ZHANG Feifei,HAN Bo,ZHU Yingjie,et al. Tectonic division of the Offshore Indus Basin by integrated gravity and magnetic study[J]. Marine Geology & Quaternary Geology,xxxx,x(x): x-xx. DOI: 10.16562/j.cnki.0256-1492.2024070102
Citation: ZHANG Feifei,HAN Bo,ZHU Yingjie,et al. Tectonic division of the Offshore Indus Basin by integrated gravity and magnetic study[J]. Marine Geology & Quaternary Geology,xxxx,x(x): x-xx. DOI: 10.16562/j.cnki.0256-1492.2024070102

Tectonic division of the Offshore Indus Basin by integrated gravity and magnetic study

More Information
  • Received Date: June 30, 2024
  • Revised Date: August 18, 2024
  • Accepted Date: August 18, 2024
  • Available Online: September 25, 2024
  • The Offshore Indus Basin (OIB) is an important oil and gas exploration target area in Pakistan sea area. The exploration of the basin, limited by the quantity and quality of exploration data, is still in the early stage, which restricts the oil and gas investigation in this area. Based on the new generation of satellite altimetry gravity anomaly data (V29.1) and magnetic data from the Earth Magnetic Anomaly Grid (EMAG2-V2), the integrated gravity and magnetic field technique was applied to study the tectonic framework of the OIB, with which the integrated gravity and magnetic field was established and the structure of the OIB was interpreted. Results show that the areas of low-value magnetic and low-value gravity correspond to the sedimentary depressions, while those of high-value magnetic and low-value gravity correspond to the depressions with magma intrusions, whereas the areas of high-value magnetic and high-value gravity correspond to the uplift areas of the basin, and the areas of low-value magnetic and high-value gravity correspond to the carbonate platforms. Combined with the ocean drilling and 2D seismic profile data, three depressions and two uplifts in E-W in the OIB were inferred. Based on the previous tectonic division, the western depression and the western uplift in the southwestern corner of the basin were re-defined, the scope of the southern depression was expanded, and the southern edge of the basin was extended to near the Palatina ridge. This study provided evidence for basic geological and oil-gas exploration in the OIB and its adjacent areas.

  • [1]
    Carmichael S M, Akhter S, Bennett J K, et al. Geology and hydrocarbon potential of the offshore Indus Basin, Pakistan[J]. Petroleum Geoscience, 2009, 15(2):107-116. doi: 10.1144/1354-079309-826
    [2]
    Gaina C, VAN HINSBERGEN D J J, SPAKMAN W. Tectonic interactions between India and Arabia since the Jurassic reconstructed from marine geophysics, ophiolite geology, and seismic tomography[J]. Tectonics, 2015, 34:875-906. doi: 10.1002/2014TC003780
    [3]
    Clift P D, Shimizzu N, Layne G D, et al. Development of the Indus Fan and its significance for the erosional history of the Weatern Himalaya and Karakorma[J]. Geological Society of America Bulletin, 2001, 113(8):1039-1051. doi: 10.1130/0016-7606(2001)113<1039:DOTIFA>2.0.CO;2
    [4]
    廖晶, 龚建明, 陈建文, 等. 印度扇近海盆地重力滑动构造新发现[J]. 海洋地质前沿, 2020, 36(6): 76-79

    LIAO Jing, GONG Jianming, CHEN Jianwen, et al. New Discovery of Gravity Sliding Structures in the Offshore Indus Basin[J], Marine Geology Frontiers, 2020, 36(6): 76-79.]
    [5]
    程昊皞, 索艳慧, 李三忠, 等. 印度西部洋陆过渡区结构特征及构造演化[J]. 大地构造与成矿学, 2021, 45(5):851-860

    CHENG Haohao, SUO Yanhui, LI Sanzhong, et al. Structural Properties and Tectonic Evolution of the Western Indian Continental Margin[J]. Geotectonica et Metallogenia, 2021, 45(5):851-860.]
    [6]
    Solangi S H, Naeer A, Abbasi S A, et al. Morphological features of shelf margin: Examples from the Pakistan Offshore[J]. Geodesy and Geodynamics, 2019, 10:77-91. doi: 10.1016/j.geog.2018.09.004
    [7]
    MCHARGUE T R, WEBB J E. Internal geometry, seismic facies, and petroleum potential of canyons and inner fan channels of the Indus submarine fan[J]. AAPG bulletin, 1986, 70(2):161-180.
    [8]
    Moin R K, Abid H, Muhammad S, et al. Mud Diapirism induced structuration and implications for the definition and mapping of hydrocarbon traps in Makran accretionary prism, Pakistan[C] // AAPG/SEG International Conference & Exhibition, Melbourne, Australia, 2015: 13-16.
    [9]
    龚建明, 廖晶, Muhammad Khalid, 等. 巴基斯坦海域油气勘探方向探讨[J]. 海洋地质前沿, 2019, 35(11):1-6

    GONG Jianming, LIAO Jing, Muhammad K, et al. Preliminary study on the oil and gas exploration targets in Offshore Pakistan[J]. Marine Geology Frontiers, 2019, 35(11):1-6.]
    [10]
    刘金萍, 王改云, 简晓玲, 等. 巴基斯坦印度扇近海盆地油气地质条件分析[J]. 地质学刊, 2022, 46(4): 351-357

    LIU Jinping, WANG Gaiyun, JIAN Xiaoling, et al. Analysis of petroleum geological condition in offshore Indus Basin, Pakistan[J]. Journal of Geology, 46(4): 351-357.]
    [11]
    梁杰, 李森, 陈建文, 等. 巴基斯坦东部海域中生代地层发现与油气意义[J]. 海洋地质与第四纪地质, 2024, 44(3):115-124

    LIANG Jie, LI Sen, CHEN Jianwen, et al. Discovery of Mesozoic strata in the eastern region of offshore Pakistan and its oil and gas significance[J]. Marine Geology & Quaternary Geology, 2024, 44(3):115-124.]
    [12]
    李森, 梁杰, 龚建明, 等. 巴基斯坦东部海域中−新生代沉积研究进展[J]. 海洋地质前沿, 2022, 38(2):1-13

    LI Sen, LIANG Jie, GONG Jianming, et al. Research progress of the Meso-Cenozoic sedimentary evolution in eastern Pakistan sea[J]. Marine Geology Frontiers, 2022, 38(2):1-13.]
    [13]
    Sandwell D T, Smith W H F. Global marine gravity from retracked Geosat and ERS-1 altimetry: Ridge segmentation versus spreading rate[J]. Journal of Geophysical Research: Solid Earth(1978-2012), 2009, 114(B1): B01411.
    [14]
    Sandwell D T, Garicia E, Soofi K, et al. Toward 1 mGal Global Marine Gravity from CryoSat-2, Envisat, and Jason-1[J]. The Leading Edge, 2013, 32(8):892-899. doi: 10.1190/tle32080892.1
    [15]
    Sandwell D T, Muller R D, Smith W H F, et al. New global marine gravity model from GryoSat-2 and Jason-1 reveals buried tectonic structure[J]. Science, 2014, 346(6205):65-67. doi: 10.1126/science.1258213
    [16]
    张菲菲, 王皓, 张义蜜, 等. 西太平洋海域卫星测高重力数据精度分析[J/OL]. 武汉大学学报:信息科学版, 202305

    ZHANG Feifei, WANG Hao, ZHANG Yimi, et al. Accuracy analysis of satellite altimetry gravity data in the Western Pacific Area [J]. Geomatics and Information Science of Wuhan University, 202305.]
    [17]
    张功成, 贾庆军, 王万银, 等. 南海构造格局及其演化[J]. 地球物理学报, 2018, 61(10):4194-4215

    ZHANG Gongcheng, JIA Qingjun, WANG Wanyin, et al. On tectonic framework and evolution of the South China Sea[J]. Chinese Journal of Geophysics, 2018, 61(10):4194-4215.]
    [18]
    Maus S, Barckhausen U, Berkenbosch H, et al. EMAG2: A 2-arc min resolution Earth Magnetic Anomaly Grid compiled from satellite, airborne, and marine magnetic measurements[J]. Geochemistry, Geophysics, Geosystems, 2009, 10(8).
    [19]
    张春灌, 李想, 袁炳强, 等. 地球磁异常(EMAG2)数据中海域资料质量评估—以北极地区Kolbeinsey脊南段为例[J]. 地球科学进展, 2019, 34(3):288-294

    ZHANG Chunguan, LI Xiang, YUAN Bingqiang, et al. Quality evaluation of offshore data in the Earth Magnetic Anomaly Grid (2-arc-Minute Resolution): Taking the southern section of the Kolbeinsey Ridge in the Arctic Region as an example[J]. Advances in Earth Science, 2019, 34(3):288-294.]
    [20]
    戴勤奋, 周良勇, 魏合龙. 南黄海卫星重力场及构造演化[J]. 海洋地质与第四纪地质, 2002, 22(4):67-71

    DAI Qinfeng, ZHOU Liangyong, WEI Helong. Satellite gravity field and tectonic evolution of the South Yellow Sea[J]. Marine Geology & Quaternary Geology, 2002, 22(4):67-71.]
    [21]
    纪晓琳, 王万银, 杜向东, 等. 利用重磁资料研究西非中南段含盐盆地构造区划[J]. 地球物理学报, 2019, 62(4):1502-1514

    JI Xiaolin, WANG Wanyin, DU Xiangdong, et al. Tectonic division by gravity and magnetic data of salt-bearing basins, south-central section of West Africa[J]. Chinese Journal of Geophysics, 2019, 62(4):1502-1514.]
    [22]
    Martín‐Español A, Zammit‐Mangion A, Clarke P J, et al. Spatial and temporal Antarctic Ice Sheet mass trends, glacio‐isostatic adjustment, and surface processes from a joint inversion of satellite altimeter, gravity, and GPS data[J]. Journal of Geophysical Research: Earth Surface, 2016, 121(2):182-200. doi: 10.1002/2015JF003550
    [23]
    Yang M, Wang W, Zhang G, et al. Relationship between the Extent of Igneous Rocks and Deep Structures as Determined by Gravitational and Magnetic Data in the South China Sea[J]. Acta Geologica Sinica‐English Edition, 2021, 95(1):294-304. doi: 10.1111/1755-6724.14642
    [24]
    Dobslaw H, Bergmann-Wolf I, Dill R, et al. A new high-resolution model of non-tidal atmosphere and ocean mass variability for de-aliasing of satellite gravity observations: AOD1B RL06. Geophysical Journal International, 2017, 211(1): 263-269.
    [25]
    MA J, WANG W, DU X, et al. Study on System of Faults in the Gulf of Mexico and Adjacent Region based on Gravity Data[J]. Acta Geologica Sinica-English Edition, 2021, 95(1):305-318. doi: 10.1111/1755-6724.14643
    [26]
    雷受旻. 重力广义地形改正值和均衡该正值的一种计算方法[J]. 海洋地质与第四纪地质, 1984, 4(1):101-111

    LEI Shoumin. Calculation of generalized topographic and isostatic gravity corrections[J]. Marine Geology and Quaternary Geology, 1984, 4(1):101-111.]
    [27]
    刘芬, 王万银, 纪晓琳. 空间域和频率域平面位场延拓影响因素和稳定性分析[J]. 物探与化探, 2019, 43(2): 320-328

    LIU Fen, WANG Wanyin, JI Xiaolin. Influence factors and stability analysis of plane potential field continuation in space and frequency domains. Geophysical and Geochemical Exploration, 2019, 43(2): 320-328.
    [28]
    He T, Xiong S Q, Wang W Y. Three-dimensional transformation of magnetization direction and magnetic field component at low latitudes based on vertical relationship[J]. Applied Geophysics, 2022, 19(1):91-106. doi: 10.1007/s11770-022-0928-4
    [29]
    纪晓琳, 王万银, 邱之云. 最小曲率位场分离方法研究[J]. 地球物理学报, 2015, 58(3):1042-1058

    JI Xiaolin, WANG Wanyin, QIU Zhiyun. The research to the minimum curvature technique for potential field data separation[J]. Chinese Journal of Geophysics, 2015, 58(3):1042-1058.]
    [30]
    纪晓琳, 王万银, 邱之云. 最小曲率位场分离方法参数选择试验研究[J]. 地球物理学进展, 2019, 34(4):1441-1452 doi: 10.6038/pg2019AA0098

    JI Xiaolin, WANG Wanyin, QIU Zhiyun. Parameter choose experimental research to the minimum curvature technique potential field data separation method[J]. Progress in Geophysics, 2019, 34(4):1441-1452.] doi: 10.6038/pg2019AA0098
    [31]
    鲁宝亮, 马涛, 熊盛青, 等. 基于重磁异常相关分析的场源位置及属性识别方法[J]. 地球物理学报, 2020, 63(4): 1663-1674

    LU Baoliang, MA Tao, XIONG Shengqing, et al. A new recognition method for source locations and attributes based on correlation analysis of gravity and magnetic anomalies. Chinese Journal of Geophysics, 2020, 63(4): 1663-1674.
    [32]
    He T, Wang W Y, Bai Z Z, et al. Integrated gravity and magnetic study on patterns of petroleum basin occurrence in the China seas and adjacent areas[J]. Acta Oceanologica Sinica, 2023, 42(3):201-214. doi: 10.1007/s13131-022-2139-5
  • Related Articles

    [1]LEI Baohua, ZHANG Yinguo, WANG Mingjian, CHEN Jianwen, LIANG Jie, WANG Wenjuan. Structural characteristics and hydrocarbon exploration prospect of the Laoshan uplift in the South Yellow Sea Basin[J]. Marine Geology & Quaternary Geology, 2022, 42(2): 131-143. DOI: 10.16562/j.cnki.0256-1492.2021101201
    [2]CAO Quanbin, CAO Xuwen, LU Yintao, CHEN Yuhang, YAN Chun, XU Xiaoyong, WANG Chaofeng. Deep water depositional system in Rovuma Basin, East Africa and its bearing on hydrocarbon exploration[J]. Marine Geology & Quaternary Geology, 2021, 41(2): 173-180. DOI: 10.16562/j.cnki.0256-1492.2020060802
    [3]LI Shuanglin, DONG Heping, WANG Jianqiang, ZHAO Qingfang. Target geochemical exploration for oil and gas on the south central Laoshan uplift of the South Yellow Sea Basin: seabed oil-gas seepage and double halo-type geochemical anomaly[J]. Marine Geology & Quaternary Geology, 2020, 40(2): 135-147. DOI: 10.16562/j.cnki.0256-1492.2019101001
    [4]LI Shuanglin, WANG Jianqiang, DONG Heping, ZHAO Qingfang. Oil and gas geochemical exploration in the southern part of East China Sea Shelf Basin—Hydrocarbon anomalies and integrated evaluation of oil-gas potentials[J]. Marine Geology & Quaternary Geology, 2019, 39(6): 188-199. DOI: 10.16562/j.cnki.0256-1492.2019070302
    [5]YANG Chuansheng, YANG Changqing, LI Gang, YANG Yanqiu, SUN Jing, YAN Zhonghui, WANG Jianqiang. Prospecting of Meso-cenozoic hydrocarbon in the East China Sea Shelf Basin[J]. Marine Geology & Quaternary Geology, 2018, 38(2): 136-147. DOI: 10.16562/j.cnki.0256-1492.2018.02.014
    [6]WANG Yongfeng, LI Dong, WANG Yingmin, XU Qiang. DEEPWATER OIL-GAS RESERVOIR DISTRIBUTION PATTERN AND ITS BEARING ON FURTHER EXPLORATION OF PEARL RIVER MOUTH BASIN[J]. Marine Geology & Quaternary Geology, 2016, 36(3): 143-150. DOI: 10.16562/j.cnki.0256-1492.2016.03.014
    [7]ZHANG Jingru, HE Jiaxiong, LU Junwen, YANG Xibing, ZHU Jitian, GONG Xiaofeng, ZHANG Wei. THE CHARACTERISTICS OF HYDROCARBON SOURCE ROCKS AND EXPLORATION PROSPECTS OF LOW MATURE OIL AND GAS/BIO-GAS IN HEPU BASIN[J]. Marine Geology & Quaternary Geology, 2014, 34(4): 107-116. DOI: 10.3724/SP.J.1140.2014.04107
    [8]WANG Zongli, LI Jun, LI Zhengwen, LIN Shiguo, YANG Qing. HYDROCARBON ACCUMULATION CHARACTERS AND EXPLORATION PROSPECTS OF DEEP-SEATED OIL-GAS RESERVOIRS IN BOHAI BAY BASIN[J]. Marine Geology & Quaternary Geology, 2010, 30(3): 105-112. DOI: 10.3724/SP.J.1140.2010.03105
    [9]ZHONG Guang-jian, YI Hai, LIN Zhen, JIN Hua-feng. GEOLOGIC STRUCTURE OF JIANFENGBEI BASIN AND ITS PROSPECT FOR PETROLEUM EXPLORATION[J]. Marine Geology & Quaternary Geology, 2008, 28(1): 105-110.
    [10]HE Jiang-qi, LIANG Shi-you, ZHAO Yong-qiang, CHENG Xiao-ling, LI Hai-hua. CHARACTERISTICS OF GEOLOGIC STRUCTURES OF THE NORTH YELLOW SEA BASIN: IMPLICATIONS FOR PETROLEUM EXPLORATIONS[J]. Marine Geology & Quaternary Geology, 2007, 27(2): 101-105.

Catalog

    Article views (30) PDF downloads (2) Cited by()

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return