Citation: | HU Jiasen,ZHANG Guoliang. High-temperature and high-pressure experiments reveal the melting behavior of serpentinites in subduction zone and the genesis of high-Mg magmas[J]. Marine Geology & Quaternary Geology,2024,44(2):157-170. DOI: 10.16562/j.cnki.0256-1492.2023091102 |
Recent studies have identified serpentinite components in arc magmas, suggesting that subducted serpentinites contribute not only fluids to the mantle wedge but also participate in arc magma formation through partial melting. However, the melting behavior of serpentinites in the mantle wedge and their role in the material cycle of subduction zones remain underexplored. We selected three types of serpentinites: natural serpentinites altered from harzburgite (SE2) and lherzolite (SE3), and synthetic serpentinite (SEQ) containing talc. Experiments were conducted under 700~1300℃ and 4 GPa, to constrain the melting temperature of serpentinites and analyze the composition of the melts. Results show that the solidi among different serpentinite types vary greatly from each other. The solidi of SE3, SEQ, and SE2 are between 900~960℃, 960~1100℃, and 1150~1200℃, respectively. These solidi are higher than the surface temperatures of subducting slab, thus requiring serpentinites diapir into the mantle wedge to melt. Therefore, SE2 and SEQ serpentinites can melt at the bottom of the mantle wedge under relatively lower temperature conditions (960~1100℃), producing komatiitic magmas, whereas in the overlying mantle wedge, SE2 serpentinite undergo more extensive and higher degrees of partial melting at higher temperature conditions (>1200℃), generating boninitic magmas.
[1] |
Ulmer P, Trommsdorff V. Serpentine stability to mantle depths and subduction-related magmatism[J]. Science, 1995, 268(5212):858-861. doi: 10.1126/science.268.5212.858
|
[2] |
Scambelluri M, Bebout G E, Belmonte D, et al. Carbonation of subduction-zone serpentinite (high-pressure ophicarbonate; Ligurian Western Alps) and implications for the deep carbon cycling[J]. Earth and Planetary Science Letters, 2016, 441:155-166. doi: 10.1016/j.jpgl.2016.02.034
|
[3] |
Allen D E, Seyfried W E Jr. Compositional controls on vent fluids from ultramafic-hosted hydrothermal systems at mid-ocean ridges: an experimental study at 400℃, 500 bars[J]. Geochimica et Cosmochimica Acta, 2003, 67(8):1531-1542. doi: 10.1016/S0016-7037(02)01173-0
|
[4] |
Deschamps F, Godard M, Guillot S, et al. Geochemistry of subduction zone serpentinites: a review[J]. Lithos, 2013, 178:96-127. doi: 10.1016/j.lithos.2013.05.019
|
[5] |
Zheng Y F, Chen R X, Xu Z, et al. The transport of water in subduction zones[J]. Science China Earth Sciences, 2016, 59(4):651-682. doi: 10.1007/s11430-015-5258-4
|
[6] |
Cooperdock E H G, Raia N H, Barnes J D, et al. Tectonic origin of serpentinites on Syros, Greece: geochemical signatures of abyssal origin preserved in a HP/LT subduction complex[J]. Lithos, 2018, 296-299:352-364. doi: 10.1016/j.lithos.2017.10.020
|
[7] |
Savov I P, Ryan J G, D'antonio M, et al. Geochemistry of serpentinized peridotites from the Mariana Forearc Conical Seamount, ODP Leg 125: implications for the elemental recycling at subduction zones[J]. Geochemistry, Geophysics, Geosystems, 2005, 6(4):Q04J15.
|
[8] |
Scambelluri M, Tonarini S. Boron isotope evidence for shallow fluid transfer across subduction zones by serpentinized mantle[J]. Geology, 2012, 40(10):907-910. doi: 10.1130/G33233.1
|
[9] |
Straub S M, Layne G D. The systematics of boron isotopes in Izu arc front volcanic rocks[J]. Earth and Planetary Science Letters, 2002, 198(1-2):25-39. doi: 10.1016/S0012-821X(02)00517-4
|
[10] |
Tomanikova L, Savov I P, Harvey J, et al. A limited role for metasomatized subarc mantle in the generation of boron isotope signatures of arc volcanic rocks[J]. Geology, 2019, 47(6):517-521. doi: 10.1130/G46092.1
|
[11] |
Zhang Y X, Gazel E, Gaetani G A, et al. Serpentinite-derived slab fluids control the oxidation state of the subarc mantle[J]. Science Advances, 2021, 7(48):eabj2515. doi: 10.1126/sciadv.abj2515
|
[12] |
Hattori K H, Guillot S. Volcanic fronts form as a consequence of serpentinite dehydration in the forearc mantle wedge[J]. Geology, 2003, 31(6):525-528. doi: 10.1130/0091-7613(2003)031<0525:VFFAAC>2.0.CO;2
|
[13] |
Cooper G F, Macpherson C G, Blundy J D, et al. Variable water input controls evolution of the Lesser Antilles volcanic arc[J]. Nature, 2020, 582(7813):525-529. doi: 10.1038/s41586-020-2407-5
|
[14] |
Teng F Z, Hu Y, Chauvel C. Magnesium isotope geochemistry in arc volcanism[J]. Proceedings of the National Academy of Sciences of the United States of America, 2016, 113(26):7082-7087.
|
[15] |
Hao L L, Nan X Y, Kerr A C, et al. Mg-Ba-Sr-Nd isotopic evidence for a mélange origin of early Paleozoic arc magmatism[J]. Earth and Planetary Science Letters, 2022, 577:117263. doi: 10.1016/j.jpgl.2021.117263
|
[16] |
Yuan S, Li H, Arculus R J, et al. Heavy magnesium isotopic compositions of basalts erupted during arc inception: implications for the mantle source underlying the nascent Izu-Bonin-Mariana arc[J]. Geochimica et Cosmochimica Acta, 2023, 352:14-23. doi: 10.1016/j.gca.2023.04.017
|
[17] |
Beinlich A, Mavromatis V, Austrheim H, et al. Inter-mineral Mg isotope fractionation during hydrothermal ultramafic rock alteration – Implications for the global Mg-cycle[J]. Earth and Planetary Science Letters, 2014, 392:166-176. doi: 10.1016/j.jpgl.2014.02.028
|
[18] |
Wang W Z, Zhou C, Liu Y, et al. Equilibrium Mg isotope fractionation among aqueous Mg2+, carbonates, brucite and lizardite: Insights from first-principles molecular dynamics simulations[J]. Geochimica et Cosmochimica Acta, 2019, 250:117-129. doi: 10.1016/j.gca.2019.01.042
|
[19] |
Kelemen P B, Hanghøj K, Greene A R. One view of the geochemistry of subduction-related magmatic arcs, with an emphasis on primitive andesite and lower crust[J]. Treatise on Geochemistry, 2007, 3:1-70.
|
[20] |
Tatsumi Y. Formation of the volcanic front in subduction zones[J]. Geophysical Research Letters, 1986, 13(8):717-720. doi: 10.1029/GL013i008p00717
|
[21] |
Hall P S, Kincaid C. Diapiric flow at subduction zones: a recipe for rapid transport[J]. Science, 2001, 292(5526):2472-2475. doi: 10.1126/science.1060488
|
[22] |
Nielsen S G, Marschall H R. Geochemical evidence for mélange melting in global arcs[J]. Science Advances, 2017, 3(4):e1602402. doi: 10.1126/sciadv.1602402
|
[23] |
Mottl M J, Komor S C, Fryer P, et al. Deep-slab fluids fuel extremophilic Archaea on a Mariana forearc serpentinite mud volcano: Ocean Drilling Program Leg 195[J]. Geochemistry, Geophysics, Geosystems, 2003, 4(11):9009.
|
[24] |
Castro A, Gerya T V. Magmatic implications of mantle wedge plumes: experimental study[J]. Lithos, 2008, 103(1-2):138-148. doi: 10.1016/j.lithos.2007.09.012
|
[25] |
Codillo E A, Le Roux V, Marschall H R. Arc-like magmas generated by mélange-peridotite interaction in the mantle wedge[J]. Nature Communications, 2018, 9(1):2864. doi: 10.1038/s41467-018-05313-2
|
[26] |
Gerya T V, Yuen D A. Rayleigh–Taylor instabilities from hydration and melting propel ‘cold plumes’ at subduction zones[J]. Earth and Planetary Science Letters, 2003, 212(1-2):47-62. doi: 10.1016/S0012-821X(03)00265-6
|
[27] |
Marschall H R, Schumacher J C. Arc magmas sourced from mélange diapirs in subduction zones[J]. Nature Geoscience, 2012, 5(12):862-867. doi: 10.1038/ngeo1634
|
[28] |
Stern R J. Subduction zones[J]. Reviews of Geophysics, 2002, 40(4):3-1-3-13.
|
[29] |
Gill J B. Orogenic Andesites and Plate Tectonics[M]. New York: Springer Science, 1981.
|
[30] |
Syracuse E M, van Keken P E, Abers G A. The global range of subduction zone thermal models[J]. Physics of the Earth and Planetary Interiors, 2010, 183(1-2):73-90. doi: 10.1016/j.pepi.2010.02.004
|
[31] |
Boschi C, Dini A, Dallai L, et al. Enhanced CO2-mineral sequestration by cyclic hydraulic fracturing and Si-rich fluid infiltration into serpentinites at Malentrata (Tuscany, Italy)[J]. Chemical Geology, 2009, 265(1-2):209-226. doi: 10.1016/j.chemgeo.2009.03.016
|
[32] |
Iyer K, Austrheim H, John T, et al. Serpentinization of the oceanic lithosphere and some geochemical consequences: constraints from the Leka Ophiolite Complex, Norway[J]. Chemical Geology, 2008, 249(1-2):66-90. doi: 10.1016/j.chemgeo.2007.12.005
|
[33] |
Palandri J L, Reed M H. Geochemical models of metasomatism in ultramafic systems: serpentinization, rodingitization, and sea floor carbonate chimney precipitation[J]. Geochimica et Cosmochimica Acta, 2004, 68(5):1115-1133. doi: 10.1016/j.gca.2003.08.006
|
[34] |
Snow J E, Dick H J B. Pervasive magnesium loss by marine weathering of peridotite[J]. Geochimica et Cosmochimica Acta, 1995, 59(20):4219-4235. doi: 10.1016/0016-7037(95)00239-V
|
[35] |
Boschi C, Früh-Green G L, Escartín J. Occurrence and significance of serpentinite-hosted, talc-and AMPHIBOLE-RICH fault rocks in modern oceanic settings and ophiolite complexes: an overview[J]. Ofioliti, 2006, 31(2):129-140.
|
[36] |
Paulick H, Bach W, Godard M, et al. Geochemistry of abyssal peridotites (Mid-Atlantic Ridge, 15°20′N, ODP Leg 209): implications for fluid/rock interaction in slow spreading environments[J]. Chemical Geology, 2006, 234(3-4):179-210. doi: 10.1016/j.chemgeo.2006.04.011
|
[37] |
Ali-Bik M W, Taman Z, El Kalioubi B, et al. Serpentinite-hosted talc–magnesite deposits of Wadi Barramiya area, Eastern Desert, Egypt: characteristics, petrogenesis and evolution[J]. Journal of African Earth Sciences, 2012, 64:77-89. doi: 10.1016/j.jafrearsci.2011.11.002
|
[38] |
O'Hanley D S. Serpentinites: Records of Tectonic and Petrological History[M]. New York: Oxford University Press, 1996: 1-277.
|
[39] |
Bose K, Ganguly J. Quartz-coesite transition revisited: reversed experimental determination at 500-1200℃ and retrieved thermochemical properties[J]. American Mineralogist, 1995, 80(3-4):231-238. doi: 10.2138/am-1995-3-404
|
[40] |
Ono S, Kikegawa T, Higo Y. In situ observation of a garnet/perovskite transition in CaGeO3[J]. Physics and Chemistry of Minerals, 2011, 38(9):735-740. doi: 10.1007/s00269-011-0446-z
|
[41] |
Hernlund J, Leinenweber K, Locke D, et al. A numerical model for steady-state temperature distributions in solid-medium high-pressure cell assemblies[J]. American Mineralogist, 2006, 91(2-3):295-305. doi: 10.2138/am.2006.1938
|
[42] |
Falloon T J, Danyushevsky L V. Melting of refractory mantle at 1·5, 2 and 2·5 GPa under anhydrous and H2O-undersaturated conditions: implications for the petrogenesis of high-Ca boninites and the influence of subduction components on mantle melting[J]. Journal of Petrology, 2000, 41(2):257-283. doi: 10.1093/petrology/41.2.257
|
[43] |
Klemme S, O'Neill H S. The near-solidus transition from garnet lherzolite to spinel lherzolite[J]. Contributions to Mineralogy and Petrology, 2000, 138(3):237-248. doi: 10.1007/s004100050560
|
[44] |
Renna M R, Tribuzio R. Olivine-rich troctolites from Ligurian ophiolites (Italy): evidence for impregnation of replacive mantle conduits by MORB-type melts[J]. Journal of Petrology, 2011, 52(9):1763-1790. doi: 10.1093/petrology/egr029
|
[45] |
Hayden L A, Manning C E. Rutile solubility in supercritical NaAlSi3O8–H2O fluids[J]. Chemical Geology, 2011, 284(1-2):74-81. doi: 10.1016/j.chemgeo.2011.02.008
|
[46] |
Adam J, Green T H, Sie S H, et al. Trace element partitioning between aqueous fluids, silicate melts and minerals[J]. European Journal of Mineralogy, 1997, 9(3):569-584. doi: 10.1127/ejm/9/3/0569
|
[47] |
Le Bas M J. IUGS reclassification of the high-Mg and picritic volcanic rocks[J]. Journal of Petrology, 2000, 41(10):1467-1470. doi: 10.1093/petrology/41.10.1467
|
[48] |
Pearce J A, Reagan M K. Identification, classification, and interpretation of boninites from Anthropocene to Eoarchean using Si-Mg-Ti systematics[J]. Geosphere, 2019, 15(4):1008-1037. doi: 10.1130/GES01661.1
|
[49] |
Kessel R, Pettke T, Fumagalli P. Melting of metasomatized peridotite at 4–6 GPa and up to 1200℃: an experimental approach[J]. Contributions to Mineralogy and Petrology, 2015, 169(4):37. doi: 10.1007/s00410-015-1132-9
|
[50] |
Till C B, Grove T L, Withers A C. The beginnings of hydrous mantle wedge melting[J]. Contributions to Mineralogy and Petrology, 2012, 163(4):669-688. doi: 10.1007/s00410-011-0692-6
|
[51] |
Wang J T, Takahashi E, Xiong X L, et al. The water-saturated solidus and second critical endpoint of peridotite: implications for magma genesis within the mantle wedge[J]. Journal of Geophysical Research:Solid Earth, 2020, 125(8):e2020JB019452. doi: 10.1029/2020JB019452
|
[52] |
Zhang Y F, Liang X R, Wang C, et al. Experimental constraints on the partial melting of sediment-metasomatized lithospheric mantle in subduction zones[J]. American Mineralogist, 2020, 105(8):1191-1203. doi: 10.2138/am-2020-7403
|
[53] |
Chen W, Keshav S, Peng W G, et al. Coupled cycling of carbon and water in the form of hydrous carbonatitic liquids in the subarc region[J]. Journal of Geophysical Research:Solid Earth, 2023, 128(10):e2023JB026681. doi: 10.1029/2023JB026681
|
[54] |
Kawamoto T, Holloway J R. Melting temperature and partial melt chemistry of H2O-saturated mantle peridotite to 11 gigapascals[J]. Science, 1997, 276(5310):240-243. doi: 10.1126/science.276.5310.240
|
[55] |
Roedder E. Fluid inclusion evidence for immiscibility in magmatic differentiation[J]. Geochimica et Cosmochimica Acta, 1992, 56(1):5-20. doi: 10.1016/0016-7037(92)90113-W
|
[56] |
Adam J, Locmelis M, Afonso J C, et al. The capacity of hydrous fluids to transport and fractionate incompatible elements and metals within the Earth's mantle[J]. Geochemistry, Geophysics, Geosystems, 2014, 15(6):2241-2253. doi: 10.1002/2013GC005199
|
[57] |
Mibe K, Kanzaki M, Kawamoto T, et al. Second critical endpoint in the peridotite-H2O system[J]. Journal of Geophysical Research:Solid Earth, 2007, 112(B3):B03201.
|
[58] |
Green D H. Experimental melting studies on a model upper mantle composition at high pressure under water-saturated and water-undersaturated conditions[J]. Earth and Planetary Science Letters, 1973, 19(1):37-53. doi: 10.1016/0012-821X(73)90176-3
|
[59] |
Kushiro I. Effect of water on the composition of magmas formed at high pressures[J]. Journal of Petrology, 1972, 13(2):311-334. doi: 10.1093/petrology/13.2.311
|
[60] |
Mookherjee M, Karato S I. Solubility of water in pyrope-rich garnet at high pressures and temperature[J]. Geophysical Research Letters, 2010, 37(3):L03310.
|
[61] |
Manning C E. The chemistry of subduction-zone fluids[J]. Earth and Planetary Science Letters, 2004, 223(1-2):1-16. doi: 10.1016/j.jpgl.2004.04.030
|
[62] |
Kushiro I, Syono Y, Akimoto S I. Melting of a peridotite nodule at high pressures and high water pressures[J]. Journal of Geophysical Research, 1968, 73(18):6023-6029. doi: 10.1029/JB073i018p06023
|
[63] |
Litasov K D, Shatskiy A. Carbon-bearing magmas in the Earth's deep interior[M]//Kono Y, Sanloup C. Magmas Under Pressure. Amsterdam: Elsevier, 2018: 43-82.
|
[64] |
Gaetani G A, Grove T L. The influence of water on melting of mantle peridotite[J]. Contributions to Mineralogy and Petrology, 1998, 131(4):323-346. doi: 10.1007/s004100050396
|
[65] |
Hirschmann M M, Asimow P D, Ghiorso M S, et al. Calculation of peridotite partial melting from thermodynamic models of minerals and melts. III. Controls on isobaric melt production and the effect of water on melt production[J]. Journal of Petrology, 1999, 40(5):831-851. doi: 10.1093/petroj/40.5.831
|
[66] |
Grove T L, Till C B, Krawczynski M J. The role of H2O in subduction zone magmatism[J]. Annual Review of Earth and Planetary Sciences, 2012, 40:413-439. doi: 10.1146/annurev-earth-042711-105310
|
[67] |
Parman S W, Grove T L. Harzburgite melting with and without H2O: experimental data and predictive modeling[J]. Journal of Geophysical Research:Solid Earth, 2004, 109(B2):B02201.
|
[68] |
Chen M, Zheng J P, Dai H K, et al. Boninitic melt percolation makes depleted mantle wedges rich in silica[J]. Geology, 2023, 51(8):791-795. doi: 10.1130/G51050.1
|
[69] |
Arndt N. Komatiites, kimberlites, and boninites[J]. Journal of Geophysical Research:Solid Earth, 2003, 108(B6):2293.
|
[70] |
Parman S W, Grove T L, Dann J C. The production of Barberton komatiites in an Archean subduction zone[J]. Geophysical Research Letters, 2001, 28(13):2513-2516. doi: 10.1029/2000GL012713
|
[71] |
Parman S W, Grove T L, Dann J C, et al. A subduction origin for komatiites and cratonic lithospheric mantle[J]. South African Journal of Geology, 2004, 107(1-2):107-118. doi: 10.2113/107.1-2.107
|
[72] |
Parman S W, Dann J C, Grove T L, et al. Emplacement conditions of komatiite magmas from the 3.49 Ga Komati Formation, Barberton Greenstone Belt, South Africa[J]. Earth and Planetary Science Letters, 1997, 150(3-4):303-323. doi: 10.1016/S0012-821X(97)00104-0
|
[73] |
Brooks C, Hart S R. On the significance of komatiite[J]. Geology, 1974, 2(2):107-110. doi: 10.1130/0091-7613(1974)2<107:OTSOK>2.0.CO;2
|
[74] |
Cameron W E, Nisbet E G, Dietrich V J. Boninites, komatiites and ophiolitic basalts[J]. Nature, 1979, 280(5723):550-553. doi: 10.1038/280550a0
|
[75] |
Hollings P, Wyman D, Kerrich R. Komatiite–basalt–rhyolite volcanic associations in Northern Superior Province greenstone belts: significance of plume-arc interaction in the generation of the proto continental Superior Province[J]. Lithos, 1999, 46(1):137-161. doi: 10.1016/S0024-4937(98)00058-9
|
[76] |
Wilson A H, Versfeld J A. The early Archaean Nondweni greenstone belt, southern Kaapvaal Craton, South Africa, Part II. Characteristics of the volcanic rocks and constraints on magma genesis[J]. Precambrian Research, 1994, 67(3-4):277-320. doi: 10.1016/0301-9268(94)90013-2
|