Citation: | HAO Qiang,GUO Yulong,YANG Chengfan,et al. Chemical weathering intensity and controlling factors in the Changjiang River Basin during the Holocene[J]. Marine Geology & Quaternary Geology,xxxx,x(x): x-xx. DOI: 10.16562/j.cnki.0256-1492.2024112901 |
Chemical weathering of silicates in large river basin has a significant effect on climate change and land-sea material exchange. How to decipher the chemical weathering history from river sedimentary archive has always been a challenge in the study on weathering processes at the Earth’s surface. Although the classical chemical weathering indices (CIA: Chemical Index of Alteration, WIP: Weathering Index of Parker, and so on.) have been well documented, how the weathering proxies in clastic sediments responds to climate change and its time scale remains controversial. As a world-class river originating from the Qinghai-Tibet Plateau and with its basin significantly influenced by the monsoon, the Changjiang (Yangtze) River is a natural laboratory for studying the transmission of weathering proxies among the large basin and the interrelationship of climate, weathering, and sedimentation. Therefore, we examined the changes of different weathering proxies in the river basin since the Holocene by using the sedimentary records from the middle reaches, estuary, and the inner shelf of the East China Sea. The bulk samples, <63 μm fractions, and <2 μm fractions (clay) show that fine-grained sediments (clay/suspended particulate matter) could carry stronger weathering proxies than coarse-grained ones (bulk samples/floodplain sediments). The classical weathering proxies indicate that the integrated weathering intensity of large basins, and even the CIA in the clays could not reflect the temperature change on millennial scale but the provenance changes that related to rainfall migration and human activities. This study revealed the complexity of weathering-climate responses and feedbacks from large river basins. Therefore, interpretation on weathering proxies in clastic sedimentary archives shall be cautious.
[1] |
Chamberlin T C. An attempt to frame a working hypothesis of the cause of glacial periods on an atmospheric basis[J]. The Journal of Geology, 1899, 7(6):545-584. doi: 10.1086/608449
|
[2] |
Urey H C, Korff S A. The planets: their origin and development[J]. Physics Today, 1952, 5(8):12.
|
[3] |
Walker J C G, Hays P B, Kasting J F. A negative feedback mechanism for the long-term stabilization of Earth's surface temperature[J]. Journal of Geophysical Research: Oceans, 1981, 86(C10):9776-9782. doi: 10.1029/JC086iC10p09776
|
[4] |
Raymo M, Ruddiman W F. Tectonic forcing of late Cenozoic climate[J]. Nature, 1992, 359(6391):117-122. doi: 10.1038/359117a0
|
[5] |
Hilton R G, West A J. Mountains, erosion and the carbon cycle[J]. Nature Reviews Earth & Environment, 2020, 1(6):284-299.
|
[6] |
Berner R A, Caldeira K. The need for mass balance and feedback in the geochemical carbon cycle[J]. Geology, 1997, 25(10):955-956. doi: 10.1130/0091-7613(1997)025<0955:TNFMBA>2.3.CO;2
|
[7] |
Frings P J, Buss H L. The central role of weathering in the geosciences[J]. Elements, 2019, 15(4):229-234. doi: 10.2138/gselements.15.4.229
|
[8] |
Shao J Q, Yang S Y, Li C. Chemical indices (CIA and WIP) as proxies for integrated chemical weathering in China: inferences from analysis of fluvial sediments[J]. Sedimentary Geology, 2012, 265-266:110-120. doi: 10.1016/j.sedgeo.2012.03.020
|
[9] |
Li F L, Yang S Y, Breecker D O, et al. Responses of silicate weathering intensity to the Pliocene-Quaternary cooling in East and Southeast Asia[J]. Earth and Planetary Science Letters, 2022, 578:117301. doi: 10.1016/j.jpgl.2021.117301
|
[10] |
Deng K, Yang S Y, Guo Y L. A global temperature control of silicate weathering intensity[J]. Nature Communications, 2022, 13(1):1781. doi: 10.1038/s41467-022-29415-0
|
[11] |
梁磊, 许国强, 黄武轩, 等. 北部湾东南部末次冰期以来环境演化与驱动机制[J]. 沉积与特提斯地质, 2023, 43(4):702-711
LIANG Lei, XU Guoqiang, HUANG Wuxuan, et al. Environmental evolution and its driving mechanisms of southeastern Beibu Gulf since the Last glacial period[J]. Sedimentary Geology and Tethyan Geology, 2023, 43(4):702-711.]
|
[12] |
李绪龙, 张霞, 林春明, 等. 常用化学风化指标综述: 应用与展望[J]. 高校地质学报, 2022, 28(1):51-63
LI Xulong, ZHANG Xia, LIN Chunming, et al. Overview of the application and prospect of common chemical weathering indices[J]. Geological Journal of China Universities, 2022, 28(1):51-63.]
|
[13] |
傅寒晶, 简星, 梁杭海. 硅酸盐化学风化强度评估的沉积物指标与方法研究进展[J]. 古地理学报, 2021, 23(6):1192-1209 doi: 10.7605/gdlxb.2021.06.076
FU Hanjing, JIAN Xing, LIANG Hanghai. Research progress of sediment indicators and methods for evaluation of silicate chemical weathering intensity[J]. Journal of Palaeogeography, 2021, 23(6):1192-1209.] doi: 10.7605/gdlxb.2021.06.076
|
[14] |
李芳亮. 东亚陆缘沉积的物源与风化强度演变及对晚新生代变冷的响应[D]. 同济大学博士学位论文, 2022
LI Fangliang. Sediment provenance and weathering intensity in East Asian margin and the responses to late Cenozoic cooling[D]. Doctor Dissertation of Tongji University, 2022.]
|
[15] |
郝强. 全新世长江沉积记录对流域风化、气候变化和人类活动的差异响应[D]. 同济大学博士学位论文, 2024
HAO Qiang. Response of the Changjiang River sedimentary records to weathering processes, climate change and human activities during the Holocene[D]. Doctor Dissertation of Tongji University, 2024.]
|
[16] |
Yang S Y, Jung H S, Li C X. Two unique weathering regimes in the Changjiang and Huanghe drainage basins: geochemical evidence from river sediments[J]. Sedimentary Geology, 2004, 164(1-2):19-34. doi: 10.1016/j.sedgeo.2003.08.001
|
[17] |
Romans B W, Castelltort S, Covault J A, et al. Environmental signal propagation in sedimentary systems across timescales[J]. Earth-Science Reviews, 2016, 153:7-29. doi: 10.1016/j.earscirev.2015.07.012
|
[18] |
杨守业, 印萍. 自然环境变化与人类活动影响下的中小河流沉积物源汇过程[J]. 海洋地质与第四纪地质, 2018, 38(1):1-10
YANG Shouye, YIN Ping. Sediment source-to-sink processes of small mountainous rivers under the impacts of natural environmental changes and human activities[J]. Marine Geology & Quaternary Geology, 2018, 38(1):1-10.]
|
[19] |
Li C, Yang S Y, Zhao J X, et al. The time scale of river sediment source-to-sink processes in East Asia[J]. Chemical Geology, 2016, 446:138-146. doi: 10.1016/j.chemgeo.2016.06.012
|
[20] |
Jeandel C, Oelkers E H. The influence of terrigenous particulate material dissolution on ocean chemistry and global element cycles[J]. Chemical Geology, 2015, 395:50-66. doi: 10.1016/j.chemgeo.2014.12.001
|
[21] |
毕磊. 冰后期长江入海沉积物的源汇过程与环境响应[D]. 同济大学博士学位论文, 2016
BI Lei. The Changjiang (Yangtze River) sediment source-to-sink processes and paleoenvironmental records in the East China Sea during the postglacial period[D]. Doctor Dissertation of Tongji University, 2016.]
|
[22] |
Yang C F, Vigier N, Yang S Y, et al. Clay Li and Nd isotopes response to hydroclimate changes in the Changjiang (Yangtze) basin over the past 14, 000 years[J]. Earth and Planetary Science Letters, 2021, 561:116793. doi: 10.1016/j.jpgl.2021.116793
|
[23] |
曹昉. 全新世长江和台湾山溪性河流的源汇过程及风化模式演变[D]. 同济大学博士学位论文, 2024
CAO Fang. The Holocene evolution of sediment sourceto-sink processes and weathering regimes of the Changjiang River and small mountain rivers in Taiwan[D]. Doctor Dissertation of Tongji University, 2024.]
|
[24] |
An Z S, Porter S C, Kutzbach J E, et al. Asynchronous Holocene optimum of the East Asian monsoon[J]. Quaternary Science Reviews, 2000, 19(8):743-762. doi: 10.1016/S0277-3791(99)00031-1
|
[25] |
水利部长江水利委员会. 长江泥沙公报2021[M]. 武汉: 长江出版社, 2022
Changjiang Water Resources Commission of the Minister Water Resources. Changjiang Sediment Bulletin 2021[M]. Wuhan: Changjiang Press, 2022.]
|
[26] |
向治安, 喻学山, 刘载生, 等. 长江泥沙的来源、输移和沉积特性分析[J]. 长江科学院院报, 1990, 7(3):9-19,28
XIANG Zhi’an, YU Xueshan, LIU Zaisheng, et al. Characteristic analyses of sediment yielding, transportation and sedimentation in Yangtze River[J]. Journal of Changjiang River Scientific Research Institute, 1990, 7(3):9-19,28.]
|
[27] |
徐砚田. 海平面变化驱动的长江中下游湖泊的形成[D]. 中国地质大学博士学位论文, 2019
XU Yantian. Sea-level change determined lake formation in the Yangtze Plain[D]. Doctor Dissertation of China University of Geosciences, 2019.]
|
[28] |
Hori K, Saito Y, Zhao Q H, et al. Sedimentary facies and Holocene progradation rates of the Changjiang (Yangtze) delta, China[J]. Geomorphology, 2001, 41(2-3):233-248. doi: 10.1016/S0169-555X(01)00119-2
|
[29] |
Bi L, Yang S Y, Zhao Y, et al. Provenance study of the Holocene sediments in the Changjiang (Yangtze River) estuary and inner shelf of the East China sea[J]. Quaternary International, 2017, 441:147-161. doi: 10.1016/j.quaint.2016.12.004
|
[30] |
Chen J F, Li C, Albert G, et al. Uranium-series comminution ages constrain large catchment erosion and its response to climate change: a case study from the Changjiang[J]. Earth and Planetary Science Letters, 2024, 625:118493. doi: 10.1016/j.jpgl.2023.118493
|
[31] |
郑妍. 东海内陆架泥质沉积的磁学特征及古环境意义[D]. 同济大学博士学位论文, 2010
ZHENG Yan. Magnetic properties of the mud sediments from East China Sea inner shelf and paleoenvironmental implications[D]. Doctor Dissertation of Tongji University, 2010.]
|
[32] |
Nesbitt H W, Young G M. Early Proterozoic climates and plate motions inferred from major element chemistry of lutites[J]. Nature, 1982, 299(5885):715-717. doi: 10.1038/299715a0
|
[33] |
Parker A. An index of weathering for silicate rocks[J]. Geological Magazine, 1970, 107(6):501-504. doi: 10.1017/S0016756800058581
|
[34] |
Harnois L. The CIW index: a new chemical index of weathering[J]. Sedimentary Geology, 1988, 55(3-4):319-322. doi: 10.1016/0037-0738(88)90137-6
|
[35] |
Fedo C M, Wayne Nesbitt H, Young G M. Unraveling the effects of potassium metasomatism in sedimentary rocks and paleosols, with implications for paleoweathering conditions and provenance[J]. Geology, 1995, 23(10):921-924. doi: 10.1130/0091-7613(1995)023<0921:UTEOPM>2.3.CO;2
|
[36] |
Garzanti E, Padoan M, Setti M, et al. Weathering geochemistry and Sr-Nd fingerprints of equatorial upper Nile and Congo muds[J]. Geochemistry, Geophysics, Geosystems, 2013, 14(2):292-316. doi: 10.1002/ggge.20060
|
[37] |
Guo Y L, Yang S Y, Su N, et al. Revisiting the effects of hydrodynamic sorting and sedimentary recycling on chemical weathering indices[J]. Geochimica et Cosmochimica Acta, 2018, 227:48-63. doi: 10.1016/j.gca.2018.02.015
|
[38] |
He M Y, Zheng H B, Clift P D, et al. Geochemistry of fine-grained sediments in the Yangtze River and the implications for provenance and chemical weathering in East Asia[J]. Progress in Earth and Planetary Science, 2015, 2(1):32. doi: 10.1186/s40645-015-0061-6
|
[39] |
Bi L, Yang S Y, Li C, et al. Geochemistry of river-borne clays entering the East China Sea indicates two contrasting types of weathering and sediment transport processes[J]. Geochemistry, Geophysics, Geosystems, 2015, 16(9):3034-3052. doi: 10.1002/2015GC005867
|
[40] |
Guo Y L, Yang S Y, Deng K. Disentangle the hydrodynamic sorting and lithology effects on sediment weathering signals[J]. Chemical Geology, 2021, 586:120607. doi: 10.1016/j.chemgeo.2021.120607
|
[41] |
Rudnick R L, Gao S. The composition of the continental crust[M]//Holland H D, Turekian K K. Treatise on Geochemistry. Oxford: Pergamon, 2003: 1-64.
|
[42] |
Liu J P, Xu K H, Li A C, et al. Flux and fate of Yangtze River sediment delivered to the East China Sea[J]. Geomorphology, 2007, 85(3-4):208-224. doi: 10.1016/j.geomorph.2006.03.023
|
[43] |
Milliman J D, Shen H T, Yang Z S, et al. Transport and deposition of river sediment in the Changjiang estuary and adjacent continental shelf[J]. Continental Shelf Research, 1985, 4(1-2):37-45. doi: 10.1016/0278-4343(85)90020-2
|
[44] |
Dykoski C A, Edwards R L, Cheng H, et al. A high-resolution, absolute-dated Holocene and deglacial Asian monsoon record from Dongge Cave, China[J]. Earth and Planetary Science Letters, 2005, 233(1-2):71-86. doi: 10.1016/j.jpgl.2005.01.036
|
[45] |
Zhang E L, Chang J, Cao Y M, et al. Holocene high-resolution quantitative summer temperature reconstruction based on subfossil chironomids from the southeast margin of the Qinghai-Tibetan Plateau[J]. Quaternary Science Reviews, 2017, 165:1-12. doi: 10.1016/j.quascirev.2017.04.008
|
[46] |
Huang X Y, Meyers P A, Jia C L, et al. Paleotemperature variability in central China during the last 13 ka recorded by a novel microbial lipid proxy in the Dajiuhu peat deposit[J]. The Holocene, 2013, 23(8):1123-1129. doi: 10.1177/0959683613483617
|
[47] |
Hao Q, Tang M, Huang X T, et al. Holocene wildfire regime shifts induced by the enhancement of human activities in the Changjiang (Yangtze River) Basin[J]. CATENA, 2024, 240:107998. doi: 10.1016/j.catena.2024.107998
|
[48] |
Qiu S F, Zhu Z Y, Yang T, et al. Chemical weathering of monsoonal eastern China: implications from major elements of topsoil[J]. Journal of Asian Earth Sciences, 2014, 81:77-90. doi: 10.1016/j.jseaes.2013.12.004
|