp. for paleotemperature reconstruction

More Information
  • Received Date: April 06, 2025
  • Revised Date: April 27, 2025
  • Accepted Date: April 27, 2025
  • Available Online: May 11, 2025
  • The Mg/Ca ratio of benthic foraminifera Uvigerina spp. is commonly used for reconstruction of bottom water temperature (BWT). However, BWT reconstructions may be influenced by non-thermal factors such as carbonate chemistry, and the effect of interspecies difference within Uvigerina spp. remain debated. To further assess the reliability of foraminiferal elemental proxies, we use multiple elemental ratios (Mg/Ca, Li/Ca, Mg/Li, B/Ca, and Sr/Ca) of three species of Uvigerina (U. proboscidea, U. peregrina, and U. elongatastriata) from core-top sediments collected during the BJ8-03 cruise in Sulawesi, Indonesia to compare interspecies difference in BWT and carbonate chemistry proxies. By compiling published elemental data of Uvigerina from various sites in the global ocean, we re-examined the interspecies difference and BWT reconstruction methods. Results show that the main factor affecting the BWT proxies of Uvigerina was due to interspecies difference, not the cleaning method. By multi-proxy comparison, we found that Mg/Ca in U. proboscidea correlated well with BWT, and Sr/Ca in both U. proboscidea and U. peregrina correlated with Δ[CO32−]. In contrast, data of U. elongatastriata are scattered and showed no significant correlation with environmental parameters. Furthermore, we updated the Mg/Ca-BWT equation for U. peregrina (Mg/Ca=0.94(±0.059)+0.06(±0.007)×BWT) using compiled data from global sites. The sensitivity of Mg/Ca to BWT (6%) is similar to previous results, suggesting that the Mg/Ca proxy is robust. However, the sensitivity of Mg/Li to BWT differed from previous results, suggesting that the validity of this proxy requires further investigation. Li/Ca, B/Ca, and Sr/Ca showed no robust correlations with BWT and carbonate chemistry, and their potential of indicating seawater environmental parameters needs further evaluation.

  • [1]
    Rathburn A E, De Deckker P. Magnesium and strontium compositions of Recent benthic foraminifera from the Coral Sea, Australia and Prydz Bay, Antarctica[J]. Marine Micropaleontology, 1997, 32(3-4):231-248. doi: 10.1016/S0377-8398(97)00028-5
    [2]
    Gussone N, Filipsson H L, Kuhnert H. Mg/Ca, Sr/Ca and Ca isotope ratios in benthonic foraminifers related to test structure, mineralogy and environmental controls[J]. Geochimica et Cosmochimica Acta, 2016, 173:142-159. doi: 10.1016/j.gca.2015.10.018
    [3]
    Rosenthal Y, Boyle E A, Slowey N. Temperature control on the incorporation of magnesium, strontium, fluorine, and cadmium into benthic foraminiferal shells from Little Bahama Bank: prospects for thermocline paleoceanography[J]. Geochimica et Cosmochimica Acta, 1997, 61(17):3633-3643. doi: 10.1016/S0016-7037(97)00181-6
    [4]
    Yu J M, Elderfield H. Benthic foraminiferal B/Ca ratios reflect deep water carbonate saturation state[J]. Earth and Planetary Science Letters, 2007, 258(1-2):73-86. doi: 10.1016/j.jpgl.2007.03.025
    [5]
    Evans D, Wade B S, Henehan M, et al. Revisiting carbonate chemistry controls on planktic foraminifera Mg/Ca: implications for sea surface temperature and hydrology shifts over the Paleocene–Eocene Thermal Maximum and Eocene–Oligocene transition[J]. Climate of the Past, 2016, 12(4):819-835. doi: 10.5194/cp-12-819-2016
    [6]
    Lea D W, Pak D K, Spero H J. Climate impact of Late Quaternary equatorial pacific sea surface temperature variations[J]. Science, 2000, 289(5485):1719-1724. doi: 10.1126/science.289.5485.1719
    [7]
    Gussone N, Eisenhauer A, Tiedemann R, et al. Reconstruction of Caribbean Sea surface temperature and salinity fluctuations in response to the Pliocene closure of the Central American Gateway and radiative forcing, using δ44/40Ca, δ18O and Mg/Ca ratios[J]. Earth and Planetary Science Letters, 2004, 227(3-4):201-214. doi: 10.1016/j.jpgl.2004.09.004
    [8]
    Benway H M, Mix A C, Haley B A, et al. Eastern Pacific Warm Pool paleosalinity and climate variability: 0-30 kyr[J]. Paleoceanography, 2006, 21(3):PA3008.
    [9]
    Lea D W, Martin P A, Pak D K, et al. Reconstructing a 350ky history of sea level using planktonic Mg/Ca and oxygen isotope records from a Cocos Ridge core[J]. Quaternary Science Reviews, 2002, 21(1-3):283-293. doi: 10.1016/S0277-3791(01)00081-6
    [10]
    Lear C H, Rosenthal Y, Slowey N. Benthic foraminiferal Mg/Ca-paleothermometry: a revised core-top calibration[J]. Geochimica et Cosmochimica Acta, 2002, 66(19):3375-3387. doi: 10.1016/S0016-7037(02)00941-9
    [11]
    Billups K, Schrag D P. Paleotemperatures and ice volume of the past 27 Myr revisited with paired Mg/Ca and 18O/16O measurements on benthic foraminifera[J]. Paleoceanography, 2002, 17(1):1003.
    [12]
    Billups K, Schrag D P. Application of benthic foraminiferal Mg/Ca ratios to questions of Cenozoic climate change[J]. Earth and Planetary Science Letters, 2003, 209(1-2):181-195. doi: 10.1016/S0012-821X(03)00067-0
    [13]
    Martin P A, Lea D W, Rosenthal Y, et al. Quaternary deep sea temperature histories derived from benthic foraminiferal Mg/Ca[J]. Earth and Planetary Science Letters, 2002, 198(1-2):193-209. doi: 10.1016/S0012-821X(02)00472-7
    [14]
    Lear C H, Rosenthal Y, Wright J D. The closing of a seaway: ocean water masses and global climate change[J]. Earth and Planetary Science Letters, 2003, 210(3-4):425-436. doi: 10.1016/S0012-821X(03)00164-X
    [15]
    Lear C H, Elderfield H, Wilson P A. Cenozoic deep-sea temperatures and global ice volumes from Mg/Ca in benthic foraminiferal calcite[J]. Science, 2000, 287(5451):269-272. doi: 10.1126/science.287.5451.269
    [16]
    Marchitto T M, Curry W B, Lynch-Stieglitz J, et al. Improved oxygen isotope temperature calibrations for cosmopolitan benthic foraminifera[J]. Geochimica et Cosmochimica Acta, 2014, 130:1-11. doi: 10.1016/j.gca.2013.12.034
    [17]
    Allen K A, Sikes E L, Anderson R F, et al. Rapid loss of CO2 from the south pacific ocean during the last glacial termination[J]. Paleoceanography and Paleoclimatology, 2020, 35(2):e2019PA003766. doi: 10.1029/2019PA003766
    [18]
    Yu J M, Anderson R F, Rohling E J. Deep ocean carbonate chemistry and glacial-interglacial atmospheric CO2 change[J]. Oceanography, 2014, 27(1):16-25. doi: 10.5670/oceanog.2014.04
    [19]
    Lea D W, Mashiotta T A, Spero H J. Controls on magnesium and strontium uptake in planktonic foraminifera determined by live culturing[J]. Geochimica et Cosmochimica Acta, 1999, 63(16):2369-2379. doi: 10.1016/S0016-7037(99)00197-0
    [20]
    Oomori T, Kaneshima H, Maezato Y, et al. Distribution coefficient of Mg2+ ions between calcite and solution at 10-50°C[J]. Marine Chemistry, 1987, 20(4):327-336. doi: 10.1016/0304-4203(87)90066-1
    [21]
    Erez J. The source of ions for biomineralization in foraminifera and their implications for paleoceanographic proxies[J]. Reviews in Mineralogy and Geochemistry, 2003, 54(1):115-149. doi: 10.2113/0540115
    [22]
    Allen K A, Hönisch B, Eggins S M, et al. Environmental controls on B/Ca in calcite tests of the tropical planktic foraminifer species Globigerinoides ruber and Globigerinoides sacculifer[J]. Earth and Planetary Science Letters, 2012, 351-352:270-280. doi: 10.1016/j.jpgl.2012.07.004
    [23]
    Uchikawa J, Penman D E, Zachos J C, et al. Experimental evidence for kinetic effects on B/Ca in synthetic calcite: implications for potential B(OH)4 and B(OH)3 incorporation[J]. Geochimica et Cosmochimica Acta, 2015, 150:171-191. doi: 10.1016/j.gca.2014.11.022
    [24]
    Kontakiotis G, Mortyn G, Antonarakou A, et al. Assessing the reliability of foraminiferal Mg/Ca thermometry by comparing field-samples and culture experiments: a review[J]. Geological Quarterly, 2016, 60(3):547-560.
    [25]
    Evans D, Müller W. Deep time foraminifera Mg/Ca paleothermometry: nonlinear correction for secular change in seawater Mg/Ca[J]. Paleoceanography, 2012, 27(4):PA4205.
    [26]
    Bryan S P, Marchitto T M. Mg/Ca–temperature proxy in benthic foraminifera: new calibrations from the Florida Straits and a hypothesis regarding Mg/Li[J]. Paleoceanography, 2008, 23(2):PA2220.
    [27]
    Lawson V J, Rosenthal Y, Bova S C, et al. Controls on Sr/Ca, S/Ca, and Mg/Ca in benthic foraminifera: implications for the carbonate chemistry of the pacific ocean over the last 350 ky[J]. Geochemistry, Geophysics, Geosystems, 2024, 25(8):e2024GC011508. doi: 10.1029/2024GC011508
    [28]
    Mojtahid M, Hennekam R, De Nooijer L, et al. Evaluation and application of foraminiferal element/calcium ratios: assessing riverine fluxes and environmental conditions during sapropel S1 in the Southeastern Mediterranean[J]. Marine Micropaleontology, 2019, 153:101783. doi: 10.1016/j.marmicro.2019.101783
    [29]
    Marriott C S, Henderson G M, Crompton R, et al. Effect of mineralogy, salinity, and temperature on Li/Ca and Li isotope composition of calcium carbonate[J]. Chemical Geology, 2004, 212(1):5-15.
    [30]
    Hall J M, Chan L H. Li/Ca in multiple species of benthic and planktonic foraminifera: thermocline, latitudinal, and glacial-interglacial variation[J]. Geochimica et Cosmochimica Acta, 2004, 68(3):529-545. doi: 10.1016/S0016-7037(03)00451-4
    [31]
    Yu J M, Elderfield H, Jin Z D, et al. Controls on Sr/Ca in benthic foraminifera and implications for seawater Sr/Ca during the Late Pleistocene[J]. Quaternary Science Reviews, 2014, 98:1-6. doi: 10.1016/j.quascirev.2014.05.018
    [32]
    Rosenthal Y, Lear C H, Oppo D W, et al. Temperature and carbonate ion effects on Mg/Ca and Sr/Ca ratios in benthic foraminifera: aragonitic species Hoeglundina elegans[J]. Paleoceanography, 2006, 21(1):PA1007.
    [33]
    Sepulcre S, Tribondeau M, Bassinot F, et al. Assessing the calibration of benthic foraminifera elemental ratios from the northeastern Atlantic[J]. Journal of Marine Science and Engineering, 2024, 12(5):736. doi: 10.3390/jmse12050736
    [34]
    McCorkle D C, Keigwin L D, Corliss B H, et al. The influence of microhabitats on the carbon isotopic composition of deep-sea benthic foraminifera[J]. Paleoceanography, 1990, 5(2):161-185. doi: 10.1029/PA005i002p00161
    [35]
    Elderfield H, Yu J, Anand P, et al. Calibrations for benthic foraminiferal Mg/Ca paleothermometry and the carbonate ion hypothesis[J]. Earth and Planetary Science Letters, 2006, 250(3-4):633-649. doi: 10.1016/j.jpgl.2006.07.041
    [36]
    Martin W R, Sayles F L. Organic matter oxidation in deep-sea sediments: distribution in the sediment column and implications for calcite dissolution[J]. Deep Sea Research Part II: Topical Studies in Oceanography, 2006, 53(5-7):771-792. doi: 10.1016/j.dsr2.2006.01.017
    [37]
    Weldeab S, Arce A, Kasten S. Mg/Ca-Δ CO32−pore water–temperature calibration for Globobulimina spp. : a sensitive paleothermometer for deep-sea temperature reconstruction[J]. Earth and Planetary Science Letters, 2016, 438:95-102. doi: 10.1016/j.jpgl.2016.01.009
    [38]
    Stirpe C R, Allen K A, Sikes E L, et al. The Mg/Ca proxy for temperature: a Uvigerina core-top study in the Southwest Pacific[J]. Geochimica et Cosmochimica Acta, 2021, 309:299-312. doi: 10.1016/j.gca.2021.06.015
    [39]
    Elderfield H, Greaves M, Barker S, et al. A record of bottom water temperature and seawater δ18O for the Southern Ocean over the past 440 kyr based on Mg/Ca of benthic foraminiferal Uvigerina spp.[J]. Quaternary Science Reviews, 2010, 29(1-2):160-169. doi: 10.1016/j.quascirev.2009.07.013
    [40]
    Oppo D W, Lu W, Huang K F, et al. Deglacial temperature and carbonate saturation state variability in the tropical Atlantic at Antarctic intermediate water depths[J]. Paleoceanography and Paleoclimatology, 2023, 38(9):e2023PA004674. doi: 10.1029/2023PA004674
    [41]
    Barker S, Greaves M, Elderfield H. A study of cleaning procedures used for foraminiferal Mg/Ca paleothermometry[J]. Geochemistry, Geophysics, Geosystems, 2003, 4(9):8407.
    [42]
    Lewis E R, Wallace D W R. Program developed for CO2 system calculations[R/OL]. 1998. https://www.osti.gov/servlets/purl/1464255.
    [43]
    Boudreau B P, Middelburg J J, Meysman F J R. Carbonate compensation dynamics[J]. Geophysical Research Letters, 2010, 37(3):L03603.
    [44]
    Boyle E A, Keigwin L D. Comparison of Atlantic and Pacific paleochemical records for the last 215, 000 years: changes in deep ocean circulation and chemical inventories[J]. Earth and Planetary Science Letters, 1985, 76(1-2):135-150. doi: 10.1016/0012-821X(85)90154-2
    [45]
    Elderfield H, Bertram C J, Erez J. A biomineralization model for the incorporation of trace elements into foraminiferal calcium carbonate[J]. Earth and Planetary Science Letters, 1996, 142(3-4):409-423. doi: 10.1016/0012-821X(96)00105-7
    [46]
    Rimstidt J D, Balog A, Webb J. Distribution of trace elements between carbonate minerals and aqueous solutions[J]. Geochimica et Cosmochimica Acta, 1998, 62(11):1851-1863. doi: 10.1016/S0016-7037(98)00125-2
    [47]
    Bentov S, Erez J. Impact of biomineralization processes on the Mg content of foraminiferal shells: a biological perspective[J]. Geochemistry, Geophysics, Geosystems, 2006, 7(1):Q01P08.
    [48]
    Huh Y, Chan L H, Zhang L B, et al. Lithium and its isotopes in major world rivers: implications for weathering and the oceanic budget[J]. Geochimica et Cosmochimica Acta, 1998, 62(12):2039-2051. doi: 10.1016/S0016-7037(98)00126-4
    [49]
    Lear C H, Rosenthal Y. Benthic foraminiferal Li/Ca: insights into Cenozoic seawater carbonate saturation state[J]. Geology, 2006, 34(11):985-988. doi: 10.1130/G22792A.1
    [50]
    Yu J M, Elderfield H. Mg/Ca in the benthic foraminifera Cibicidoides wuellerstorfi and Cibicidoides mundulus: temperature versus carbonate ion saturation[J]. Earth and Planetary Science Letters, 2008, 276(1-2):129-139. doi: 10.1016/j.jpgl.2008.09.015
    [51]
    Baker P A, Gieskes J M, Elderfield H. Diagenesis of carbonates in deep-sea sediments; evidence from Sr/Ca ratios and interstitial dissolved Sr2+ data[J]. Journal of Sedimentary Research, 1982, 52(1):71-82.
    [52]
    Lorens R B. Sr, Cd, Mn and Co distribution coefficients in calcite as a function of calcite precipitation rate[J]. Geochimica et Cosmochimica Acta, 1981, 45(4):553-561. doi: 10.1016/0016-7037(81)90188-5
    [53]
    Mucci A, Morse J W. The incorporation of Mg2+ and Sr2+ into calcite overgrowths: influences of growth rate and solution composition[J]. Geochimica et Cosmochimica Acta, 1983, 47(2):217-233. doi: 10.1016/0016-7037(83)90135-7
    [54]
    Carpenter S J, Lohmann K C. Sr/Mg ratios of modern marine calcite: empirical indicators of ocean chemistry and precipitation rate[J]. Geochimica et Cosmochimica Acta, 1992, 56(5):1837-1849. doi: 10.1016/0016-7037(92)90314-9
    [55]
    Mucci A. Growth kinetics and composition of magnesian calcite overgrowths precipitated from seawater: quantitative influence of orthophosphate ions[J]. Geochimica et Cosmochimica Acta, 1986, 50(10):2255-2265. doi: 10.1016/0016-7037(86)90080-3

Catalog

    Article views (27) PDF downloads (9) Cited by()

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return