PEI Wenlong,YUAN Run,WANG Yipeng,et al. High-resolution records of sea surface temperature and salinity in the East China Sea in the last 14.2 ka: Implication from alkenone and its hydrogen isotopes[J]. Marine Geology & Quaternary Geology,2023,43(4):71-84. DOI: 10.16562/j.cnki.0256-1492.2023072401
Citation: PEI Wenlong,YUAN Run,WANG Yipeng,et al. High-resolution records of sea surface temperature and salinity in the East China Sea in the last 14.2 ka: Implication from alkenone and its hydrogen isotopes[J]. Marine Geology & Quaternary Geology,2023,43(4):71-84. DOI: 10.16562/j.cnki.0256-1492.2023072401

High-resolution records of sea surface temperature and salinity in the East China Sea in the last 14.2 ka: Implication from alkenone and its hydrogen isotopes

More Information
  • Received Date: July 23, 2023
  • Revised Date: August 23, 2023
  • Available Online: September 12, 2023
  • Palaeoceanographic environmental conditions in the East China Sea (ECS) shown as sea surface temperature (SST) and salinity (SSS) may reveal asynchronous hydroclimate changes from low-latitude warm ocean and East Asian monsoon (EAM). However, it remains unclear whether the SST and SSS in the ECS showed a notable response to the spatiotemporal patterns of hydroclimate with the synergistic impacts of the EAM and tropical ocean since the last deglaciation. The SST and SSS records based on alkenone and its hydrogen isotopes (δDalkenone) with a high-resolution core from the ECS over the last 14 ka were analyzed to understand the forcing mechanisms on different timescales. Results indicate that the SST and SSS of the ECS fluctuated in millennial (~1500 a) and centennial (~750 a, ~350 a , and ~ 120 a) scales. During the last deglaciation and early Holocene, the Kuroshio was strengthened and carried relatively warm and salty seawater into the ECS, thus the SST and SSS were generally higher than normal ones. During the middle Holocene (9.0~5.0 kaBP), freshwater discharged into the ECS, followed by the regulation of its hydrodynamic circulations, which might create strong upper-ocean stratification, high and stable SST, and relatively low SSS. During 5.0~2.7 kaBP, the East Asian Winter Monsoon seemed to be strengthened, while the East Asian Summer Monsoon weakened, which enhanced the upwelling in the ECS due probably to the weakening of the Kuroshio, and subsequently led to the low SST and high SSS in the ECS. In the late Holocene, the surface water temperature and salinity in the ECS showed a decreasing trend, which was almost synchronous with the changes in the Kuroshio. This study presents new lights for further understanding of the low-latitude forcing on the paleoenvironmental evolution in marginal sea.
  • [1]
    王丹. 全新世以来西北大西洋沉积物记录的古气候变化研究[D]. 上海海洋大学硕士学位论文, 2021

    WANG Dan. Research on paleoclimate changes recorded by sediments in the Northwest Atlantic since Holocene[D]. Master Dissertation of Shanghai Ocean University, 2021.
    [2]
    姜大膀, 田芝平, 王娜, 等. 末次冰盛期和中全新世气候模拟分析进展[J]. 地球科学进展, 2022, 37(1): 1-13

    JIANG Dabang, TIAN Zhiping, WANG Na, et al. Progress of Last Glacial Maximum and Mid-Holocene climate modeling analyses[J]. Advances in Earth Science, 2022, 37(1): 1-13.
    [3]
    赵亮. 早、中、晚全新世气候年代际变化特征及成因分析[D]. 南京师范大学硕士学位论文, 2021

    ZHAO Liang. Interdecadal variation and attribution of climate during Early, Middle and Late Holocene[D]. Master Dissertation of Nanjing Normal University, 2021.
    [4]
    Alley R B, Marotzke J, Nordhaus W D, et al. Abrupt climate change[J]. Science, 2003, 299(5615): 2005-2010. doi: 10.1126/science.1081056
    [5]
    IPCC. Climate Change 2007: The Physical Science Basis[C]. Geneva: IPCC, 2007.
    [6]
    Liu J P, Xu K H, Li A C, et al. Flux and fate of Yangtze River sediment delivered to the East China Sea[J]. Geomorphology, 2007, 85(3-4): 208-224. doi: 10.1016/j.geomorph.2006.03.023
    [7]
    Li X Y, Jian Z M, Shi X F, et al. A Holocene record of millennial-scale climate changes in the mud area on the inner shelf of the East China Sea[J]. Quaternary International, 2015, 384: 22-27. doi: 10.1016/j.quaint.2014.11.030
    [8]
    石学法, 刘升发, 乔淑卿, 等. 中国东部近海沉积物地球化学: 分布特征、控制因素与古气候记录[J]. 矿物岩石地球化学通报, 2015, 34(5): 885-894

    SHI Xuefa, LIU Shengfa, QIAO Shuqing, et al. Geochemical characteristics, controlling factor and record of paleoclimate in sediments from Eastern China Seas[J]. Bulletin of Mineralogy, Petrology and Geochemistry, 2015, 34(5): 885-894.
    [9]
    李超, 蓝东兆, 方琦. 东海陆架晚第四纪沉积硅藻及其古海洋学意义[J]. 台湾海峡, 2002, 21(3): 351-359

    LI Chao, LAN Dongzhao, FANG Qi. Late Quaternary sedimentary diatom from East China Sea continental shelf and its paleoceanographical significance[J]. Journal of Oceanography in Taiwan Strait, 2002, 21(3): 351-359.
    [10]
    程振波, 刘振夏, 石学法, 等. 东海DGKS96-03岩心中微体化石的古海洋学特点、δ18O曲线与AMS14C测年[J]. 沉积学报, 2000, 18(4): 501-505

    CHENG Zhenbo, LIU Zhenxia, SHI Xuefa, et al. Paleoceanographic characteristics of microfossils, δ18O curve and AMS14C dating in the core DGKS96-03 from the East China Sea[J]. Acta Sedimentologica Sinica, 2000, 18(4): 501-505.
    [11]
    Jian Z M, Wang P X, Saito Y, et al. Holocene variability of the Kuroshio current in the Okinawa Trough, northwestern Pacific Ocean[J]. Earth and Planetary Science Letters, 2000, 184(1): 305-319. doi: 10.1016/S0012-821X(00)00321-6
    [12]
    史光辉. 东海陆架泥质区底栖有孔虫记录及其环境意义[D]. 中国海洋大学硕士学位论文, 2013

    SHI Guanghui. Benthic foraminifera response to changes in paleoenviornments of Mud area on the East China Sea shelf[D]. Master Dissertation of Ocean University of China, 2013.
    [13]
    Liu S F, Shi X F, Liu Y G, et al. Records of the East Asian winter monsoon from the mud area on the inner shelf of the East China Sea since the mid-Holocene[J]. Chinese Science Bulletin, 2010, 55(21): 2306-2314. doi: 10.1007/s11434-010-3215-3
    [14]
    贾培蒙, 庄振业, 叶银灿, 等. 东海陆架中南部末次盛冰期以来的沉积地层及环境演变[J]. 海洋地质前沿, 2012, 28(8): 20-26

    JIA Peimeng, ZHUANG Zhenye, YE Yincan, et al. Sedimentary strata after last glacial maximum on central and South East China Sea shelf and environmental evolution[J]. Marine Geology Frontiers, 2012, 28(8): 20-26.
    [15]
    Xu K H, Li A C, Liu J P, et al. Provenance, structure, and formation of the mud wedge along inner continental shelf of the East China Sea: a synthesis of the Yangtze dispersal system[J]. Marine Geology, 2012, 291-294: 176-191. doi: 10.1016/j.margeo.2011.06.003
    [16]
    Li G X, Li P, Liu Y, et al. Sedimentary system response to the global sea level change in the East China Seas since the last glacial maximum[J]. Earth-Science Reviews, 2014, 139: 390-405. doi: 10.1016/j.earscirev.2014.09.007
    [17]
    Xu F J, Hu B Q, Dou Y G, et al. Sediment provenance and paleoenvironmental changes in the northwestern shelf mud area of the South China Sea since the mid-Holocene[J]. Continental Shelf Research, 2017, 144: 21-30. doi: 10.1016/j.csr.2017.06.013
    [18]
    Jia Y H, Li D W, Yu M, et al. High- and low-latitude forcing on the south Yellow Sea surface water temperature variations during the Holocene[J]. Global and Planetary Change, 2019, 182: 103025. doi: 10.1016/j.gloplacha.2019.103025
    [19]
    Huang J, Wan S M, Zhang J, et al. Mineralogical and isotopic evidence for the sediment provenance of the western South Yellow Sea since MIS 3 and implications for paleoenvironmental evolution[J]. Marine Geology, 2019, 414: 103-117. doi: 10.1016/j.margeo.2019.05.011
    [20]
    Xu Y, Chang F M, Li T G, et al. High-resolution sea surface temperature and salinity dynamics in the northern Okinawa trough over the last 24 Kyr[J]. Palaeoworld, 2021, 30(4): 770-785. doi: 10.1016/j.palwor.2020.12.005
    [21]
    王郑雷, 曾阳, 刘力宽, 等. 生物标志物在全新世古气候和古环境研究中的应用进展[J]. 环境监测管理与技术, 2022, 34(6): 9-13

    WANG Zhenglei, ZENG Yang, LIU Likuan, et al. Application of biomarkers in Holocene paleoclimate and paleoenvironment: A review[J]. The Administration and Technique of Environmental Monitoring, 2022, 34(6): 9-13.
    [22]
    陈立雷. 东海闽浙沿岸全新世古气候和古环境演变的生物标志物记录[D]. 中国地质大学博士学位论文, 2018

    CHEN Lilei. Biomarker records from the Zhejiang-Fujian Coast, East China Sea: Implications for paleoclimatic and palaeoenvironmental changes in Holocene[D]. Doctor Dissertation of China University of Geosciences, 2018.
    [23]
    Nan Q Y, Li T G, Chen J X, et al. High resolution unsaturated alkenones sea surface temperature records in the Yellow Sea during the period of 3500-1300 cal. yr BP[J]. Quaternary International, 2017, 441: 107-116. doi: 10.1016/j.quaint.2016.10.025
    [24]
    Chen C T A. Chemical and physical fronts in the Bohai, Yellow and East China seas[J]. Journal of Marine Systems, 2009, 78(3): 394-410. doi: 10.1016/j.jmarsys.2008.11.016
    [25]
    Li D W, Zhao M X, Tian J. Low-high latitude interaction forcing on the evolution of the 400 kyr cycle in East Asian winter monsoon records during the last 2.8 Myr[J]. Quaternary Science Reviews, 2017, 172: 72-82. doi: 10.1016/j.quascirev.2017.08.005
    [26]
    Webster P J, Magaña V O, Palmer T N, et al. Monsoons: Processes, predictability, and the prospects for prediction[J]. Journal of Geophysical Research: Oceans, 1998, 103(C7): 14451-14510. doi: 10.1029/97JC02719
    [27]
    Hsueh Y, Schultz J R, Holland W R. The Kuroshio flow-through in the East China Sea: A numerical model[J]. Progress in Oceanography, 1997, 39(2): 79-108. doi: 10.1016/S0079-6611(97)00008-6
    [28]
    王建丰, 司广成, 于非. 台湾暖流变化特征及机制研究进展[J]. 海洋科学, 2020, 44(5): 141-148

    WANG Jianfeng, SI Guangcheng, YU Fei. Progress in studies of the characteristics and mechanisms of variations in the Taiwan warm current[J]. Marine Sciences, 2020, 44(5): 141-148.
    [29]
    Che H, Zhang J. Water mass analysis and end–member mixing contribution using coupled radiogenic Nd isotopes and Nd concentrations: Interaction between marginal seas and the northwestern Pacific[J]. Geophysical Research Letters, 2018, 45(5): 2388-2395. doi: 10.1002/2017GL076978
    [30]
    Zhang J, Liu S M, Ren J L, et al. Nutrient gradients from the eutrophic Changjiang (Yangtze River) Estuary to the oligotrophic Kuroshio waters and re-evaluation of budgets for the East China Sea Shelf[J]. Progress in Oceanography, 2007, 74(4): 449-478. doi: 10.1016/j.pocean.2007.04.019
    [31]
    Chen C T A. Downwelling then upwelling again of the upwelled Kuroshio water in the southern East China Sea[J]. Journal of Geophysical Research: Oceans, 2011, 116: C07003.
    [32]
    Xing L, Zhao M X, Zhang T, et al. Ecosystem responses to anthropogenic and natural forcing over the last 100 years in the coastal areas of the East China Sea[J]. The Holocene, 2016, 26(5): 669-677. doi: 10.1177/0959683615618248
    [33]
    Ruan J P, Xu Y P, Ding S, et al. A high resolution record of sea surface temperature in southern Okinawa Trough for the past 15, 000 years[J]. Palaeogeography, Palaeoclimatology, Palaeoecology, 2015, 426: 209-215. doi: 10.1016/j.palaeo.2015.03.007
    [34]
    Diekmann B, Hofmann J, Henrich R, et al. Detrital sediment supply in the southern Okinawa Trough and its relation to sea-level and Kuroshio dynamics during the late Quaternary[J]. Marine Geology, 2008, 255(1-2): 83-95. doi: 10.1016/j.margeo.2008.08.001
    [35]
    Li D W, Yu M, Jia Y H, et al. Gradually cooling of the Yellow Sea Warm Current driven by tropical Pacific subsurface water temperature changes over the past 5 kyr[J]. Geophysical Research Letters, 2021, 48(10): e2021GL093534. doi: 10.1029/2021GL093534
    [36]
    Zheng X F, Li A C, Kao S, et al. Synchronicity of Kuroshio current and climate system variability since the Last Glacial Maximum[J]. Earth and Planetary Science Letters, 2016, 452: 247-257. doi: 10.1016/j.jpgl.2016.07.028
    [37]
    Li Q, Li G X, Chen M T, et al. New insights into Kuroshio current evolution since the last deglaciation based on paired organic paleothermometers from the middle Okinawa Trough[J]. Paleoceanography and Paleoclimatology, 2020, 35(12): e2020PA004140.
    [38]
    Stuiver M, Reimer P J. Extended 14C data base and revised CALIB 3.0 14C age calibration program[J]. Radiocarbon, 1993, 35(1): 215-230. doi: 10.1017/S0033822200013904
    [39]
    Reimer P J, Bard E, Bayliss A, et al. IntCal13 and Marine13 radiocarbon age calibration curves 0-50, 000 years cal BP[J]. Radiocarbon, 2013, 55(4): 1869-1887. doi: 10.2458/azu_js_rc.55.16947
    [40]
    Yoneda M, Uno H, Shibata Y, et al. Radiocarbon marine reservoir ages in the western Pacific estimated by pre-bomb molluscan shells[J]. Nuclear Instruments and Methods in Physics Research Section B: Beam Interactions with Materials and Atoms, 2007, 259(1): 432-437. doi: 10.1016/j.nimb.2007.01.184
    [41]
    Bai J, Gu X Y, Feng Y Y, et al. Autumn living coccolithophores in the Yellow Sea and the East China Sea[J]. Acta Oceanologica Sinica, 2014, 33(8): 83-94. doi: 10.1007/s13131-014-0481-y
    [42]
    Sun J, Gu X Y, Feng Y Y, et al. Summer and winter living coccolithophores in the Yellow Sea and the East China Sea[J]. Biogeosciences, 2014, 11(3): 779-806. doi: 10.5194/bg-11-779-2014
    [43]
    Weiss G M, Pfannerstill E Y, Schouten S, et al. Effects of alkalinity and salinity at low and high light intensity on hydrogen isotope fractionation of long-chain alkenones produced by Emiliania huxleyi[J]. Biogeosciences, 2017, 14(24): 5693-5704. doi: 10.5194/bg-14-5693-2017
    [44]
    Weiss G M, Schouten S, Sinninghe Damsté J S, et al. Constraining the application of hydrogen isotopic composition of alkenones as a salinity proxy using marine surface sediments[J]. Geochimica et Cosmochimica Acta, 2019, 250: 34-48. doi: 10.1016/j.gca.2019.01.038
    [45]
    Schulz M, Mudelsee M. REDFIT: estimating red-noise spectra directly from unevenly spaced paleoclimatic time series[J]. Computers & Geosciences, 2002, 28(3): 421-426.
    [46]
    秦蕴珊, 赵一阳, 陈丽蓉, 等. 东海地质[M]. 北京: 科学出版社, 1987

    QIN Yunshan, ZHAO Yiyang, CHEN Lirong, et al. Geology in the East China Sea[M]. Beijing: Science Press, 1987.
    [47]
    Li G X, Sun X Y, Liu Y, et al. Sea surface temperature record from the north of the East China Sea since late Holocene[J]. Chinese Science Bulletin, 2009, 54(23): 4507-4513.
    [48]
    Kajita H, Kawahata H, Wang K, et al. Extraordinary cold episodes during the mid-Holocene in the Yangtze delta: Interruption of the earliest rice cultivating civilization[J]. Quaternary Science Reviews, 2018, 201: 418-428. doi: 10.1016/j.quascirev.2018.10.035
    [49]
    Zheng X F, Li A C, Wan S M, et al. ITCZ and ENSO pacing on east Asian winter monsoon variation during the Holocene: Sedimentological evidence from the Okinawa Trough[J]. Journal of Geophysical Research: Oceans, 2014, 119(7): 4410-4429. doi: 10.1002/2013JC009603
    [50]
    张军强, 唐璐璐, 邹昊. 晚更新世以来古气候与海平面变化在东海地区的响应[J]. 海洋湖沼通报, 2008(1): 25-31 doi: 10.3969/j.issn.1003-6482.2008.01.004

    ZHANG Junqiang, TANG Lulu, ZOU Hao. The response to the variety of paleoclimate and sea level in the East China Sea after the late pleistocence[J]. Transactions of Oceanology and Limnology, 2008(1): 25-31. doi: 10.3969/j.issn.1003-6482.2008.01.004
    [51]
    庄丽华. 黄东海陆架晚第四纪古环境演化及海平面变化[D]. 中国科学院研究生院(海洋研究所)博士学位论文, 2002

    ZHUANG Lihua. The Late Quaternary paleo-environmental evolution and sea level change in the Yellow sea and the East China Sea[D]. Doctor Dissertation of Graduate School of Chinese Academy of Sciences (Institute of Oceanography), 2002.
    [52]
    He W, Liu J G, Huang Y, et al. Sea level change controlled the sedimentary processes at the makran continental margin over the past 13, 000yr[J]. Journal of Geophysical Research: Oceans, 2020, 125(3): e2019JC015703. doi: 10.1029/2019JC015703
    [53]
    Marlowe I T, Brassell S C, Eglinton G, et al. Long chain unsaturated ketones and esters in living algae and marine sediments[J]. Organic Geochemistry, 1984, 6: 135-141. doi: 10.1016/0146-6380(84)90034-2
    [54]
    Thiagarajan N, Subhas A V, Southon J R, et al. Abrupt pre-Bølling-Allerød warming and circulation changes in the deep ocean[J]. Nature, 2014, 511(7507): 75-78. doi: 10.1038/nature13472
    [55]
    Li T G, Sun R T, Zhang D Y, et al. Evolution and variation of the Tsushima warm current during the late quaternary: evidence from planktonic foraminifera, oxygen and carbon isotopes[J]. Science in China Series D: Earth Sciences, 2007, 50(5): 725-735. doi: 10.1007/s11430-007-0003-2
    [56]
    Liu X, Chiang K P, Liu S M, et al. Influence of the Yellow Sea warm current on phytoplankton community in the Central Yellow Sea[J]. Deep Sea Research Part I: Oceanographic Research Papers, 2015, 106: 17-29. doi: 10.1016/j.dsr.2015.09.008
    [57]
    Wang Y J, Cheng H, Edwards R L, et al. A high-resolution absolute-dated late Pleistocene monsoon record from Hulu Cave, China[J]. Science, 2001, 294(5550): 2345-2348. doi: 10.1126/science.1064618
    [58]
    王江月, 白伟明, 王照波, 等. 中国东部地区全新世气候演化及其与气候事件的对应性[J]. 海洋地质与第四纪地质, 2022, 42(2): 167-177 doi: 10.16562/j.cnki.0256-1492.2021122001

    WANG Jiangyue, BAI Weiming, WANG Zhaobo, et al. The Holocene climatic evolution in Eastern China and its bearing on climatic events[J]. Marine Geology & Quaternary Geology, 2022, 42(2): 167-177. doi: 10.16562/j.cnki.0256-1492.2021122001
    [59]
    Xu X D, Oda M. Surface-water evolution of the eastern East China Sea during the last 36, 000 years[J]. Marine Geology, 1999, 156(1-4): 285-304. doi: 10.1016/S0025-3227(98)00183-2
    [60]
    Rosenthal Y, Linsley B K, Oppo D W. Pacific Ocean heat content during the past 10, 000 years[J]. Science, 2013, 342(6158): 617-621. doi: 10.1126/science.1240837
    [61]
    Stanley D J, Chen Z Y, Song J. Inundation, sea-level rise and transition from Neolithic to Bronze Age cultures, Yangtze Delta, China[J]. Geoarchaeology, 1999, 14(1): 15-26. doi: 10.1002/(SICI)1520-6548(199901)14:1<15::AID-GEA2>3.0.CO;2-N
    [62]
    Marcott S A, Shakun J D, Clark P U, et al. A reconstruction of regional and global temperature for the past 11, 300 years[J]. Science, 2013, 339(6124): 1198-1201. doi: 10.1126/science.1228026
    [63]
    Kubota Y, Kimoto K, Tada R, et al. Variations of East Asian summer monsoon since the last deglaciation based on Mg/Ca and oxygen isotope of planktic foraminifera in the northern East China Sea[J]. Paleoceanography and Paleoclimatology, 2010, 25(4): PA4205.
    [64]
    Bard E, Hamelin B, Delanghe-Sabatier D. Deglacial meltwater pulse 1B and Younger Dryas sea levels revisited with boreholes at Tahiti[J]. Science, 2010, 327(5970): 1235-1237. doi: 10.1126/science.1180557
    [65]
    Dykoski C A, Edwards R L, Cheng H, et al. A high-resolution absolute-dated Holocene and deglacial Asian monsoon record from Dongge Cave, China[J]. Earth and Planetary Science Letters, 2005, 233(1-2): 71-86. doi: 10.1016/j.jpgl.2005.01.036
    [66]
    Wang Y J, Cheng H, Edwards R L, et al. The Holocene Asian monsoon: links to solar changes and North Atlantic climate[J]. Science, 2005, 308(5723): 854-857. doi: 10.1126/science.1106296
    [67]
    Volkman J K, Eglinton G, Corner E D S, et al. Long-chain alkenes and alkenones in the marine coccolithophorid Emiliania huxleyi[J]. Phytochemistry, 1980, 19(12): 2619-2622. doi: 10.1016/S0031-9422(00)83930-8
    [68]
    Volkman J K, Barrerr S M, Blackburn S I, et al. Alkenones in Gephyrocapsa oceanica: implications for studies of paleoclimate[J]. Geochimica et Cosmochimica Acta, 1995, 59(3): 513-520. doi: 10.1016/0016-7037(95)00325-T
    [69]
    Brassell S C, Eglinton G, Marlowe I T, et al. Molecular stratigraphy: a new tool for climatic assessment[J]. Nature, 1986, 320(6058): 129-133. doi: 10.1038/320129a0
    [70]
    Wang P X, Li Q Y, Tian J, et al. Monsoon influence on planktic δ18O records from the South China Sea[J]. Quaternary Science Reviews, 2016, 142: 26-39. doi: 10.1016/j.quascirev.2016.04.009
    [71]
    Zhu Z M, Feinberg J M, Xie S C, et al. Holocene ENSO-related cyclic storms recorded by magnetic minerals in speleothems of central China[J]. Proceedings of the National Academy of Sciences of the United States of America, 2017, 114(5): 852-857.
    [72]
    Milliman J D, Farnsworth K L. River Discharge to the Coastal Ocean: A Global Synthesis[M]. Cambridge: Cambridge University Press, 2013.
    [73]
    Bond G, Kromer B, Beer J, et al. Persistent solar influence on North Atlantic climate during the Holocene[J]. Science, 2001, 294(5549): 2130-2136. doi: 10.1126/science.1065680
    [74]
    Alley R B, Ágústsdóttir A M. The 8k event: cause and consequences of a major Holocene abrupt climate change[J]. Quaternary Science Reviews, 2005, 24(10-11): 1123-1149. doi: 10.1016/j.quascirev.2004.12.004
    [75]
    Sun Y B, Clemens S C, Morrill C, et al. Influence of Atlantic meridional overturning circulation on the East Asian winter monsoon[J]. Nature Geoscience, 2012, 5(1): 46-49. doi: 10.1038/ngeo1326
    [76]
    Soon W, Herrera V M V, Selvaraj K, et al. A review of Holocene solar-linked climatic variation on centennial to millennial timescales: physical processes, interpretative frameworks and a new multiple cross-wavelet transform algorithm[J]. Earth-Science Reviews, 2014, 134: 1-15. doi: 10.1016/j.earscirev.2014.03.003
    [77]
    Russell J M, Johnson T C, Talbot M R. A 725yr cycle in the climate of central Africa during the late Holocene[J]. Geology, 2003, 31(8): 677-680. doi: 10.1130/G19449.1
    [78]
    Stuiver M, Braziunas T F. Sun, ocean, climate and atmospheric 14CO2: an evaluation of causal and spectral relationships[J]. The Holocene, 1993, 3(4): 289-305. doi: 10.1177/095968369300300401
    [79]
    Sagawa T, Kuwae M, Tsuruoka K, et al. Solar forcing of centennial-scale East Asian winter monsoon variability in the mid- to late Holocene[J]. Earth and Planetary Science Letters, 2014, 395: 124-135. doi: 10.1016/j.jpgl.2014.03.043
    [80]
    Walczak M H, Mix A C, Cowan E A, et al. Phasing of millennial-scale climate variability in the Pacific and Atlantic Oceans[J]. Science, 2020, 370(6517): 716-720. doi: 10.1126/science.aba7096
    [81]
    Emile-Geay J, Mark A C, Naomi N, et al. Warren revisited: Atmospheric freshwater fluxes and “Why is no deep water formed in the North Pacific”[J]. Journal of Geophysical Research, 2003, 108(C6): 3178. doi: 10.1029/2001JC001058
    [82]
    Li Z Y, Chen M T, Lin D C, et al. Holocene surface hydroclimate changes in the Indo-Pacific warm pool[J]. Quaternary International, 2018, 482: 1-12. doi: 10.1016/j.quaint.2018.04.027
    [83]
    Broccoli A J, Dahl K A, Stouffer R J. Response of the ITCZ to Northern Hemisphere cooling[J]. Geophysical Research Letters, 2006, 33(1): L01702.
    [84]
    Oppo D W, Rosenthal Y, Linsley B K. 2, 000-year-long temperature and hydrology reconstructions from the Indo-Pacific warm pool[J]. Nature, 2009, 460(7259): 1113-1116. doi: 10.1038/nature08233
    [85]
    Jia W, Zhang P Z, Zhang L L, et al. Highly resolved δ13C and trace element ratios of precisely dated stalagmite from northwestern China: Hydroclimate reconstruction during the last two millennia[J]. Quaternary Science Reviews, 2022, 291: 107473. doi: 10.1016/j.quascirev.2022.107473
    [86]
    Chen F H, Xu Q H, Chen J H, et al. East Asian summer monsoon precipitation variability since the last deglaciation[J]. Scientific Reports, 2015, 5: 11186. doi: 10.1038/srep11186
    [87]
    Li Q, Zhang Q, Li G X, et al. A new perspective for the sediment provenance evolution of the middle Okinawa Trough since the last deglaciation based on integrated methods[J]. Earth and Planetary Science Letters, 2019, 528: 115839. doi: 10.1016/j.jpgl.2019.115839
  • Related Articles

    [1]WANG Xiaohua, CHEN Ronghua, ZHAO Qingying, CHEN Jianfang, RAN Lihua, M. G. Wiesner. THE INFLUENCE OF EAST ASIAN MONSOON ON SEASONAL VARIATIONS IN PLANKTONIC FORAMINIFERAL FLUX AND STABLE ISOTOPE IN THE NORTHERN SOUTH CHINA SEA DURING 2009-2010[J]. Marine Geology & Quaternary Geology, 2014, 34(1): 103-115. DOI: 10.3724/SP.J.1140.2014.01103
    [2]XU Taoyu, SHI Xuefa, LIU Shengfa, QIAO Shuqing, YANG Gang, WANG Guoqing, WANG Kunshan, WANG Xuchen. THE COLOR REFLECTANCE FEATURES OF THE SEDIMENTS IN MUD AREA ON THE INNER SHELF OF THE EAST CHINA SEA AND ITS PALEOCLIMATIC IMPLICATIONS FOR RECENT 2 ka[J]. Marine Geology & Quaternary Geology, 2012, 32(6): 149-158. DOI: 10.3724/SP.J.1140.2012.06149
    [3]LI Pian, ZHANG Maoheng, KONG Xinggong, ZHANG Chunxia, WANG Yongjin, ZHAO Kan. A STALAGMITE-RECORD OF EAST ASIAN SUMMER MONSOON IN THE LAST 2000 YEARS AND ITS CORRELATION WITH HISTORICAL RECORDS[J]. Marine Geology & Quaternary Geology, 2010, 30(4): 201-208. DOI: 10.3724/SP.J.1140.2010.04201
    [4]WANG Shutian, LI Bin. NEOTECTONIC FEATURES AND MOVEMENT IN THE EAST CHINA SEA[J]. Marine Geology & Quaternary Geology, 2010, 30(4): 141-150. DOI: 10.3724/SP.J.1140.2010.04141
    [5]HAN Bo, ZHANG Xunhua, MENG Xiangjun. MAGNETIC FIELD AND BASEMENT FEATURES ANALYSIS IN THE EAST CHINA SEA[J]. Marine Geology & Quaternary Geology, 2010, 30(1): 71-76. DOI: 10.3724/SP.J.1140.2010.01071
    [6]REN Hui-ru, KANG Jian-cheng, WANG Tian-tian, AN Yan. SPATIAL DISTRIBUTION OF WARM CORE OF KUROSHIO IN THE EAST CHINA SEA[J]. Marine Geology & Quaternary Geology, 2008, 28(5): 77-84.
    [7]SUN Xiao-yan, LI Guang-xue, LIU Yong, MA Yan-yan, LI Jun-jie. RESPONSE OF ENVIRONMENTAL SENSITIVE GRAIN SIZE GROUP IN CORE FJ04 FROM MUD AREA IN THE NORTH OF EAST CHINA SEA TO EAST ASIAN WINTER MONSOON EVOLVEMENT[J]. Marine Geology & Quaternary Geology, 2008, 28(4): 11-17. DOI: 10.3724/SP.J.1140.2008.03011
    [8]REN Xiao-hui, CHEN Shi-tao, MING Yan-fang, WANG Yong-jin. EAST ASIAN MONSOON CLIMATE DURING THE LATE PENULTIMATE GLACIATION BASED ON STALAGMITE RECORDS[J]. Marine Geology & Quaternary Geology, 2007, 27(1): 47-52.
    [9]JIANG Xiu-yang, WANG Yong-jin, KONG Xing-gong, XIA Zhi-feng. CENTENNIAL-SCALE EAST ASIAN MONSOON PRECIPITATION RECORD OVER 140~124 kaBP FROM A STALAGMITE IN SHENNONGJIA[J]. Marine Geology & Quaternary Geology, 2006, 26(3): 39-44.
    [10]ZHANG Xiao-dong, XU Shu-mei, ZHAI Shi-kui, ZHANG Huai-jing. THE INVERSION OF CLIMATE INFORMATION FROM THE SEDIMENT OF INNER SHELF OF EAST CHINA SEA USING END-MEMBER MODEL[J]. Marine Geology & Quaternary Geology, 2006, 26(2): 25-32.
  • Cited by

    Periodical cited type(2)

    1. 庞雄奇,胡涛,蒲庭玉,徐帜,王恩泽,汪文洋,李昌荣,张兴文,刘晓涵,吴卓雅,王通,赵正福,庞礴,鲍李银. 中国南海天然气水合物资源产业化发展面临的风险与挑战. 石油学报. 2024(07): 1044-1060 .
    2. 汤加丽,曹运诚,陈多福. 马里亚纳弧前蛇纹岩泥火山无机成因甲烷–氢气水合物形成条件与稳定带发育特征. 地球化学. 2022(02): 194-201 .

    Other cited types(2)

Catalog

    Article views (186) PDF downloads (24) Cited by(4)

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return