Citation: | TAO Jing,LIU Shengfa,AI Lina,et al. Sediment sources and sedimentary processes in the middle Arabian Sea since 90 kaBP[J]. Marine Geology & Quaternary Geology,2024,44(2):146-156. DOI: 10.16562/j.cnki.0256-1492.2023121201 |
Based on the geochemical characteristics and clay mineral composition of Core AS06-13 in the middle Arabian Sea, we combined the age of foraminifera shell AMS14C and the dating framework of oxygen isotope data , the provenance and sedimentary evolution of the middle Arabian Sea were studied. Results show that Core AS06-13 was deposited since 90 kaBP, with average depositional rate of 2.34 cm/ka. The Rare Earth Element (REE) content ranged from 64.38 to 194.33 μg/g, with average of 113.66 μg/g. The δEu, on average of 0.71, dispalyed significant negative anomaly. The clay minerals were mainly composed of illite (56% in average), palychite (18% in average), chlorite (15% in average), kaolinite (8% in average), and montmorillonite (2% in average). The chondrites normalized patterns of REEs had shown a right-leaning pattern of the enrichment in light REEs and deficit in heavy REEs, suggesting that sediments in the study area were mainly terrigenous detritals. According to the δEuUCC-(La/Yb)UCC discriminant diagram, the provenance changes in the middle Arabian Sea can be divide into three stages since 90 kaBP. The stage S1 (90~73 kaBP) were mainly sourced from the Indus River and the Arabian Peninsula dust. The stage S2 (73~11 kaBP) exhibited similarities to the stage S1, albeit with a discernible tendency towards being influenced by the Peninsular Gneissic rock region. The stage S3 (11~0 kaBP) had a mixed sources including the Indus River, Arabian Peninsula dust, gneiss region, and the Deccan Plateau. The content of palygorskite and the ratio of kaolinite/illite indicated that the terrigenous input and sedimentary evolution in the central Arabian Sea were mainly controlled by monsoon and sea level changes since 90 kaBP . The weakening of the southwest monsoon and decrease in sea level led to an increase in fluvial sediment inputs from Indus River and Deccan Plateau to the study area. The enhanced winter winds and the relative strengthened northwesterly winds resulted in an elevated dust input originating from the Arabian Peninsula. The Holocene sea-level rise led to a rapid decline in fluvial sediments supply to the Arabian Sea.
[1] |
Tiedemann R, Sarnthein M, Shackleton N J. Astronomic timescale for the Pliocene Atlantic δ18O and dust flux records of Ocean Drilling Program Site 659[J]. Paleoceanography, 1994, 9(4):619-638. doi: 10.1029/94PA00208
|
[2] |
Pattan J N, Pearce N J G. Bottom water oxygenation history in southeastern Arabian Sea during the past 140 ka: results from redox-sensitive elements[J]. Palaeogeography, Palaeoclimatology, Palaeoecology, 2009, 280(3-4):396-405. doi: 10.1016/j.palaeo.2009.06.027
|
[3] |
Griffin J J, Windom H, Goldberg E D. The distribution of clay minerals in the world ocean[J]. Deep Sea Research and Oceanographic Abstracts, 1968, 15(4):433-459. doi: 10.1016/0011-7471(68)90051-X
|
[4] |
Sebastian T, Nath B N, Mascarenhas-Pereira M B L, et al. A 50 kyr record of eolian sedimentation in the Eastern Arabian Sea-Dust deposition changes synchronous with the Northern Hemisphere Climatic Oscillations[J]. Marine Geology, 2023, 459:107046. doi: 10.1016/j.margeo.2023.107046
|
[5] |
陈忠, 颜文. 海洋沉积粘土矿物与古气候、古环境演化响应的研究进展[J]. 海洋科学, 2000, 24(2):25-27 doi: 10.3969/j.issn.1000-3096.2000.02.009
CHEN Zhong, YAN Wen. Advances of the studies on clay minerals in marine sedimenis and its response to evolution of paleoclimate and paleoenvironment[J]. Marine Sciences, 2000, 24(2):25-27.] doi: 10.3969/j.issn.1000-3096.2000.02.009
|
[6] |
Avinash K, Manjunath B R, Kurian P J. Glacial-interglacial productivity contrasts along the eastern Arabian Sea: dominance of convective mixing over upwelling[J]. Geoscience Frontiers, 2015, 6(6):913-925. doi: 10.1016/j.gsf.2015.03.003
|
[7] |
Tripathy G R, Singh S K, Ramaswamy V. Major and trace element geochemistry of Bay of Bengal sediments: Implications to provenances and their controlling factors[J]. Palaeogeography, Palaeoclimatology, Palaeoecology, 2014, 397:20-30. doi: 10.1016/j.palaeo.2013.04.012
|
[8] |
Yu Z J, Wan S M, Colin C, et al. Co-evolution of monsoonal precipitation in East Asia and the tropical Pacific ENSO system since 2.36 Ma: New insights from high-resolution clay mineral records in the West Philippine Sea[J]. Earth and Planetary Science Letters, 2016, 446:45-55. doi: 10.1016/j.jpgl.2016.04.022
|
[9] |
Li J R, Liu S F, Feng X L, et al. Major and trace element geochemistry of the mid-Bay of Bengal surface sediments: implications for provenance[J]. Acta Oceanologica Sinica, 2017, 36(3):82-90. doi: 10.1007/s13131-017-1041-z
|
[10] |
Neelavannan K, Hussain S M, Nishath N M, et al. Paleoproductivity shifts since the last 130 ka off Lakshadweep, Southeastern Arabian Sea[J]. Regional Studies in Marine Science, 2021, 44:101776. doi: 10.1016/j.rsma.2021.101776
|
[11] |
Chen H J, Xu Z K, Clift P D, et al. Orbital-scale evolution of the Indian summer monsoon since 1.2 Ma: Evidence from clay mineral records at IODP Expedition 355 Site U1456 in the eastern Arabian Sea[J]. Journal of Asian Earth Sciences, 2019, 174:11-22. doi: 10.1016/j.jseaes.2018.10.012
|
[12] |
Garzanti E, Vezzoli G, Andò S, et al. Petrology of Indus River sands: a key to interpret erosion history of the Western Himalayan Syntaxis[J]. Earth and Planetary Science Letters, 2005, 229(3-4):287-302. doi: 10.1016/j.jpgl.2004.11.008
|
[13] |
Limmer D R, Böning P, Giosan L, et al. Geochemical record of Holocene to Recent sedimentation on the Western Indus continental shelf, Arabian Sea[J]. Geochemistry, Geophysics, Geosystems, 2012, 13(1):Q01008.
|
[14] |
Rao V P, Rao B R. Provenance and distribution of clay minerals in the sediments of the western continental shelf and slope of India[J]. Continental Shelf Research, 1995, 15(14):1757-1771. doi: 10.1016/0278-4343(94)00092-2
|
[15] |
Chauhan O S, Gujar A R. Surficial clay mineral distribution on the southwestern continental margin of India: evidence of input from the Bay of Bengal[J]. Continental Shelf Research, 1996, 16(3):321-333. doi: 10.1016/0278-4343(95)00015-S
|
[16] |
Chauhan O S, Sukhija B S, Gujar A R, et al. Late-Quaternary variations in clay minerals along the SW continental margin of India: evidence of climatic variations[J]. Geo-Marine Letters, 2000, 20(2):118-122. doi: 10.1007/s003670000043
|
[17] |
Kessarkar P M, Rao V P, Ahmad S M, et al. Clay minerals and Sr-Nd isotopes of the sediments along the western margin of India and their implication for sediment provenance[J]. Marine Geology, 2003, 202(1-2):55-69. doi: 10.1016/S0025-3227(03)00240-8
|
[18] |
Chen H J, Xu Z K, Lim D, et al. Geochemical records of the provenance and silicate weathering/erosion from the eastern Arabian Sea and their responses to the Indian summer monsoon since the Mid-Pleistocene[J]. Paleoceanography and Paleoclimatology, 2020, 35(4):e2019PA003732. doi: 10.1029/2019PA003732
|
[19] |
Broccoli A J, Dahl K A, Stouffer R J. Response of the ITCZ to Northern Hemisphere cooling[J]. Geophysical Research Letters, 2006, 33(1):L01702.
|
[20] |
Nair R R, Ittekkot V, Manganini S J, et al. Increased particle flux to the deep ocean related to monsoons[J]. Nature, 1989, 338(6218):749-751. doi: 10.1038/338749a0
|
[21] |
Cai M J, Colin C, Xu Z K, et al. Climate and sea level forcing of terrigenous sediments input to the eastern Arabian Sea since the last glacial period[J]. Marine Geology, 2022, 450:106860. doi: 10.1016/j.margeo.2022.106860
|
[22] |
Jonell T N, Li Y T, Blusztajn J, et al. Signal or noise? Isolating grain size effects on Nd and Sr isotope variability in Indus delta sediment provenance[J]. Chemical Geology, 2018, 485:56-73. doi: 10.1016/j.chemgeo.2018.03.036
|
[23] |
Thamban M, Rao V P, Schneider R R. Reconstruction of late Quaternary monsoon oscillations based on clay mineral proxies using sediment cores from the western margin of India[J]. Marine Geology, 2002, 186(3-4):527-539. doi: 10.1016/S0025-3227(02)00268-2
|
[24] |
Aswini M A, Kumar A, Das S K. Quantification of long-range transported aeolian dust towards the Indian peninsular region using satellite and ground-based data: A case study during a dust storm over the Arabian Sea[J]. Atmospheric Research, 2020, 239:104910. doi: 10.1016/j.atmosres.2020.104910
|
[25] |
Ferrier K L, Mitrovica J X, Giosan L, et al. Sea-level responses to erosion and deposition of sediment in the Indus River basin and the Arabian Sea[J]. Earth and Planetary Science Letters, 2015, 416:12-20. doi: 10.1016/j.jpgl.2015.01.026
|
[26] |
Steinke S, Hanebuth T J J, Vogt C, et al. Sea level induced variations in clay mineral composition in the southwestern South China Sea over the past 17, 000 yr[J]. Marine Geology, 2008, 250(3-4):199-210. doi: 10.1016/j.margeo.2008.01.005
|
[27] |
Blum M D, Hattier-Womack J. Climate change, sea-level change, and fluvial sediment supply to deepwater depositional systems[M]//Kneller B, Martinsen O J, McCaffrey B. External Controls of Deep-Water Depositional Systems. Tulsa, Oklahoma, USA: SEPM, 2009, 92: 15-39.
|
[28] |
Bourget J, Zaragosi S, Ellouz-Zimmermann S, et al. Highstand vs. lowstand turbidite system growth in the Makran active margin: Imprints of high-frequency external controls on sediment delivery mechanisms to deep water systems[J]. Marine Geology, 2010, 274(1-4):187-208. doi: 10.1016/j.margeo.2010.04.005
|
[29] |
Lathika N, Rahaman W, Tarique M, et al. Deep water circulation in the Arabian Sea during the last glacial cycle: Implications for paleo-redox condition, carbon sink and atmospheric CO2 variability[J]. Quaternary Science Reviews, 2021, 257:106853. doi: 10.1016/j.quascirev.2021.106853
|
[30] |
Clift P D, Giosan L, Blusztajn J, et al. Holocene erosion of the Lesser Himalaya triggered by intensified summer monsoon[J]. Geology, 2008, 36(1):79-82. doi: 10.1130/G24315A.1
|
[31] |
Prins M A, Postma G. Effects of climate, sea level, and tectonics unraveled for last deglaciation turbidite records of the Arabian Sea[J]. Geology, 2000, 28(4):375-378. doi: 10.1130/0091-7613(2000)28<375:EOCSLA>2.0.CO;2
|
[32] |
Goswami V, Singh S K, Bhushan R, et al. Temporal variations in 87Sr/86Sr and ɛNd in sediments of the southeastern Arabian Sea: Impact of monsoon and surface water circulation[J]. Geochemistry, Geophysics, Geosystems, 2012, 13(1):Q01001.
|
[33] |
Stuiver M, Reimer P J. Extended 14C data base and revised CALIB 3.0 14C age calibration program[J]. Radiocarbon, 1993, 35(1):215-230. doi: 10.1017/S0033822200013904
|
[34] |
Southon J, Kashgarian M, Fontugne M, et al. Marine reservoir corrections for the Indian Ocean and Southeast Asia[J]. Radiocarbon, 2002, 44(1):167-180. doi: 10.1017/S0033822200064778
|
[35] |
Von Rad U, Schulz H, Riech V, et al. Multiple monsoon-controlled breakdown of oxygen-minimum conditions during the past 30, 000 years documented in laminated sediments off Pakistan[J]. Palaeogeography, Palaeoclimatology, Palaeoecology, 1999, 152(1-2):129-161. doi: 10.1016/S0031-0182(99)00042-5
|
[36] |
齐文菁, 李小艳, 范德江, 等. 印度洋东经90°海岭现代沉积物稀土元素组成及其物源示踪意义[J]. 海洋地质与第四纪地质, 2022, 42(2):92-100
QI Wenjing, LI Xiaoyan, FAN Dejiang, et al. Rare earth element composition of the surface sediments from the Ninetyeast Ridge and its implications for provenance[J]. Marine Geology & Quaternary Geology, 2022, 42(2):92-100.]
|
[37] |
Biscaye P E. Mineralogy and sedimentation of recent deep-sea clay in the Atlantic Ocean and adjacent seas and oceans[J]. Geological Society of America Bulletin, 1965, 76(7):803-832. doi: 10.1130/0016-7606(1965)76[803:MASORD]2.0.CO;2
|
[38] |
Ehrmann W, Schmiedl G. Nature and dynamics of North African humid and dry periods during the last 200, 000 years documented in the clay fraction of Eastern Mediterranean deep-sea sediments[J]. Quaternary Science Reviews, 2021, 260:106925. doi: 10.1016/j.quascirev.2021.106925
|
[39] |
Railsback L B, Gibbard P L, Head M J, et al. An optimized scheme of lettered marine isotope substages for the last 1.0 million years, and the climatostratigraphic nature of isotope stages and substages[J]. Quaternary Science Reviews, 2015, 111:94-106. doi: 10.1016/j.quascirev.2015.01.012
|
[40] |
Evensen N M, Hamilton P J, O'Nions R K. Rare-earth abundances in chondritic meteorites[J]. Geochimica et Cosmochimica Acta, 1978, 42(8):1199-1212. doi: 10.1016/0016-7037(78)90114-X
|
[41] |
Goldberg E D, Griffin J J. The sediments of the northern Indian Ocean[J]. Deep Sea Research and Oceanographic Abstracts, 1970, 17(3):513-537. doi: 10.1016/0011-7471(70)90065-3
|
[42] |
Kolla V, Kostecki J A, Robinson F, et al. Distributions and origins of clay minerals and quartz in surface sediments of the Arabian Sea[J]. Journal of Sedimentary Petrology, 1981, 51(2):563-569.
|
[43] |
McLennan S M. Rare earth elements in sedimentary rocks: Influence of provenance and sedimentary processes[J]. Reviews in Mineralogy and Geochemistry, 1989, 21(1):169-200.
|
[44] |
Cullers R L. The controls on the major and trace element variation of shales, siltstones, and sandstones of Pennsylvanian-Permian age from uplifted continental blocks in Colorado to platform sediment in Kansas, USA[J]. Geochimica et Cosmochimica Acta, 1994, 58(22):4955-4972. doi: 10.1016/0016-7037(94)90224-0
|
[45] |
毛光周, 刘池洋. 地球化学在物源及沉积背景分析中的应用[J]. 地球科学与环境学报, 2011, 33(4):337-348 doi: 10.3969/j.issn.1672-6561.2011.04.002
MAO Guangzhou, LIU Chiyang. Application of geochemistry in provenance and depositional setting analysis[J]. Journal of Earth Sciences and Environment, 2011, 33(4):337-348.] doi: 10.3969/j.issn.1672-6561.2011.04.002
|
[46] |
Um I K, Choi M S, Bahk J J, et al. Discrimination of sediment provenance using rare earth elements in the Ulleung Basin, East/Japan Sea[J]. Marine Geology, 2013, 346:208-219. doi: 10.1016/j.margeo.2013.09.007
|
[47] |
Lim D, Jung H S, Choi J Y. REE partitioning in riverine sediments around the Yellow Sea and its importance in shelf sediment provenance[J]. Marine Geology, 2014, 357:12-24. doi: 10.1016/j.margeo.2014.07.002
|
[48] |
Mir I A, Mascarenhas M B L, Khare N. Geochemistry and granulometry as indicators of paleoclimate, weathering, and provenance of sediments for the past 1, 00, 000 years in the eastern Arabian Sea[J]. Journal of Asian Earth Sciences, 2022, 227:105102. doi: 10.1016/j.jseaes.2022.105102
|
[49] |
Rudnick R L, Gao S. Composition of the continental crust[M]//Holland H D, Turekian K K. Treatise on Geochemistry. Amsterdam: Elsevier, 2003, 3: 1-64.
|
[50] |
Kurian S, Nath B N, Kumar N C, et al. Geochemical and isotopic signatures of surficial sediments from the western continental shelf of India: inferring provenance, weathering, and the nature of organic matter[J]. Journal of Sedimentary Research, 2013, 83(6):427-442. doi: 10.2110/jsr.2013.36
|
[51] |
Babechuk M G, Widdowson M, Kamber B S. Quantifying chemical weathering intensity and trace element release from two contrasting basalt profiles, Deccan Traps, India[J]. Chemical Geology, 2014, 363:56-75. doi: 10.1016/j.chemgeo.2013.10.027
|
[52] |
Moreno T, Querol X, Castillo S, et al. Geochemical variations in aeolian mineral particles from the Sahara-Sahel Dust Corridor[J]. Chemosphere, 2006, 65(2):261-270. doi: 10.1016/j.chemosphere.2006.02.052
|
[53] |
Suresh K, Singh U, Kumar A, et al. Provenance tracing of long-range transported dust over the Northeastern Arabian Sea during the southwest monsoon[J]. Atmospheric Research, 2021, 250:105377. doi: 10.1016/j.atmosres.2020.105377
|
[54] |
Khonde N N, Maurya D M, Chamyal L S. Late Pleistocene-Holocene clay mineral record from the Great Rann of Kachchh basin, Western India: implications for palaeoenvironments and sediment sources[J]. Quaternary international, 2017, 443:86-98. doi: 10.1016/j.quaint.2016.07.024
|
[55] |
陈红瑾, 徐兆凯, 蔡明江, 等. 30 ka以来东阿拉伯海U1456站位粘土粒级碎屑沉积物来源及其古环境意义[J]. 地球科学, 2019, 44(8):2803-2817
CHEN Hongjin, XU Zhaokai, CAI Mingjiang, et al. Provenance of clay-sized detrital sediments and its paleoenvironmental implications at Site U1456 in the Eastern Arabian Sea since 30 ka[J]. Earth Science, 2019, 44(8):2803-2817.]
|
[56] |
Pourmand A, Marcantonio F, Schulz H. Variations in productivity and eolian fluxes in the northeastern Arabian Sea during the past 110 ka[J]. Earth and Planetary Science Letters, 2004, 221(1-4):39-54. doi: 10.1016/S0012-821X(04)00109-8
|
[57] |
Turney C S M, Jones R T, Fogwill C, et al. A 250-year periodicity in Southern Hemisphere westerly winds over the last 2600 years[J]. Climate of the Past, 2016, 12(2):189-200. doi: 10.5194/cp-12-189-2016
|
[58] |
Reichart G J, Lourens L J, Zachariasse W J. Temporal variability in the northern Arabian Sea oxygen minimum zone (OMZ) during the last 225, 000 years[J]. Paleoceanography, 1998, 13(6):607-621. doi: 10.1029/98PA02203
|
[59] |
Middleton N J. Dust storms in the Middle East[J]. Journal of Arid Environments, 1986, 10(2):83-96. doi: 10.1016/S0140-1963(18)31249-7
|
[60] |
Sirocko F, Sarnthein M. Wind-borne deposits in the northwestern Indian Ocean: Record of Holocene sediments versus modern satellite data[M]//Leinen M, Sarnthein M. Paleoclimatology and Paleometeorology: Modern and Past Patterns of Global Atmospheric Transport. Dordrecht: Springer, 1989: 401-433.
|
[61] |
Prins M A, Postma G, Cleveringa J, et al. Controls on terrigenous sediment supply to the Arabian Sea during the late Quaternary: the Indus Fan[J]. Marine Geology, 2000, 169(3-4):327-349. doi: 10.1016/S0025-3227(00)00086-4
|
[62] |
Von Rad U, Tahir M. Late Quaternary sedimentation on the outer Indus shelf and slope (Pakistan): evidence from high-resolution seismic data and coring[J]. Marine Geology, 1997, 138(3-4):193-236. doi: 10.1016/S0025-3227(96)00090-4
|
[63] |
Stanley D J, Warne A G. Worldwide initiation of Holocene marine deltas by deceleration of sea-level rise[J]. Science, 1994, 265:228-231. doi: 10.1126/science.265.5169.228
|
1. |
王迎,李江海,马昌明,宋珏琛. 基于离散元法的龙门山构造带隆升变形主控因素研究. 北京大学学报(自然科学版). 2022(05): 850-860 .
![]() |