ZHOU Jinyang,XING Lei,DONG Dongdong,et al. Seismic reflection characteristics and formation mechanism of Cenozoic igneous rocks in the Xisha Islands[J]. Marine Geology & Quaternary Geology,xxxx,x(x): x-xx. DOI: 10.16562/j.cnki.0256-1492.2024110201
Citation: ZHOU Jinyang,XING Lei,DONG Dongdong,et al. Seismic reflection characteristics and formation mechanism of Cenozoic igneous rocks in the Xisha Islands[J]. Marine Geology & Quaternary Geology,xxxx,x(x): x-xx. DOI: 10.16562/j.cnki.0256-1492.2024110201

Seismic reflection characteristics and formation mechanism of Cenozoic igneous rocks in the Xisha Islands

More Information
  • Received Date: November 01, 2024
  • Revised Date: January 06, 2025
  • Accepted Date: January 06, 2025
  • Available Online: March 18, 2025
  • Magmatic activities are well developed in the northwestern South China Sea since the Cenozoic, which record important information on the tectonic evolution of the South China Sea and its deep dynamic processes. However, the studies of geophysical characteristics of the Cenozoic igneous rocks in the Xisha Islands of the northwestern South China Sea are still poor. Through analyzing seismic profiles and previous geological and geophysical results, we identified the seismic reflection characteristics and geometries of the igneous rocks, specified their distribution and active periods, and discussed their formation mechanisms. Results show that a large number of Cenozoic igneous rocks have developed in the Xisha Islands. These rocks are primarily consists of conical volcanoes and magmatic intrusives as well as abundant igneous sills, layered or bowl-shaped, and are more widely distributed in the western part and its outer edges of the islands region than those in the eastern part, along mostly the basement faults. According to the contact relationships between strata and igneous rocks, the Cenozoic igneous activities in the study region could be divided into five periods, i.e., the syn-rift period (before 23 Ma), post-rift period Ⅰ (23~16 Ma), post-rift period Ⅱ (16~5.3 Ma), post-rift period Ⅲ (5.3~2.6 Ma), and post-rift period Ⅳ (after 2.6 Ma). The magmatism in the syn-rift period was very weak and probably derived from the decompression melting of the asthenosphere during the rifting, while in the post-rift Ⅲ and Ⅳ periods were very intensive. We proposed that the significant igneous activities since the Pliocene in the Xisha region was probably cause by the interaction of the strike-slip reversal of the Ailao Shan-Red River fault zone and its seaward extension into the sea at ca. 5.5 Ma and the deep mantle upwelling during the post-rift period.

  • [1]
    Planke S, Symonds P A, Alvestad E, et al. Seismic volcanostratigraphy of large‐volume basaltic extrusive complexes on rifted margins[J]. Journal of Geophysical Research: Solid Earth, 2000, 105(B8):19335-19351. doi: 10.1029/1999JB900005
    [2]
    Yan P, Deng H, Liu H L, et al. The temporal and spatial distribution of volcanism in the South China Sea region[J]. Journal of Asian Earth Sciences, 2006, 27(5):647-659. doi: 10.1016/j.jseaes.2005.06.005
    [3]
    Jones D W R, Katz R F, Tian M, et al. Thermal impact of magmatism in subduction zones[J]. Earth and Planetary Science Letters, 2018, 481:73-79. doi: 10.1016/j.jpgl.2017.10.015
    [4]
    Zhang Q, Wu S G, Dong D D. Cenozoic magmatism in the northern continental margin of the South China Sea: evidence from seismic profiles[J]. Marine Geophysical Research, 2016, 37(2):71-94. doi: 10.1007/s11001-016-9266-3
    [5]
    Magee C, Muirhead J, Schofield N, et al. Structural signatures of igneous sheet intrusion propagation[J]. Journal of Structural Geology, 2019, 125:148-154. doi: 10.1016/j.jsg.2018.07.010
    [6]
    Lüdmann T, Wong H K. Neotectonic regime on the passive continental margin of the northern South China Sea[J]. Tectonophysics, 1999, 311(1-4):113-138. doi: 10.1016/S0040-1951(99)00155-9
    [7]
    Shi X B, Burov E, Leroy S, et al. Intrusion and its implication for subsidence: a case from the Baiyun Sag, on the northern margin of the South China Sea[J]. Tectonophysics, 2005, 407(1-2):117-134. doi: 10.1016/j.tecto.2005.07.004
    [8]
    石学法, 鄢全树. 南海新生代岩浆活动的地球化学特征及其构造意义[J]. 海洋地质与第四纪地质, 2011, 31(2):59-72

    SHI Xuefa, YAN Quanshu. Geochemistry of Cenozoic magmatism in the South China Sea and its tectonic implications[J]. Marine Geology & Quaternary Geology, 2011, 31(2):59-72.]
    [9]
    Gao J W, Wu S G, McIntosh K, et al. The continent-ocean transition at the mid-northern margin of the South China Sea[J]. Tectonophysics, 2015, 654:1-19. doi: 10.1016/j.tecto.2015.03.003
    [10]
    Gao J, Wu S G, McIntosh K, et al. Crustal structure and extension mode in the northwestern margin of the South China Sea[J]. Geochemistry, Geophysics, Geosystems, 2016, 17(6):2143-2167. doi: 10.1002/2016GC006247
    [11]
    Gao J W, Bangs N, Wu S G, et al. Post-seafloor spreading magmatism and associated magmatic hydrothermal systems in the Xisha uplift region, northwestern South China Sea[J]. Basin Research, 2019, 31(4):688-708. doi: 10.1111/bre.12338
    [12]
    Fan C Y, Xia S H, Zhao F, et al. New insights into the magmatism in the northern margin of the South China Sea: spatial features and volume of intraplate seamounts[J]. Geochemistry, Geophysics, Geosystems, 2017, 18(6):2216-2239. doi: 10.1002/2016GC006792
    [13]
    夏少红, 范朝焰, 孙金龙, 等. 南海北部晚新生代岩浆活动的发育特征与构造意义[J]. 海洋地质与第四纪地质, 2017, 37(6):25-33

    XIA Shaohong, FAN Chaoyan, SUN Jinlong, et al. Characteristics of late Cenozoic magmatic activities on the northern margin of South China Sea and their tectonic implications[J]. Marine Geology & Quaternary Geology, 2017, 37(6):25-33.]
    [14]
    Zhao M H, He E Y, Sibuet J C, et al. Postseafloor spreading volcanism in the central east South China Sea and its formation through an extremely thin oceanic crust[J]. Geochemistry, Geophysics, Geosystems, 2018, 19(3):621-641. doi: 10.1002/2017GC007034
    [15]
    Zhao F, Berndt C, Alves T M, et al. Widespread hydrothermal vents and associated volcanism record prolonged Cenozoic magmatism in the South China Sea[J]. GSA Bulletin, 2021, 133(11-12):2645-2660. doi: 10.1130/B35897.1
    [16]
    祝嵩, 姚永坚, 李学杰. 南海及邻区岩浆岩时空分布特征及机制[J]. 海洋地质与第四纪地质, 2021, 41(4):87-115

    ZHU Song, YAO Yongjian, LI Xuejie. Spatio-temporal distribution pattern of magmatic rocks and mechanism in the South China Sea and adjacent areas[J]. Marine Geology & Quaternary Geology, 2021, 41(4):87-115.]
    [17]
    阎贫, 刘海龄. 南海及其周缘中新生代火山活动时空特征与南海的形成模式[J]. 热带海洋学报, 2005, 24(2):33-41

    YAN Pin, LIU Hailing. Temporal and spatial distributions of Meso-Cenozoic igneous rocks over South China Sea[J]. Journal of Tropical Oceanography, 2005, 24(2):33-41.]
    [18]
    Song T R, Li C F, Wu S G, et al. Extensional styles of the conjugate rifted margins of the South China Sea[J]. Journal of Asian Earth Sciences, 2019, 177:117-128. doi: 10.1016/j.jseaes.2019.03.008
    [19]
    Li G, Mei L F, Pang X, et al. Magmatism within the northern margin of the South China Sea during the post-rift stage: an overview, and new insights into the geodynamics[J]. Earth-Science Reviews, 2022, 225:103917. doi: 10.1016/j.earscirev.2022.103917
    [20]
    高金尉, 付腾飞, 赵明辉, 等. 三沙永乐蓝洞成因机制初探[J]. 热带海洋学报, 2022, 41(1):171-183 doi: 10.11978/2021077

    GAO Jinwei, FU Tengfei, ZHAO Minghui, et al. Preliminary study on formation process of Sansha Yongle Blue Hole[J]. Journal of Tropical Oceanography, 2022, 41(1):171-183.] doi: 10.11978/2021077
    [21]
    孙嘉诗. 南海北部及广东沿海新生代火山活动[J]. 海洋地质与第四纪地质, 1991, 11(3):45-67

    SUN Jiashi. Cenozoic volcanic activity in the northern South China Sea and Guangdong coastal area[J]. Marine Geology & Quaternary Geology, 1991, 11(3):45-67.]
    [22]
    刘昭蜀. 南海地质[M]. 北京: 科学出版社, 2001: 31-63

    LIU Zhaoshu. Geology of the South China Sea[M]. Beijing: Science Press, 2001: 31-63.]
    [23]
    Wang H L, Zhao Q, Wu S G, et al. Post-rifting magmatism and the drowned reefs in the Xisha Archipelago domain[J]. Journal of Ocean University of China, 2018, 17(1):195-208.
    [24]
    Gao J W, Wu S G, Lüdmann T, et al. Extensional structures and Cenozoic magmatism in the northwestern South China Sea[J]. Gondwana Research, 2023, 120:219-234. doi: 10.1016/j.gr.2022.09.005
    [25]
    冯英辞, 詹文欢, 孙杰, 等. 西沙海域上新世以来火山特征及其形成机制[J]. 热带海洋学报, 2017, 36(3):73-79

    FENG Yingci, ZHAN Wenhuan, SUN Jie, et al. The formation mechanism and characteristics of volcanoes in the Xisha waters since Pliocene[J]. Journal of Tropical Oceanography, 2017, 36(3):73-79.]
    [26]
    汪斯毓, 王仕胜, 刘艳锐, 等. 中沙海槽盆地构造与沉积作用及其对远端裂陷盆地演化的启示[J]. 地球科学, 2022, 47(3):1094-1106

    WANG Siyu, WANG Shisheng, LIU Yanrui, et al. Tectonics and sedimentation of the Zhongsha Trough Basin: implications to the basin evolution in distal rifting margin[J]. Earth Science, 2022, 47(3):1094-1106.]
    [27]
    黎雨晗, 黄海波, 丘学林, 等. 中沙海域的广角与多道地震探测[J]. 地球物理学报, 2020, 63(4):1523-1537

    LI Yuhan, HUANG Haibo, QIU Xuelin, et al. Wide-angle and multi-channel seismic surveys in Zhongsha waters[J]. Chinese Journal of Geophysics, 2020, 63(4):1523-1537.]
    [28]
    Zhang Y, Yu K F, Qian H D, et al. The basement and volcanic activities of the Xisha Islands: evidence from the kilometre-scale drilling in the northwestern South China Sea[J]. Geological Journal, 2020, 55(1):571-583. doi: 10.1002/gj.3416
    [29]
    Wang C, Sun Q L, Morley C K, et al. Post-rift magmatism controlled by detachment faults in a microplate, northwestern South China Sea[J]. GSA Bulletin, 2024, 136(3-4):1553-1568.
    [30]
    Qiu X L, Ye S Y, Wu S M, et al. Crustal structure across the Xisha Trough, northwestern South China Sea[J]. Tectonophysics, 2001, 341(1-4):179-193. doi: 10.1016/S0040-1951(01)00222-0
    [31]
    孙珍, 钟志洪, 周蒂, 等. 南海的发育机制研究: 相似模拟证据[J]. 中国科学 D辑: 地球科学, 2006, 36(9): 797-810

    SUN Zhen, ZHOU Di, ZHONG Zhihong, et al. Research on the dynamics of the South China Sea opening: evidence from analogue modeling[J]. Science in China Series D: Earth Sciences, 2006, 49(10): 1053-1069.]
    [32]
    董冬冬, 吴时国, 张功成, 等. 南海北部深水盆地的裂陷过程及裂陷期延迟机制探讨[J]. 科学通报, 2008, 53(19): 2342-2351

    DONG Dongdong, WU Shiguo, ZHANG Gongcheng, et al. Rifting process and formation mechanisms of syn-rift stage prolongation in the deepwater basin, northern South China Sea[J]. Chinese Science Bulletin, 2008, 53(23): 3715-3725.]
    [33]
    李春峰, 宋陶然. 南海新生代洋壳扩张与深部演化的磁异常记录[J]. 科学通报, 2012, 57(20): 1879-1895

    LI Chunfeng, SONG Taoran. Magnetic recording of the Cenozoic oceanic crustal accretion and evolution of the South China Sea basin[J]. Chinese Science Bulletin, 2012, 57(24): 3165-3181.]
    [34]
    Sun Q L, Wu S G, Cartwright J, et al. Focused fluid flow systems of the Zhongjiannan Basin and Guangle Uplift, South China Sea[J]. Basin Research, 2013, 25(1):97-111. doi: 10.1111/j.1365-2117.2012.00551.x
    [35]
    赵明辉, 袁野, 张佳政, 等. 南海北部被动陆缘洋陆转换带张裂–破裂研究新进展[J]. 热带海洋学报, 2024, 43(2):173-183

    ZHAO Minghui, YUAN Ye, ZHANG Jiazheng, et al. New developments on the rift-breakup of the continent-ocean transition zone in the northern margin of the South China Sea[J]. Journal of Tropical Oceanography, 2024, 43(2):173-183.]
    [36]
    Leloup P H, Arnaud N, Lacassin R, et al. New constraints on the structure, thermochronology, and timing of the Ailao Shan-Red River shear zone, SE Asia[J]. Journal of Geophysical Research: Solid Earth, 2001, 106(B4):6683-6732. doi: 10.1029/2000JB900322
    [37]
    Morley C K. A tectonic model for the Tertiary evolution of strike-slip faults and rift basins in SE Asia[J]. Tectonophysics, 2002, 347(4):189-215. doi: 10.1016/S0040-1951(02)00061-6
    [38]
    Sun Z, Zhou D, Zhong Z H, et al. Experimental evidence for the dynamics of the formation of the Yinggehai basin, NW South China Sea[J]. Tectonophysics, 2003, 372(1-2):41-58. doi: 10.1016/S0040-1951(03)00230-0
    [39]
    Fyhn M B W, Boldreel L O, Nielsen L H. Geological development of the Central and South Vietnamese margin: implications for the establishment of the South China Sea, Indochinese escape tectonics and Cenozoic volcanism[J]. Tectonophysics, 2009, 478(3-4):184-214. doi: 10.1016/j.tecto.2009.08.002
    [40]
    Lei C, Ren J Y, Clift P D, et al. The structure and formation of diapirs in the Yinggehai-Song Hong Basin, South China Sea[J]. Marine and Petroleum Geology, 2011, 28(5):980-991. doi: 10.1016/j.marpetgeo.2011.01.001
    [41]
    Savva D, Meresse F, Pubellier M, et al. Seismic evidence of hyper-stretched crust and mantle exhumation offshore Vietnam[J]. Tectonophysics, 2013, 608:72-83. doi: 10.1016/j.tecto.2013.07.010
    [42]
    李林, 王彬, 雷超, 等. 西沙海域盆地构造格局及其差异演化过程分析[J]. 地球科学, 2021, 46(9):3321-3337

    LI Lin, WANG Bin, LEI Chao, et al. Tectonic framework in the Xisha area and its differential evolution[J]. Earth Science, 2021, 46(9):3321-3337.]
    [43]
    陈俊仁. 我国南部西沙群岛地区第四纪地质初步探讨[J]. 地质科学, 1978(1):45-56

    CHEN Junren. A preliminary discussion on Quaternary geology of Xisha Qundao Islands of South China[J]. Scientia Geologica Sinica, 1978(1):45-56.]
    [44]
    高战朝. 西沙群岛与邻近海域地质构造特征及地壳性质的转化[J]. 海洋科学, 1986, 10(4):51-54

    GAO Zhanchao. Geological structure characteristics and transformation of crustal properties of the Xisha Islands and adjacent sea areas[J]. Marine Sciences, 1986, 10(4):51-54.]
    [45]
    张峤, 吴时国, 吕福亮, 等. 南海西北陆坡火成岩体地震识别及分布规律[J]. 大地构造与成矿学, 2014, 38(4):919-938

    ZHANG Qiao, WU Shiguo, LV Fuliang, et al. The seismic characteristics and the distribution of the igneous rocks in the northernwest slope of the South China Sea[J]. Geotectonica et Metallogenia, 2014, 38(4):919-938.]
    [46]
    赵强. 西沙群岛海域生物礁碳酸盐岩沉积学研究[D]. 中国科学院研究生院(海洋研究所)博士学位论文, 2010: 1-157

    ZHAO Qiang. The sedimentary research about reef carbonatite in Xisha Islands Waters[D]. Doctor Dissertation of Institute of Oceanology, Chinese Academy of Science, 2010: 1-157.]
    [47]
    张重远, 王振峰, 范桃园, 等. 西沙群岛石岛浅部基底地壳应力测量及其地球动力学意义分析[J]. 地球物理学报, 2015, 58(3):904-918 doi: 10.6038/cjg20150318

    ZHANG Chongyuan, WANG Zhenfeng, FAN Taoyuan, et al. Crustal stress measurement in shallow basement of Shidao of Xisha Islands and analysis of its geodynamic significance[J]. Chinese Journal of Geophysics, 2015, 58(3):904-918.] doi: 10.6038/cjg20150318
    [48]
    Wu S G, Yuan S Q, Zhang G C, et al. Seismic characteristics of a reef carbonate reservoir and implications for hydrocarbon exploration in deepwater of the Qiongdongnan Basin, northern South China Sea[J]. Marine and Petroleum Geology, 2009, 26(6):817-823. doi: 10.1016/j.marpetgeo.2008.04.008
    [49]
    李学林, 张汉羽, 刘刚, 等. 西沙孤立碳酸盐台地的地震层序及演化模式: 以永乐环礁为例[J]. 海洋地质与第四纪地质, 2020, 40(5):87-96

    LI Xuelin, ZHANG Hanyu, LIU Gang, et al. Seismic sequence and evolution model of isolated carbonate platform: a case from Yongle Atoll, Xisha Islands[J]. Marine Geology & Quaternary Geology, 2020, 40(5):87-96.]
    [50]
    Liu G, Wu S G, Gao J W, et al. Seismic architecture of Yongle isolated carbonate platform in Xisha Archipelago, South China Sea[J]. Frontiers in Earth Science, 2023, 11:1100675. doi: 10.3389/feart.2023.1100675
    [51]
    Vu A T, Fyhn M B W, Xuan C T, et al. Cenozoic tectonic and stratigraphic development of the Central Vietnamese continental margin[J]. Marine and Petroleum Geology, 2017, 86:386-401. doi: 10.1016/j.marpetgeo.2017.06.001
    [52]
    Su M, Xie X, Xie Y H, et al. The segmentations and the significances of the Central Canyon System in the Qiongdongnan Basin, northern South China Sea[J]. Journal of Asian Earth Sciences, 2014, 79:552-563. doi: 10.1016/j.jseaes.2012.12.038
    [53]
    罗威, 张道军, 刘新宇, 等. 西沙地区西科1井综合地层学研究[J]. 地层学杂志, 2018, 42(4):485-498

    LUO Wei, ZHANG Daojun, LIU Xinyu, et al. A comprehensive stratigraphic study of well XK-1 in the Xisha area[J]. Journal of Stratigraphy, 2018, 42(4):485-498.]
    [54]
    Song X X, Li C F, Yao Y J, et al. Magmatism in the evolution of the South China Sea: geophysical characterization[J]. Marine Geology, 2017, 394:4-15. doi: 10.1016/j.margeo.2017.07.021
    [55]
    Savva D, Pubellier M, Franke D, et al. Different expressions of rifting on the South China Sea margins[J]. Marine and Petroleum Geology, 2014, 58:579-598. doi: 10.1016/j.marpetgeo.2014.05.023
    [56]
    Vail P R. Seismic stratigraphy interpretation using sequence stratigraphy: Part 1: seismic stratigraphy interpretation procedure[M]//Bally A W. Atlas of Seismic Stratigraphy. Tulsa: AAPG, 1987: 1-10.
    [57]
    van Wagoner J C, Mitchum R M Jr, Posamentier H W, et al. Seismic stratigraphy interpretation using sequence stratigraphy: Part 2: key definitions of sequence stratigraphy[M]//Bally A W. Atlas of Seismic Stratigraphy. Tulsa: AAPG, 1987: 11-14.
    [58]
    杜同军. 琼东南盆地层序地层和深水区沉积充填特征[D]. 中国海洋大学博士学位论文, 2013: 1-126

    DU Tongjun. Sequence stratigrphic and deep water sedimentary characteristic in the Qingdongnan basin[D]. Doctor Dissertation of Ocean University of China, 2013: 1-126.]
    [59]
    张明书, 何起祥, 业治铮, 等. 西沙生物礁碳酸盐沉积地质学研究[M]. 北京: 科学出版社, 1989: 1-117

    ZHANG Mingshu, HE Qixiang, YE Zhizheng, et al. Geological Study of Carbonate Sediments in the Xisha Reef[M]. Beijing: Science Press, 1989: 1-117.]
    [60]
    米立军, 王东东, 李增学, 等. 琼东南盆地崖城组高分辨率层序地层格架与煤层形成特征[J]. 石油学报, 2010, 31(4): 534-541

    MI Lijun, WANG Dongdong, LI Zengxue, et al. High-resolution sequence stratigraphic framework and coal-forming features in Yacheng Formation of Qiongdongnan Basin[J]. Acta Petrolei Sinica, 2010, 31(4): 534-541.]
    [61]
    魏魁生, 崔旱云, 叶淑芬, 等. 琼东南盆地高精度层序地层学研究[J]. 地球科学-中国地质大学学报, 2001, 26(1):59-66

    WEI Kuisheng, CUI Hanyun, YE Shufen, et al. High-precision sequence stratigraphy in Qiongdongnan Basin[J]. Earth Science-Journal of China University of Geosciences, 2001, 26(1):59-66.]
    [62]
    Wang P X, Huang C Y, Lin J, et al. The South China Sea is not a mini-Atlantic: plate-edge rifting vs intra-plate rifting[J]. National Science Review, 2019, 6(5):902-913. doi: 10.1093/nsr/nwz135
    [63]
    Li C F, Xu X, Lin J, et al. Ages and magnetic structures of the South China Sea constrained by deep tow magnetic surveys and IODP Expedition 349[J]. Geochemistry, Geophysics, Geosystems, 2014, 15(12):4958-4983. doi: 10.1002/2014GC005567
    [64]
    Li C F, Li J B, Ding W W, et al. Seismic stratigraphy of the central South China Sea basin and implications for neotectonics[J]. Journal of Geophysical Research: Solid Earth, 2015, 120(3):1377-1399. doi: 10.1002/2014JB011686
    [65]
    Xia S H, Zhao F, Zhao D P, et al. Crustal plumbing system of post-rift magmatism in the northern margin of South China Sea: new insights from integrated seismology[J]. Tectonophysics, 2018, 744:227-238. doi: 10.1016/j.tecto.2018.07.002
    [66]
    Xia S H, Zhao D P, Sun J L, et al. Teleseismic imaging of the mantle beneath southernmost China: new insights into the Hainan plume[J]. Gondwana Research, 2016, 36:46-56. doi: 10.1016/j.gr.2016.05.003
    [67]
    Larsen H C, Mohn G, Nirrengarten M, et al. Rapid transition from continental breakup to igneous oceanic crust in the South China Sea[J]. Nature Geoscience, 2018, 11(10):782-789. doi: 10.1038/s41561-018-0198-1
    [68]
    Zhang G L, Luo Q, Zhao J, et al. Geochemical nature of sub-ridge mantle and opening dynamics of the South China Sea[J]. Earth and Planetary Science Letters, 2018, 489:145-155. doi: 10.1016/j.jpgl.2018.02.040
    [69]
    Yu X, Liu Z F. Non-mantle-plume process caused the initial spreading of the South China Sea[J]. Scientific Reports, 2020, 10(1):8500. doi: 10.1038/s41598-020-65174-y
    [70]
    Zou H B, Fan Q C. U-Th isotopes in Hainan basalts: implications for sub-asthenospheric origin of EM2 mantle endmember and the dynamics of melting beneath Hainan Island[J]. Lithos, 2010, 116(1-2):145-152. doi: 10.1016/j.lithos.2010.01.010
    [71]
    Wang X C, Li Z X, Li X H, et al. Identification of an ancient mantle reservoir and young recycled materials in the source region of a young mantle plume: implications for potential linkages between plume and plate tectonics[J]. Earth and Planetary Science Letters, 2013, 377-378:248-259. doi: 10.1016/j.jpgl.2013.07.003
  • Cited by

    Periodical cited type(7)

    1. 崔梦婷,刘璇,吴继龙,黄涛,孙庆业. 基于修订的最小数据集的土壤质量评价—以安徽合肥巢湖湖滨国家湿地公园为例. 地球与环境. 2024(01): 41-52 .
    2. 霍胜伟,张国城,吴丹,沈上圯,俞杰. 马尔文激光粒度仪测定亚利桑那试验粉尘粒径分布的研究. 计量科学与技术. 2022(03): 30-33+61 .
    3. 李华勇,袁俊英,杨艺萍,梁志姣,李智慧,吴帅虎,张虎才. 山东弥河流域现代洪水沉积特征与水动力过程反演. 海洋地质与第四纪地质. 2022(02): 178-189 . 本站查看
    4. 李华勇,赵楠,杨艺萍,于正松,孙启发,吴帅虎,张曼,张虎才. 山东丹河2018年洪水沉积特征、物源分析及水文过程重建. 地质力学学报. 2022(02): 226-236 .
    5. 查玲珑,徐宗恒,张宇. 基于Mastersizer 2000的不同前处理方式对滑坡堰塞湖沉积物粒度特征的影响. 第四纪研究. 2022(06): 1643-1654 .
    6. 张孝严. 潮滩表层沉积物临界起动切应力研究. 绿色科技. 2022(22): 125-128+133 .
    7. 李华勇,朱佳丽,张虎才,袁俊英,张雅楠,张雯清,吴帅虎. 鲁北丹河下游洪水决口扇沉积岩芯粒度特征与沉积过程重建. 干旱区资源与环境. 2021(02): 176-182 .

    Other cited types(11)

Catalog

    Article views (1) PDF downloads (2) Cited by(18)

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return