CONG Shuai,WU Xiao,QI Fukang,et al. Cross-shelf sediment transport and its regulatory mechanisms on the inner shelf of the East China Sea during typhoon events[J]. Marine Geology & Quaternary Geology,2024,44(5):38-49. DOI: 10.16562/j.cnki.0256-1492.2024070202
Citation: CONG Shuai,WU Xiao,QI Fukang,et al. Cross-shelf sediment transport and its regulatory mechanisms on the inner shelf of the East China Sea during typhoon events[J]. Marine Geology & Quaternary Geology,2024,44(5):38-49. DOI: 10.16562/j.cnki.0256-1492.2024070202

Cross-shelf sediment transport and its regulatory mechanisms on the inner shelf of the East China Sea during typhoon events

More Information
  • Received Date: July 01, 2024
  • Revised Date: July 23, 2024
  • Accepted Date: July 23, 2024
  • The cross-shelf sediment transport is important in land-sea interactions and in terrigenous sediment source-to-sink cycle, which is significantly impacted by typhoons. However, despite the scarcity of in-situ observation and satellite data during typhoons, research on cross-shelf sediment transport during these synoptic weather events remains limited. Utilizing a high-resolution FVCOM model, we analyzed the cross-shelf sediment transport and its mechanisms on the inner shelf of the East China Sea (ECS) during Typhoon Chan-hom (2015). Results indicate that typhoons can cause intense responses in marine sediment dynamics and produce significant cross-shelf offshore sediment transport, with suspended sediment flux increase by 2~3 orders of magnitude compared to that under normal weather conditions. The transport is mainly controlled by two mechanisms: (1) the barotropic effect caused by continuous water level accumulation during typhoons, inducing uniform meridional offshore sediment transport, representing an indirect typhoon influence; (2) the "Ratchet Effect" triggered by the rotating wind field, resulting in a downwind sediment transport pattern on both side of the typhoon path, with offshore and onshore transport on the left and right sides, respectively, reflecting a direct typhoon influence. The combined effects of these two mechanisms orchestrate the cross-shelf sediment transport on the inner shelf of the ECS during typhoons.

  • [1]
    Holland G J. The global guide to tropical cyclone forecasting[R]. Geneva: World Meteorological Organization, 1993.
    [2]
    Wang S, Toumi R. Recent migration of tropical cyclones toward coasts[J]. Science, 2021, 371(6528):514-517. doi: 10.1126/science.abb9038
    [3]
    Peduzzi P, Chatenoux B, Dao H, et al. Global trends in tropical cyclone risk[J]. Nature Climate Change, 2012, 2(4):289-294. doi: 10.1038/nclimate1410
    [4]
    Geiger T, Gütschow J, Bresch D N, et al. Double benefit of limiting global warming for tropical cyclone exposure[J]. Nature Climate Change, 2021, 11(10):861-866. doi: 10.1038/s41558-021-01157-9
    [5]
    Price J F. Upper Ocean response to a hurricane[J]. Journal of Physical Oceanography, 1981, 11(2):153-175. doi: 10.1175/1520-0485(1981)011<0153:UORTAH>2.0.CO;2
    [6]
    Wu X, Wang H J, Bi N S, et al. Bio-physical changes in the coastal ocean triggered by typhoon: a case of Typhoon Meari in summer 2011[J]. Estuarine, Coastal and Shelf Science, 2016, 183:413-421. doi: 10.1016/j.ecss.2016.04.014
    [7]
    Milliman J D, Lin S W, Kao S J, et al. Short-term changes in seafloor character due to flood-derived hyperpycnal discharge: typhoon Mindulle, Taiwan, July 2004[J]. Geology, 2007, 35(9):779-782. doi: 10.1130/G23760A.1
    [8]
    Cong S, Wu X, Ge J Z, et al. Impact of Typhoon Chan-hom on sediment dynamics and morphological changes on the East China Sea inner shelf[J]. Marine Geology, 2021, 440:106578. doi: 10.1016/j.margeo.2021.106578
    [9]
    Goñi M A, Gordon E S, Monacci N M, et al. The effect of Hurricane Lili on the distribution of organic matter along the inner Louisiana shelf (Gulf of Mexico, USA)[J]. Continental Shelf Research, 2006, 26(17-18):2260-2280. doi: 10.1016/j.csr.2006.07.017
    [10]
    Emanuel K. Increasing destructiveness of tropical cyclones over the past 30 years[J]. Nature, 2005, 436(7051):686-688. doi: 10.1038/nature03906
    [11]
    Webster P J, Holland G J, Curry J A, et al. Changes in tropical cyclone number, duration, and intensity in a warming environment[J]. Science, 2005, 309(5742):1844-1846. doi: 10.1126/science.1116448
    [12]
    Kossin J P, Emanuel K A, Vecchi G A. The poleward migration of the location of tropical cyclone maximum intensity[J]. Nature, 2014, 509(7500):349-352. doi: 10.1038/nature13278
    [13]
    Wang G H, Wu L W, Mei W, et al. Ocean currents show global intensification of weak tropical cyclones[J]. Nature, 2022, 611(7936):496-500. doi: 10.1038/s41586-022-05326-4
    [14]
    Mendelsohn R, Emanuel K, Chonabayashi S, et al. The impact of climate change on global tropical cyclone damage[J]. Nature Climate Change, 2012, 2(3):205-209. doi: 10.1038/nclimate1357
    [15]
    Mei W, Xie S P. Intensification of landfalling typhoons over the Northwest Pacific since the late 1970s[J]. Nature Geoscience, 2016, 9(10):753-757. doi: 10.1038/ngeo2792
    [16]
    Saito Y, Yang Z S, Hori K. The Huanghe (Yellow River) and Changjiang (Yangtze River) deltas: a review on their characteristics, evolution and sediment discharge during the Holocene[J]. Geomorphology, 2001, 41(2-3):219-231. doi: 10.1016/S0169-555X(01)00118-0
    [17]
    Liu J P, Li A C, Xu K H, et al. Sedimentary features of the Yangtze River-derived along-shelf clinoform deposit in the East China Sea[J]. Continental Shelf Research, 2006, 26(17-18):2141-2156. doi: 10.1016/j.csr.2006.07.013
    [18]
    Liu J P, Xu K H, Li A C, et al. Flux and fate of Yangtze River sediment delivered to the East China Sea[J]. Geomorphology, 2007, 85(3-4):208-224. doi: 10.1016/j.geomorph.2006.03.023
    [19]
    Huh C A, Su C C. Sedimentation dynamics in the East China Sea elucidated from 210Pb, 137Cs and 239, 240Pu[J]. Marine Geology, 1999, 160(1-2):183-196. doi: 10.1016/S0025-3227(99)00020-1
    [20]
    Qiao S Q, Shi X F, Wang G Q, et al. Sediment accumulation and budget in the Bohai Sea, Yellow Sea and East China Sea[J]. Marine Geology, 2017, 390:270-281. doi: 10.1016/j.margeo.2017.06.004
    [21]
    Yang S Y, Bi L, Li C, et al. Major sinks of the Changjiang (Yangtze River)-derived sediments in the East China Sea during the late Quaternary[J]. Geological Society, London, Special Publications, 2016, 429(1):137-152. doi: 10.1144/SP429.6
    [22]
    Gao J H, Shi Y, Sheng H, et al. Rapid response of the Changjiang (Yangtze) River and East China Sea source-to-sink conveying system to human induced catchment perturbations[J]. Marine Geology, 2019, 414:1-17. doi: 10.1016/j.margeo.2019.05.003
    [23]
    李安春, 张凯棣. 东海内陆架泥质沉积体研究进展[J]. 海洋与湖沼, 2020, 51(4):705-727 doi: 10.11693/hyhz20200500145

    LI Anchun, ZHANG Kaidi. Research progress of mud wedge in the inner continental shelf of the East China Sea[J]. Oceanologia et Limnologia Sinica, 2020, 51(4):705-727.] doi: 10.11693/hyhz20200500145
    [24]
    苏纪兰. 中国近海水文[M]. 北京: 海洋出版社, 2005

    SU Jilan. The Oceanography in the Chinese Margin Sea[M]. Beijing: China Ocean Press, 2005.]
    [25]
    Li Y H, Wang A J, Qiao L, et al. The impact of typhoon Morakot on the modern sedimentary environment of the mud deposition center off the Zhejiang-Fujian coast, China[J]. Continental Shelf Research, 2012, 37:92-100. doi: 10.1016/j.csr.2012.02.020
    [26]
    Lu J, Jiang J B, Li A C, et al. Impact of Typhoon Chan-hom on the marine environment and sediment dynamics on the inner shelf of the East China Sea: in-situ seafloor observations[J]. Marine Geology, 2018, 406:72-83. doi: 10.1016/j.margeo.2018.09.009
    [27]
    Cong S, Wu X, Ge J Z, et al. Intermittent migration of mixing front driven by typhoon events on the inner shelf of the East China Sea: a FVCOM modeling study[J]. Marine Geology, 2023, 465:107161. doi: 10.1016/j.margeo.2023.107161
    [28]
    Tian Y, Fan D J, Zhang X L, et al. Event deposits of intense typhoons in the muddy wedge of the East China Sea over the past 150 years[J]. Marine Geology, 2019, 410:109-121. doi: 10.1016/j.margeo.2018.12.010
    [29]
    Yang Y, Piper D J W, Xu M, et al. Northwestern Pacific tropical cyclone activity enhanced by increased Asian dust emissions during the Little Ice Age[J]. Nature Communications, 2022, 13(1):1712. doi: 10.1038/s41467-022-29386-2
    [30]
    高抒, 贾建军, 杨阳, 等. 陆架海岸台风沉积记录及信息提取[J]. 海洋学报, 2019, 41(10):141-160 doi: 10.3969/j.issn.0253-4193.2019.10.010

    GAO Shu, JIA Jianjun, YANG Yang, et al. Obtaining typhoon information from sedimentary records in coastal-shelf waters[J]. Haiyang Xuebao, 2019, 41(10):141-160.] doi: 10.3969/j.issn.0253-4193.2019.10.010
    [31]
    Milliman J D, Meade R H. World-wide delivery of river sediment to the oceans[J]. The Journal of Geology, 1983, 91(1):1-21. doi: 10.1086/628741
    [32]
    Milliman J D, Shen H T, Yang Z S, et al. Transport and deposition of river sediment in the Changjiang estuary and adjacent continental shelf[J]. Continental Shelf Research, 1985, 4(1-2):37-45. doi: 10.1016/0278-4343(85)90020-2
    [33]
    杨作升, 郭志刚, 王兆祥, 等. 黄东海陆架悬浮体向其东部深海区输送的宏观格局[J]. 海洋学报, 1992, 14(2):81-90

    YANG Zuosheng, GUO Zhigang, WANG Zhaoxiang, et al. The Macroscopic pattern of suspended sediment transport from the Yellow Sea and East China Sea to the eastern Deep-Sea Region[J]. Acta Oceanologica Sinica, 1992, 14(2):81-90.]
    [34]
    Wu H, Deng B, Yuan R, et al. Detiding measurement on transport of the Changjiang-derived buoyant coastal current[J]. Journal of Physical Oceanography, 2013, 43(11):2388-2399. doi: 10.1175/JPO-D-12-0158.1
    [35]
    Qiao L L, Liu S D, Xue W J, et al. Spatiotemporal variations in suspended sediments over the inner shelf of the East China Sea with the effect of oceanic fronts[J]. Estuarine, Coastal and Shelf Science, 2020, 234:106600. doi: 10.1016/j.ecss.2020.106600
    [36]
    边昌伟. 中国近岸泥沙在渤海、黄海和东海的输运[D]. 中国海洋大学博士学位论文, 2012

    BIAN Changwei. Chinese coastal sediment transport in the Bohai Sea, Yellow Sea and East China Sea[D]. Doctor Dissertation of Ocean University of China, 2012.]
    [37]
    Liu X, Li G X, Ma Y Y, et al. Distribution and diffusion of surface suspended matter off the East China Shore, 2010[J]. Geological Journal, 2016, 51(S1):49-59. doi: 10.1002/gj.2814
    [38]
    乔璐璐, 王震, 刘世东, 等. 从陆架海到西太平洋: 黄、东海悬浮体跨陆架输运通道与机制[J]. 地学前缘, 2017, 24(4):134-140

    QIAO Lulu, WANG Zhen, LIU Shidong, et al. From continental shelf seas to the western Pacific: the path and mechanism of cross-shelf suspended sediment transport in the Yellow Sea and East China Sea[J]. Earth Science Frontiers, 2017, 24(4):134-140.]
    [39]
    Zhang K D, Li A C, Huang P, et al. Sedimentary responses to the cross-shelf transport of terrigenous material on the East China Sea continental shelf[J]. Sedimentary Geology, 2019, 384:50-59. doi: 10.1016/j.sedgeo.2019.03.006
    [40]
    He L, Li Y, Zhou H, et al. Variability of cross-shelf penetrating fronts in the East China Sea[J]. Deep Sea Research Part II: Topical Studies in Oceanography, 2010, 57(19-20):1820-1826. doi: 10.1016/j.dsr2.2010.04.008
    [41]
    Liu S D, Qiao L L, Li G X, et al. Distribution and cross-front transport of suspended particulate matter over the inner shelf of the East China Sea[J]. Continental Shelf Research, 2015, 107:92-102. doi: 10.1016/j.csr.2015.07.013
    [42]
    Liu S D, Qiao L L, Li G X, et al. Variation in the current shear front and its potential effect on sediment transport over the inner shelf of the East China Sea in winter[J]. Journal of Geophysical Research: Oceans, 2018, 123(11):8264-8283. doi: 10.1029/2018JC014241
    [43]
    Wu H. Cross-shelf penetrating fronts: a response of buoyant coastal water to ambient pycnocline undulation[J]. Journal of Geophysical Research: Oceans, 2015, 120(7):5101-5119. doi: 10.1002/2014JC010686
    [44]
    Ren J L, Xuan J L, Wang Z W, et al. Cross-shelf transport of terrestrial Al enhanced by the transition of northeasterly to southwesterly monsoon wind over the East China Sea[J]. Journal of Geophysical Research: Oceans, 2015, 120(7):5054-5073. doi: 10.1002/2014JC010655
    [45]
    Lapetina A, Sheng Y P. Simulating complex storm surge dynamics: three-dimensionality, vegetation effect, and onshore sediment transport[J]. Journal of Geophysical Research: Oceans, 2015, 120(11):7363-7380. doi: 10.1002/2015JC010824
    [46]
    Chen D X, He L, Liu F F, et al. Effects of typhoon events on chlorophyll and carbon fixation in different regions of the East China Sea[J]. Estuarine, Coastal and Shelf Science, 2017, 194:229-239. doi: 10.1016/j.ecss.2017.06.026
    [47]
    Zang Z C, Xue Z G, Bao S W, et al. Numerical study of sediment dynamics during hurricane Gustav[J]. Ocean Modelling, 2018, 126:29-42. doi: 10.1016/j.ocemod.2018.04.002
    [48]
    秦蕴珊, 赵一阳, 陈丽蓉, 等. 东海地质[M]. 北京: 科学出版社, 1987

    QIN Yunshan, ZHAO Yiyang, CHEN Lirong, et al. Geology of the East China Sea[M]. Beijing: Science Press, 1987.]
    [49]
    郭炳火, 黄振宗, 李培英, 等. 中国近海及邻近海域海洋环境[M]. 北京: 海洋出版社, 2004

    GUO Binghuo, HUANG Zhenzong, LI Peiying, et al. Marine Environment in China’s Offshore and Adjacent Seas[M]. Beijing: China Ocean Press, 2004.]
    [50]
    石学法, 刘升发, 乔淑卿, 等. 东海闽浙沿岸泥质区沉积特征与古环境记录[J]. 海洋地质与第四纪地质, 2010, 30(4):19-30

    SHI Xuefa, LIU Shengfa, QIAO Shuqing, et al. Depositional features and palaeoenvironmental records of the mud deposits in Min-Zhe coastal mud area, East China Sea[J]. Marine Geology & Quaternary Geology, 2010, 30(4):19-30.]
    [51]
    Li G X, Li P, Liu Y, et al. Sedimentary system response to the global sea level change in the East China Seas since the last glacial maximum[J]. Earth-Science Reviews, 2014, 139:390-405. doi: 10.1016/j.earscirev.2014.09.007
    [52]
    江丽俐, 钱卓蕾, 张建海. 台风“灿鸿”的路径和降水特征诊断分析[J]. 浙江气象, 2016, 37(4):11-16

    JIANG Lili, QIAN Zhuolei, ZHANG Jianhai. The path and precipitation characteristics diagnosis analysis of Typhoon "Chan-hom"[J]. Journal of Zhejiang Meteorology, 2016, 37(4):11-16.]
    [53]
    冀承振, 葛勇, 李健, 等. 黄海海洋对台风“灿鸿”外围过程响应的观测研究[J]. 海洋学报, 2020, 42(1):46-53 doi: 10.3969/j.issn.0253-4193.2020.01.006

    JI Chengzhen, GE Yong, LI Jian, et al. Study of the Yellow Sea responses to peripheral processes of Typhoon Chan-hom[J]. Haiyang Xuebao, 2020, 42(1):46-53.] doi: 10.3969/j.issn.0253-4193.2020.01.006
    [54]
    Shen F F, Xu D M, Li H, et al. Assimilation of GPM Microwave Imager Radiance data with the WRF hybrid 3DEnVar system for the prediction of Typhoon Chan-hom (2015)[J]. Atmospheric Research, 2021, 251:105422. doi: 10.1016/j.atmosres.2020.105422
    [55]
    Chen C S, Liu H D, Beardsley R C. An unstructured grid, finite-volume, three-dimensional, primitive equations ocean model: application to coastal ocean and estuaries[J]. Journal of Atmospheric and Oceanic Technology, 2003, 20(1):159-186. doi: 10.1175/1520-0426(2003)020<0159:AUGFVT>2.0.CO;2
    [56]
    Chen C S, Beardsley R C, Cowles G. An unstructured grid, finite-volume coastal ocean model (FVCOM) system[J]. Oceanography, 2006, 19(1):78-89. doi: 10.5670/oceanog.2006.92
    [57]
    Beardsley R C, Chen C S, Xu Q C. Coastal flooding in Scituate (MA): a FVCOM study of the 27 December 2010 nor’easter[J]. Journal of Geophysical Research: Oceans, 2013, 118(11):6030-6045. doi: 10.1002/2013JC008862
    [58]
    Ge J Z, Ding P X, Chen C S, et al. An integrated East China Sea-Changjiang Estuary model system with aim at resolving multi-scale regional-shelf-estuarine dynamics[J]. Ocean Dynamics, 2013, 63(8):881-900. doi: 10.1007/s10236-013-0631-3
    [59]
    Zhong Y, Qiao L L, Song D H, et al. Impact of cold water mass on suspended sediment transport in the South Yellow Sea[J]. Marine Geology, 2020, 428:106244. doi: 10.1016/j.margeo.2020.106244
    [60]
    Ge J Z, Yi J X, Zhang J T, et al. Impact of vegetation on lateral exchanges in a salt marsh-tidal creek system[J]. Journal of Geophysical Research: Earth Surface, 2021, 126(8):e2020JF005856. doi: 10.1029/2020JF005856
    [61]
    Egbert G D, Erofeeva S Y. Efficient inverse modeling of barotropic ocean tides[J]. Journal of Atmospheric and Oceanic Technology, 2002, 19(2):183-204. doi: 10.1175/1520-0426(2002)019<0183:EIMOBO>2.0.CO;2
    [62]
    Lellouche J M, Greiner E, Le Galloudec O, et al. Recent updates to the Copernicus Marine Service global ocean monitoring and forecasting real-time 1∕12° high-resolution system[J]. Ocean Science, 2018, 14(5):1093-1126. doi: 10.5194/os-14-1093-2018
    [63]
    Dossa A N, Silva A C, Chaigneau A, et al. Near-surface western boundary circulation off Northeast Brazil[J]. Progress in Oceanography, 2021, 190:102475. doi: 10.1016/j.pocean.2020.102475
    [64]
    Saha S, Moorthi S, Wu X R, et al. The NCEP climate forecast system version 2[J]. Journal of Climate, 2014, 27(6):2185-2208. doi: 10.1175/JCLI-D-12-00823.1
    [65]
    吴伦宇. 基于FVCOM的浪、流、泥沙模型耦合及应用[D]. 中国海洋大学博士学位论文, 2010

    WU Lunyu. FVCOM-based Wave-Current-Sediment model coupling and its application[D]. Doctor Dissertation of Ocean University of China, 2010.]
    [66]
    Lorenz E N. Empirical orthogonal functions and statistical weather prediction[R]. Cambridge: Massachusetts Institute of Technology Department of Meteorology, 1956.
    [67]
    Tang J P, Wang Y P, Zhu Q G, et al. Winter storms induced high suspended sediment concentration along the north offshore seabed of the Changjiang estuary[J]. Estuarine, Coastal and Shelf Science, 2019, 228:106351. doi: 10.1016/j.ecss.2019.106351
    [68]
    Liu J T, Lee J, Yang R J, et al. Coupling between physical processes and biogeochemistry of suspended particles over the inner shelf mud in the East China Sea[J]. Marine Geology, 2021, 442:106657. doi: 10.1016/j.margeo.2021.106657
    [69]
    Du X Q, Liu J T, Lee J, et al. Influence of sediment sources, water mass, and physical processes on the dynamics of flocs at a location between the mouth of a river and the head of a submarine canyon[J]. Marine Geology, 2022, 445:106736. doi: 10.1016/j.margeo.2022.106736
    [70]
    齐富康. 山东半岛泥质区海底边界层沉积动力过程[D]. 南方科技大学博士学位论文, 2023

    QI Fukang. Sedimentary dynamic processes in the bottom boundary layer of the muddy deposit off the Shandong Peninsula[D]. Doctor Dissertation of Southern University of Science and Technology, 2023.]
    [71]
    Zhang Z W, Wu H, Yin X Q, et al. Dynamical response of Changjiang River plume to a severe typhoon with the surface wave-induced mixing[J]. Journal of Geophysical Research: Oceans, 2018, 123(12):9369-9388. doi: 10.1029/2018JC014266
    [72]
    Chu D D, Zhang J C, Wu Y S, et al. Sensitivities of modelling storm surge to bottom friction, wind drag coefficient, and meteorological product in the East China Sea[J]. Estuarine, Coastal and Shelf Science, 2019, 231:106460. doi: 10.1016/j.ecss.2019.106460
    [73]
    Liu Y H, Wang H J, Cong S, et al. Rapid oscillation of sediment transport between the Bohai Sea and the Yellow Sea induced by Typhoon Lekima (2019)[J]. Marine Geology, 2023, 465:107160. doi: 10.1016/j.margeo.2023.107160
    [74]
    Miles T, Seroka G, Kohut J, et al. Glider observations and modeling of sediment transport in Hurricane Sandy[J]. Journal of Geophysical Research: Oceans, 2015, 120(3):1771-1791. doi: 10.1002/2014JC010474
  • Cited by

    Periodical cited type(1)

    1. 赵芃,蒋日进,印瑞,刘明智,龙翔宇,单晓鸾,张秋宏,郝辉擘,李齐群. 七星列岛产卵场保护区鱼卵、仔稚鱼种类组成及其与环境因子的关系. 中国水产科学. 2023(11): 1311-1326 .

    Other cited types(6)

Catalog

    Article views (146) PDF downloads (75) Cited by(7)

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return